

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for	EPUB
and	its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or
app	settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize
often	include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and
figures	that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings
and	features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Embedded	Linux	Systems	with	the	Yocto
Project™
Rudolf	J.	Streif

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San	Francisco	•	Amsterdam	•	Cape	Town
Dubai	•	London	•	Madrid	•	Milan	•	Munich	•	Paris	•	Montreal	•	Toronto	•	Delhi	•	Mexico

City
São	Paulo	•	Sidney	•	Hong	Kong	•	Seoul	•	Singapore	•	Taipei	•	Tokyo

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products
are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	the
publisher	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	with	initial
capital	letters	or	in	all	capitals.

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no
expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.

Visit	us	on	the	Web:	informit.com/ph

Cataloging-in-Publication	Data	is	on	file	with	the	Library	of	Congress.

Copyright	©	2016	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected
by	copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited
reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	likewise.	For	information	regarding
permissions,	request	forms	and	the	appropriate	contacts	within	the	Pearson	Education
Global	Rights	&	Permissions	Department,	please	visit	www.pearsoned.com/permissions/.

ISBN-13:	978-0-13-344324-0
ISBN-10:	0-13-344324-8
Text	printed	in	the	United	States	on	recycled	paper	at	RR	Donnelley	in	Crawfordsville,
Indiana.
First	printing,	May	2016

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/ph
http://www.pearsoned.com/permissions/

To	Janan,	Dominic,	Daniel,	and	Jonas

Contents

Foreword

Preface

Acknowledgments

About	the	Author

1	Linux	for	Embedded	Systems

1.1	Why	Linux	for	Embedded	Systems?

1.2	Embedded	Linux	Landscape

1.2.1	Embedded	Linux	Distributions

1.2.2	Embedded	Linux	Development	Tools

1.3	A	Custom	Linux	Distribution—Why	Is	It	Hard?

1.4	A	Word	about	Open	Source	Licensing

1.5	Organizations,	Relevant	Bodies,	and	Standards

1.5.1	The	Linux	Foundation

1.5.2	The	Apache	Software	Foundation

1.5.3	Eclipse	Foundation

1.5.4	Linux	Standard	Base

1.5.5	Consumer	Electronics	Workgroup

1.6	Summary

1.7	References

2	The	Yocto	Project

2.1	Jumpstarting	Your	First	Yocto	Project	Build

2.1.1	Prerequisites

2.1.2	Obtaining	the	Yocto	Project	Tools

2.1.3	Setting	Up	the	Build	Host

2.1.4	Configuring	a	Build	Environment

2.1.5	Launching	the	Build

2.1.6	Verifying	the	Build	Results

2.1.7	Yocto	Project	Build	Appliance

2.2	The	Yocto	Project	Family

2.3	A	Little	Bit	of	History

2.3.1	OpenEmbedded

2.3.2	BitBake

2.3.3	Poky	Linux

2.3.4	The	Yocto	Project

2.3.5	The	OpenEmbedded	and	Yocto	Project	Relationship

2.4	Yocto	Project	Terms

2.5	Summary

2.6	References

3	OpenEmbedded	Build	System

3.1	Building	Open	Source	Software	Packages

3.1.1	Fetch

3.1.2	Extract

3.1.3	Patch

3.1.4	Configure

3.1.5	Build

3.1.6	Install

3.1.7	Package

3.2	OpenEmbedded	Workflow

3.2.1	Metadata	Files

3.2.2	Workflow	Process	Steps

3.3	OpenEmbedded	Build	System	Architecture

3.3.1	Build	System	Structure

3.3.2	Build	Environment	Structure

3.3.3	Metadata	Layer	Structure

3.4	Summary

3.5	References

4	BitBake	Build	Engine

4.1	Obtaining	and	Installing	BitBake

4.1.1	Using	a	Release	Snapshot

4.1.2	Cloning	the	BitBake	Development	Repository

4.1.3	Building	and	Installing	BitBake

4.2	Running	BitBake

4.2.1	BitBake	Execution	Environment

4.2.2	BitBake	Command	Line

4.3	BitBake	Metadata

4.4	Metadata	Syntax

4.4.1	Comments

4.4.2	Variables

4.4.3	Inclusion

4.4.4	Inheritance

4.4.5	Executable	Metadata

4.4.6	Metadata	Attributes

4.4.7	Metadata	Name	(Key)	Expansion

4.5	Source	Download

4.5.1	Using	the	Fetch	Class

4.5.2	Fetcher	Implementations

4.5.3	Mirrors

4.6	HelloWorld—BitBake	Style

4.7	Dependency	Handling

4.7.1	Provisioning

4.7.2	Declaring	Dependencies

4.7.3	Multiple	Providers

4.8	Version	Selection

4.9	Variants

4.10	Default	Metadata

4.10.1	Variables

4.10.2	Tasks

4.11	Summary

4.12	References

5	Troubleshooting

5.1	Logging

5.1.1	Log	Files

5.1.2	Using	Logging	Statements

5.2	Task	Execution

5.2.1	Executing	Specific	Tasks

5.2.2	Task	Script	Files

5.3	Analyzing	Metadata

5.4	Development	Shell

5.5	Dependency	Graphs

5.6	Debugging	Layers

5.7	Summary

6	Linux	System	Architecture

6.1	Linux	or	GNU/Linux?

6.2	Anatomy	of	a	Linux	System

6.3	Bootloader

6.3.1	Role	of	the	Bootloader

6.3.2	Linux	Bootloaders

6.4	Kernel

6.4.1	Major	Linux	Kernel	Subsystems

6.4.2	Linux	Kernel	Startup

6.5	User	Space

6.6	Summary

6.7	References

7	Building	a	Custom	Linux	Distribution

7.1	Core	Images—Linux	Distribution	Blueprints

7.1.1	Extending	a	Core	Image	through	Local	Configuration

7.1.2	Testing	Your	Image	with	QEMU

7.1.3	Verifying	and	Comparing	Images	Using	the	Build	History

7.1.4	Extending	a	Core	Image	with	a	Recipe

7.1.5	Image	Features

7.1.6	Package	Groups

7.2	Building	Images	from	Scratch

7.3	Image	Options

7.3.1	Languages	and	Locales

7.3.2	Package	Management

7.3.3	Image	Size

7.3.4	Root	Filesystem	Types

7.3.5	Users,	Groups,	and	Passwords

7.3.6	Tweaking	the	Root	Filesystem

7.4	Distribution	Configuration

7.4.1	Standard	Distribution	Policies

7.4.2	Poky	Distribution	Policy

7.4.3	Distribution	Features

7.4.4	System	Manager

7.4.5	Default	Distribution	Setup

7.5	External	Layers

7.6	Hob

7.7	Summary

8	Software	Package	Recipes

8.1	Recipe	Layout	and	Conventions

8.1.1	Recipe	Filename

8.1.2	Recipe	Layout

8.1.3	Formatting	Guidelines

8.2	Writing	a	New	Recipe

8.2.1	Establish	the	Recipe

8.2.2	Fetch	the	Source	Code

8.2.3	Unpack	the	Source	Code

8.2.4	Patch	the	Source	Code

8.2.5	Add	Licensing	Information

8.2.6	Configure	the	Source	Code

8.2.7	Compile

8.2.8	Install	the	Build	Output

8.2.9	Setup	System	Services

8.2.10	Package	the	Build	Output

8.2.11	Custom	Installation	Scripts

8.2.12	Variants

8.3	Recipe	Examples

8.3.1	C	File	Software	Package

8.3.2	Makefile-Based	Software	Package

8.3.3	CMake-Based	Software	Package

8.3.4	GNU	Autotools-Based	Software	Package

8.3.5	Externally	Built	Software	Package

8.4	Devtool

8.4.1	Round-Trip	Development	Using	Devtool

8.4.2	Workflow	for	Existing	Recipes

8.5	Summary

8.6	References

9	Kernel	Recipes

9.1	Kernel	Configuration

9.1.1	Menu	Configuration

9.1.2	Configuration	Fragments

9.2	Kernel	Patches

9.3	Kernel	Recipes

9.3.1	Building	from	a	Linux	Kernel	Tree

9.3.2	Building	from	Yocto	Project	Kernel	Repositories

9.4	Out-of-Tree	Modules

9.4.1	Developing	a	Kernel	Module

9.4.2	Creating	a	Recipe	for	a	Third-Party	Module

9.4.3	Including	the	Module	with	the	Root	Filesystem

9.4.4	Module	Autoloading

9.5	Device	Tree

9.6	Summary

9.7	References

10	Board	Support	Packages

10.1	Yocto	Project	BSP	Philosophy

10.1.1	BSP	Dependency	Handling

10.2	Building	with	a	BSP

10.2.1	Building	for	the	BeagleBone

10.2.2	External	Yocto	Project	BSP

10.3	Inside	a	Yocto	Project	BSP

10.3.1	License	Files

10.3.2	Maintainers	File

10.3.3	README	File

10.3.4	README.sources	File

10.3.5	Prebuilt	Binaries

10.3.6	Layer	Configuration	File

10.3.7	Machine	Configuration	Files

10.3.8	Classes

10.3.9	Recipe	Files

10.4	Creating	a	Yocto	Project	BSP

10.4.1	Yocto	Project	BSP	Tools

10.4.2	Creating	a	BSP	with	the	Yocto	Project	BSP	Tools

10.5	Tuning

10.6	Creating	Bootable	Media	Images

10.6.1	Creating	an	Image	with	Cooked	Mode

10.6.2	Creating	an	Image	with	Raw	Mode

10.6.3	Kickstart	Files

10.6.4	Kickstart	File	Directives

10.6.5	Plugins

10.6.6	Transferring	Images

10.7	Summary

10.8	References

11	Application	Development

11.1	Inside	a	Yocto	Project	ADT

11.2	Setting	Up	a	Yocto	Project	ADT

11.2.1	Building	a	Toolchain	Installer

11.2.2	Installing	the	Toolchain

11.2.3	Working	with	the	Toolchain

11.2.4	On-Target	Execution

11.2.5	Remote	On-Target	Debugging

11.3	Building	Applications

11.3.1	Makefile-Based	Applications

11.3.2	Autotools-Based	Applications

11.4	Eclipse	Integration

11.4.1	Installing	the	Eclipse	IDE

11.4.2	Integrating	a	Yocto	Project	ADT

11.4.3	Developing	Applications

11.4.4	Deploying,	Running,	and	Testing	on	the	Target

11.5	Application	Development	Using	an	Emulated	Target

11.5.1	Preparing	for	Application	Development	with	QEMU

11.5.2	Building	an	Application	and	Launching	It	in	QEMU

11.6	Summary

11.7	References

12	Licensing	and	Compliance

12.1	Managing	Licenses

12.1.1	License	Tracking

12.1.2	Common	Licenses

12.1.3	Commercially	Licensed	Packages

12.1.4	License	Deployment

12.1.5	Blacklisting	Licenses

12.1.6	Providing	License	Manifest	and	Texts

12.2	Managing	Source	Code

12.3	Summary

12.4	References

13	Advanced	Topics

13.1	Toaster

13.1.1	Toaster	Operational	Modes

13.1.2	Toaster	Setup

13.1.3	Local	Toaster	Development

13.1.4	Toaster	Configuration

13.1.5	Toaster	Production	Deployment

13.1.6	Toaster	Web	User	Interface

13.2	Build	History

13.2.1	Enabling	Build	History

13.2.2	Configuring	Build	History

13.2.3	Pushing	Build	History	to	a	Git	Repository	Server

13.2.4	Understanding	the	Build	History

13.3	Source	Mirrors

13.3.1	Using	Source	Mirrors

13.3.2	Setting	Up	Source	Mirrors

13.4	Autobuilder

13.4.1	Installing	Autobuilder

13.4.2	Configuring	Autobuilder

13.5	Summary

13.6	References

A	Open	Source	Licenses

A.1	MIT	License	(MIT)

A.2	GNU	General	Public	License	(GPL)	Version	2

A.3	GNU	General	Public	License	(GPL)	Version	3

A.4	Apache	License	Version	2.0

B	Metadata	Reference

Index

Foreword

The	embedded	Linux	landscape	is	a	little	bit	like	the	Old	West:	different	outposts	of
technology	scattered	here	and	there,	with	barren	and	often	dangerous	landscape	in
between.	If	you’re	going	to	travel	there,	you	need	to	be	well	stocked,	be	familiar	with	the
territory,	and	have	a	reliable	guide.

Just	as	people	moved	West	during	the	Gold	Rush	in	the	mid-1800s,	developers	are
moving	into	the	embedded	Linux	world	with	the	rush	to	the	Internet	of	Things.	As
increased	population	brought	law,	order,	and	civilization	to	the	Old	West,	important	new
open	source	software	projects	are	bringing	order	to	embedded	Linux.

The	Yocto	Project	is	a	significant	order-bringer.	Its	tools	let	you	focus	on	designing
your	project	(what	you	want	to	build)	and	devote	only	the	necessary	minimum	of	your
time	and	effort	to	putting	it	all	together	(how	you	build	what	you	want	to	build).

This	book	is	your	reliable	guide.	In	logically	ordered	chapters	with	clear	and	complete
instructions,	it	will	help	you	get	your	work	done	and	your	IoT	project	to	market.	And	with
some	luck,	you’ll	have	fun	along	the	way!

Enjoy	your	adventure!

Arnold	Robbins
Series	Editor

Preface

Smart	home.	Smart	car.	Smart	phone.	Smart	TV.	Smart	thermostat.	Smart	lights.	Smart
watch.	Smart	washer.	Smart	dryer.	Smart	fridge.	Smart	basketball.	Welcome	to	the	brave
new	world	of	smart	everything!

The	proliferation	of	embedded	computers	in	almost	everything	we	touch	and	interact
with	in	our	daily	lives	has	moved	embedded	systems	engineering	and	embedded	software
development	into	the	spotlight.	Hidden	from	the	direct	sight	of	their	users,	embedded
systems	lack	the	attractiveness	of	web	applications	with	their	flashy	user	interfaces	or	the
coolness	of	computer	games	with	their	animations	and	immersive	graphics.	It	comes	as	no
surprise	that	computer	science	students	and	software	developers	hardly	ever	think	of
embedded	software	engineering	as	their	first	career	choice.	However,	the	“smart-
everything	revolution”	and	the	Internet	of	Things	(IoT)	are	driving	the	demand	for
specialists	who	can	bridge	hardware	and	software	worlds.	Experts	who	speak	the	language
of	electric	schematics	as	well	as	programming	languages	are	sought	after	by	employers.

Linux	has	become	the	first	choice	for	an	explosively	growing	number	of	embedded
applications.	There	are	good	reasons	for	this	choice,	upon	which	we	will	elaborate	in	the
coming	chapters.	Through	my	journey	as	an	embedded	software	developer	for	various
industries,	I	have	learned	Linux	for	embedded	systems	the	hard	way.	There	is	no	shortage
of	excellent	development	tools	for	virtually	any	programming	language.	The	vast	majority
of	libraries	and	applications	for	Linux	can	easily	be	built	natively	because	of	their	tooling.
Even	building	the	Linux	kernel	from	scratch	is	almost	a	breeze	with	the	kernel’s	own	build
system.	However,	when	it	comes	to	putting	it	all	together	into	a	bootable	system,	the
choices	are	scarce.

The	Yocto	Project	closes	that	gap	by	providing	a	comprehensive	set	of	integrated	tools
with	the	OpenEmbedded	build	system	at	its	center.	From	source	code	to	bootable	system
in	a	matter	of	a	few	hours—I	wish	I	had	that	luxury	when	I	started	out	with	embedded
Linux!

What	This	Book	Is	and	What	It	Is	Not
A	build	system	that	integrates	many	different	steps	necessary	to	create	a	fully	functional
Linux	OS	stack	from	scratch	is	rather	complex.	This	book	is	dedicated	to	the	build	system
itself	and	how	you	can	effectively	use	it	to	build	your	own	custom	Linux	distributions.
This	book	is	not	a	tutorial	on	embedded	Linux.	Although	Chapter	6	explains	the	basics	of
the	Linux	system	architecture	(as	this	foundation	is	necessary	to	understanding	how	the
build	system	assembles	the	many	different	components	into	an	operational	system),	I	do
not	go	into	the	details	of	embedded	Linux	as	such.	If	you	are	a	beginning	embedded	Linux
developer,	I	strongly	recommend	Christopher	Hallinan’s	excellent	Embedded	Linux
Primer,	published	in	this	same	book	series.

In	this	book,	you	will	learn	how	the	OpenEmbedded	build	system	works,	how	you	can
write	recipes	to	build	your	own	software	components,	how	to	use	and	create	Yocto	Project
board	support	packages	to	support	different	hardware	platforms,	and	how	to	debug	build
failures.	You	will	learn	how	to	build	software	development	kits	for	application

development	and	integrate	them	with	the	popular	Eclipse	integrated	development
environment	(IDE)	for	seamless	round-trip	development.

Who	Should	Read	This	Book
This	book	is	intended	for	software	developers	and	programmers	who	have	a	working
knowledge	of	Linux.	I	assume	that	you	know	your	way	around	the	Linux	command	line,
that	you	can	build	programs	on	a	Linux	system	using	the	typical	tools,	such	as	Make	and	a
C/C++	compiler,	and	that	you	can	read	and	understand	basic	shell	scripts.

The	build	system	is	written	entirely	in	Python.	While	you	do	not	need	to	be	a	Python
expert	to	use	it	and	to	understand	how	it	works,	having	some	core	knowledge	about
Python	is	certainly	advantageous.

How	This	Book	Is	Organized
Chapter	1,	“Linux	for	Embedded	Systems,”	provides	a	brief	look	at	the	adoption	of	Linux
for	embedded	systems.	An	overview	of	the	embedded	Linux	landscape	and	the	challenges
of	creating	custom	embedded	Linux	distributions	set	the	stage.

Chapter	2,	“The	Yocto	Project,”	introduces	the	Yocto	Project	by	jumpstarting	an	initial
build	of	a	Linux	OS	stack	using	the	build	system.	It	also	gives	an	overview	of	the	Yocto
Project	family	of	projects	and	its	history.

Chapter	3,	“OpenEmbedded	Build	System,”	explains	the	fundamentals	of	the	build
system,	its	workflow,	and	its	architecture.

Chapter	4,	“BitBake	Build	Engine,”	gives	insight	into	BitBake,	the	build	engine	at	the
core	of	the	OpenEmbedded	build	system.	It	explains	the	metadata	concept	of	recipes,
classes,	and	configuration	files	and	their	syntax.	A	Hello	World	project	in	BitBake	style
illustrates	the	build	workflow.	Through	the	information	provided,	you	gain	the	necessary
knowledge	for	understanding	provided	recipes	and	for	writing	your	own.

Chapter	5,	“Troubleshooting,”	introduces	tools	and	mechanisms	available	to
troubleshoot	build	problems	and	provides	practical	advice	on	how	to	use	the	tools
effectively.

Chapter	6,	“Linux	System	Architecture,”	provides	the	basics	of	a	Linux	operating
system	stack	and	explains	how	the	different	components	are	layered.	It	discusses	the
concepts	of	kernel	space	and	user	space	and	how	application	programs	interact	with	the
Linux	kernel	through	system	calls	provided	by	the	standard	C	library.

Chapter	7,	“Building	a	Custom	Linux	Distribution,”	details	how	to	use	the	Yocto
Project	to	create	your	own	customized	Linux	distribution.	It	starts	with	an	overview	of	the
Linux	distribution	blueprints	available	with	the	build	system	and	how	to	customize	them.
It	then	demonstrates	how	to	create	a	Linux	distribution	entirely	from	scratch	using	the
build	system	tools.	After	completing	this	chapter,	you	will	know	how	to	build	your	own
operating	system	images.

Chapter	8,	“Software	Package	Recipes,”	explains	BitBake	recipes	and	how	to	write
them	to	build	your	own	software	packages	with	the	build	system.	The	chapter	provides
various	real-world	recipe	examples	that	you	can	try.

Chapter	9,	“Kernel	Recipes,”	examines	the	details	of	building	the	Linux	kernel	with	the
OpenEmbedded	build	system.	It	explains	how	the	build	system	tooling	interacts	with	the
kernel’s	own	build	environment	to	set	kernel	configuration	and	apply	patches.	A
discussion	of	how	the	build	system	handles	out-of-tree	kernel	modules	and	incorporates
building	device	trees	with	the	build	process	closes	this	chapter.

Chapter	10,	“Board	Support	Packages,”	introduces	how	the	build	system	supports
building	for	different	hardware—that	is,	CPU	architectures	and	systems.	After	an
explanation	of	the	Yocto	Project	board	support	package	concepts,	the	chapter	details	how
you	can	build	a	project	using	a	board	support	package.	We	then	look	into	the	internals	of
Yocto	Project	board	support	packages	and	explain	how	to	create	your	own	with	a	practical
example	that	you	can	put	to	use	with	actual	hardware.	The	chapter	concludes	with	creating
bootable	media	images	for	different	hardware	configurations.

Chapter	11,	“Application	Development,”	describes	Yocto	Project	support	for
developing	applications	for	Linux	OS	stacks	created	with	the	build	system.	It	provides
hands-on	instructions	on	how	to	build	application	development	toolkits	(ADT)	that
include	all	the	necessary	tools	for	round-trip	application	development.	Examples	illustrate
how	to	use	an	ADT	for	application	development	using	the	command-line	tools	as	well	as
with	the	Eclipse	IDE.	Step-by-step	instructions	teach	how	to	remotely	run	and	debug
applications	on	an	actual	hardware	target.

Chapter	12,	“Licensing	and	Compliance,”	discusses	requirements	for	compliance	with
open	source	licenses	and	the	tools	the	Yocto	Project	provides	to	facilitate	meeting	them.

Chapter	13,	“Advanced	Topics,”	introduces	several	tools	that	help	you	scale	the	Yocto
Project	to	teams.	Toaster	is	a	web-based	graphical	user	interface	that	can	be	used	to	create
build	systems	that	can	be	controlled	remotely	from	a	web	browser.	Build	history	is	a	tool
that	provides	tracking	and	audit	capabilities.	With	source	mirrors,	you	can	share	source
packages	to	avoid	repeated	downloads	and	to	control	source	versions	for	product	delivery.
Last	but	not	least,	Autobuilder	provides	an	out-of-the-box	continuous	build	and	integration
framework	for	automating	builds,	quality	assurance,	and	release	processes.	Equipped	with
the	knowledge	from	this	chapter,	you	can	effectively	set	up	team	environments	for	the
Yocto	Project.

The	appendices	cover	popular	open	source	licenses	and	alphabetical	references	of	build
system	metadata	layers	and	machines.

Hands-on	Experience
The	book	is	written	to	provide	you	with	hands-on	experience	using	the	Yocto	Project.	You
will	benefit	the	most	if	you	follow	along	and	try	out	the	examples.	The	majority	of	them
you	can	work	through	simply	with	an	x86-based	workstation	running	a	recent	Linux
distribution	(detailed	requirements	are	provided	in	Chapter	2).	For	an	even	better
experience,	grab	one	of	the	popular	development	boards,	such	as	the	BeagleBone,	the
MinnowBoard	Max,	or	the	Wandboard.	The	BeagleBone	makes	an	excellent	low-cost
experimental	platform.	The	other	two	boards	offer	more	performance	and	let	you	gain
experience	with	multicore	systems.

Analyze	the	code	and	try	to	understand	the	examples	produced	in	the	book.	Follow	the

steps	and	then	veer	off	on	your	own	by	changing	settings,	applying	your	own
configuration,	and	more.	It	is	the	best	way	to	learn,	and	I	can	tell	you,	it	is	a	lot	of	fun	too.
It	is	a	great	feeling	to	get	your	first	own	Linux	distribution	to	work	on	a	piece	of	hardware
of	your	choice.

Register	your	copy	of	Embedded	Linux	Systems	with	the	Yocto	Project™	at
informit.com	for	convenient	access	to	downloads,	updates,	and	corrections	as
they	become	available.	To	start	the	registration	process,	go	to
informit.com/register	and	log	in	or	create	an	account.	Enter	the	product	ISBN
(9780133443240)	and	click	Submit.	Once	the	process	is	complete,	you	will
find	any	available	bonus	content	under	“Registered	Products.”

mailto:informit.com
http://informit.com/register

Acknowledgments

What	you	are	holding	in	your	hands	is	my	first	attempt	at	writing	a	technical	book.	Well,
any	book,	for	that	matter.	I	humbly	have	to	admit	that	I	greatly	underestimated	the	effort
that	goes	into	a	project	like	this,	the	hours	spent	experimenting	with	things,	finding	the
best	way	to	make	them	work,	and	documenting	everything	in	a	concise	and
understandable	fashion.	During	the	process,	I	have	come	to	truly	appreciate	the	work	of
the	many	authors	and	technical	writers	whose	books	and	manuals	I	have	read	and	continue
reading.

Foremost,	I	want	to	express	my	gratitude	to	my	family,	my	loving	wife,	Janan,	and	my
three	wonderful	boys,	Dominic,	Daniel,	and	Jonas.	Without	their	support	and	their
understanding,	it	would	not	have	been	possible	for	me	to	spend	the	many	hours	writing
this	text.

Special	thanks	go	to	the	Yocto	Project	team.	When	I	approached	Dave	Stewart,	Project
Manager	for	the	Yocto	Project	at	the	time,	and	Jeffrey	Osier-Mixon,	the	Yocto	Project’s
Community	Manager,	they	immediately	welcomed	the	idea	for	the	book	and	offered	their
support.	Several	individuals	from	the	team	were	especially	helpful	with	advice	and
answers	to	my	questions:	Beth	Flanagan	for	Autobuilder,	Belen	Barros	Pena	and	Ed
Bartosh	for	Toaster,	and	Paul	Eggleton	and	Khem	Raj	who	jumped	on	many	of	the
questions	I	posted	to	the	Yocto	Project	mailing	list.

Special	thanks	to	Christopher	Hallinan	whose	Embedded	Linux	Primer:	A	Practical
Real-World	Approach	(Prentice	Hall,	2006)	inspired	me	to	write	this	book	on	the	Yocto
Project.

I	especially	want	to	thank	Debra	Williams	Cauley,	Executive	Acquisitions	Editor,	for
her	guidance	and	particularly	her	patience	while	this	book	was	in	the	works.	It	took	much
longer	than	expected,	and	I	am	the	only	one	to	blame	for	the	missed	deadlines.

I	cannot	thank	and	praise	enough	my	dedicated	review	team,	Chris	Zahn,	Jeffrey	Osier-
Mixon,	Robert	Berger,	and	Bryan	Smith,	for	their	valuable	contributions	to	the	quality	of
the	book	in	the	form	of	corrections	and	suggestions	for	improvements.

I	also	want	to	thank	the	production	team	at	Prentice	Hall,	Julie	Nahil	and	Anna	Popick,
for	their	coordination	and	guidance	through	the	process,	and	in	particular	Carol	Lallier	for
her	diligence	in	copyediting	the	manuscript.

Thanks	also	to	the	Linux	Foundation	and	Jerry	Cooperstein,	who	gave	me	the
opportunity	to	develop	the	Linux	Foundation’s	training	course	on	the	Yocto	Project.
Nothing	teaches	as	well	as	teaching	somebody	else.	Thank	you	to	the	students	of	the
classes	that	I	taught.	Through	your	critical	questions	and	feedback,	I	gained	a	lot	of
understanding	for	the	many	different	problems	you	are	facing	when	developing	products
with	embedded	Linux.	One	of	your	most	asked	questions	was,	“Is	there	a	book	on	the
Yocto	Project?”	Finally,	I	can	say,	“Yes.”

About	the	Author

Rudolf	Streif	has	more	than	twenty	years	of	experience	in	software	engineering	as	a
developer	as	well	as	a	manager	leading	cross-functional	engineering	teams	with	more	than
one	hundred	members.	Currently,	he	is	an	independent	consultant	for	software	technology
and	system	architecture	specializing	in	open	source.

He	previously	served	as	the	Linux	Foundation’s	Director	of	Embedded	Solutions,
coordinating	the	Foundation’s	efforts	for	Linux	in	embedded	systems.	Rudolf	developed
the	Linux	Foundation’s	training	course	on	the	Yocto	Project,	which	he	delivered	multiple
times	to	companies	and	in	a	crash-course	variant	during	Linux	Foundation	events.

Rudolf	has	been	working	with	Linux	and	open	source	since	the	early	1990s	and
developing	commercial	products	since	2000.	The	projects	he	has	been	involved	with
include	high-speed	industrial	image	processing	systems,	IPTV	head-end	system	and
customer	premises	equipment,	and	connected	car	and	in-vehicle	infotainment.

In	2014,	Rudolf	was	listed	by	PC	World	among	the	50	most	interesting	people	in	the
world	of	technology	(http://tinyurl.com/z3tbtns).

Rudolf	lives	with	his	wife	and	three	children	in	San	Diego,	California.

http://tinyurl.com/z3tbtns

1.	Linux	for	Embedded	Systems

In	This	Chapter

1.1	Why	Linux	for	Embedded	Systems?

1.2	Embedded	Linux	Landscape

1.3	A	Custom	Linux	Distribution—Why	Is	It	Hard?

1.4	A	Word	about	Open	Source	Licensing

1.5	Organizations,	Relevant	Bodies,	and	Standards

1.6	Summary

1.7	References

The	Internet	of	Things	is	inspiring	the	imagination	of	visionaries	and	likewise	the
creativity	of	engineers.	As	a	universal	computing	network	of	myriad	connected	devices
collecting,	analyzing,	and	delivering	data	in	real-time,	it	carries	the	promise	of	a	new	era
of	information	technology.

Devices	comprising	the	Internet	of	Things	need	to	meet	an	entirely	new	set	of
requirements	and	provide	functionality	previously	not	found	in	embedded	systems.
Connectivity,	including	through	cellular	data	networks,	is	an	obvious	one,	but	there	is	also
remote	management,	software	configuration	and	updates,	power	efficiency,	longevity,	and,
of	course,	security,	to	just	name	a	few.

This	changing	landscape	of	embedded	systems	requires	a	different	approach	to	building
the	software	stacks	that	operate	this	new	breed	of	connected	hardware.

1.1	Why	Linux	for	Embedded	Systems?
Linux	debuted	as	a	general-purpose	operating	system	(GPOS)	for	PC	hardware	with	Intel
x86	architecture.	In	his	now	famous	post	on	news:comp.os.minix,	Linux	creator	Linus
Torvalds	explicitly	stated,	“I’m	doing	a	(free)	operating	system…	.	It	is	NOT	portable
(uses	386	task	switching	etc),	and	it	probably	never	will	support	anything	other	than	AT-
harddisks	….”

Driven	by	the	rise	of	the	Internet,	Linux	quickly	evolved	into	a	server	operating	system
providing	infrastructure	for	web	servers	and	networking	services	for	many	well-founded
reasons.

Nevertheless,	Linux	remained	true	to	its	GPOS	origins	in	three	major	aspects	that	do
not	make	it	the	premier	choice	of	engineers	for	an	embedded	operating	system	at	first:

	Filesystem:	Linux	is	a	file-based	operating	system	requiring	a	filesystem	on	a
block-oriented	mass	storage	device	with	read	and	write	access.	Block-oriented	mass
storage	typically	meant	hard	drives	with	spinning	platters,	which	are	not	practical	for
most	embedded	use	cases.

	Memory	Management	Unit	(MMU):	Linux	is	a	multitasking	operating	system.
Effective	task	switching	mandates	that	individual	processes	have	their	private
memory	address	space	that	can	easily	be	mapped	into	physical	memory	when	the
process	is	running	on	the	CPU.	Microcontrollers	that	have	been	widely	used	for
typical	embedded	applications	do	not	provide	an	MMU.

	Real	Time:	Embedded	systems	running	critical	applications	may	require	predictive
responses	with	guaranteed	timing	within	a	certain	margin	of	error,	commonly
referred	to	as	determinism.	The	amount	of	error	in	the	timing	over	subsequent
iterations	of	a	program	or	section	thereof	is	called	jitter.	An	operating	system	that
can	absolutely	guarantee	a	maximum	time	for	the	operations	it	performs	is	referred
to	as	a	hard	real-time	system.	An	operating	system	that	typically	performs	its
operations	within	a	certain	time	is	referred	to	as	soft	real-time.	Although	several
solutions	providing	real-time	capabilities	for	Linux,	most	notably	PREEMPT-RT,
had	been	developed	as	early	as	1996,	they	are	still	not	part	of	the	mainline	Linux
kernel.

During	the	last	couple	of	years,	advances	in	semiconductor	technology	have	helped	to
overcome	these	hurdles	for	the	adoption	of	Linux	in	embedded	systems.	Ubiquitously
available,	inexpensive,	and	long-term	reliable	flash	memory	devices	used	in	many
consumer	products,	such	as	digital	cameras,	are	providing	the	necessary	mass	storage	for
the	filesystem.	Powerful	system-on-chips	(SoC)	designs	combining	one	or	multiple
general-purpose	CPU	cores	with	MMU	and	peripheral	devices	on	a	single	chip	have
become	the	embedded	systems	engineer’s	choice	of	processor	and	are	increasingly
replacing	the	microcontroller	in	embedded	applications.

Today	we	are	seeing	an	explosive	growth	in	the	adoption	of	Linux	for	embedded
devices.	Virtually	every	industry	is	now	touched	by	this	trend.	In	Carrier-Grade	Linux
(CGL),	the	operating	system	has	been	adopted	for	products	in	public	switched	telephone
networks	and	global	data	networks.	Chances	are	that	you	carry	a	cellphone,	watch
television	with	a	set-top	box	and	high-definition	television,	surf	the	Internet	with
broadband	modems	and	networking	switches,	find	your	way	with	a	personal	navigation
device,	and	daily	use	many	other	devices	that	are	powered	by	Linux.

There	are	many	reasons	for	the	rapid	growth	of	embedded	Linux.	To	name	a	few:

	Royalties:	Unlike	traditional	proprietary	operating	systems,	Linux	can	be	deployed
without	any	royalties.

	Hardware	Support:	Linux	supports	a	vast	variety	of	hardware	devices	including	all
major	and	commonly	used	CPU	architectures:	ARM,	Intel	x86,	MIPS,	and	PowerPC
in	their	respective	32-bit	and	64-bit	variants.

	Networking:	Linux	supports	a	large	variety	of	networking	protocols.	Besides	the
ubiquitous	TCP/IP,	virtually	any	other	protocol	on	any	physical	medium	is
implemented.

	Modularity:	A	Linux	OS	stack	is	composed	of	many	different	software	packages.
Engineers	can	customize	the	stack	to	make	it	exactly	fit	their	application.

	Scalability:	Linux	scales	from	systems	with	only	one	CPU	and	limited	resources	to

systems	featuring	multiple	CPUs	with	many	cores,	large	memory	footprints,	several
networking	interfaces,	and	much	more.

	Source	Code:	The	source	code	for	the	Linux	kernel,	as	well	as	for	all	software
packages	comprising	a	Linux	OS	stack,	is	openly	available.

	Developer	Support:	Because	of	its	openness,	Linux	has	attracted	a	huge	number	of
active	developers,	and	those	developers	have	quickly	built	support	for	new
hardware.

	Commercial	Support:	An	increasing	number	of	hardware	and	software	vendors,
including	all	semiconductor	manufacturers	as	well	as	many	independent	software
vendors	(ISV),	are	now	offering	support	for	Linux	through	products	and	services.

	Tooling:	Linux	provides	myriad	tools	for	software	development	ranging	from
compilers	for	virtually	any	programming	language	to	a	steadily	growing	number	of
profiling	and	performance	measurement	tools	important	for	embedded	systems
development.

These	and	many	other	reasons	now	make	Linux	the	premier	choice	of	embedded
systems	engineers,	fueling	its	accelerated	adoption	for	consumer	and	professional
products.

1.2	Embedded	Linux	Landscape
Embedded	systems	are	diverse.	With	the	huge	variety	of	hardware	inevitably	comes	the
burden	of	software	adaptation,	most	notably	the	operating	system,	which	provides
abstraction	from	the	hardware	through	its	libraries	and	application	programming	interfaces
(API).	There	is	no	one-size-fits-all,	and	you,	as	the	systems	engineer,	will	have	to	start
somewhere	with	your	embedded	Linux	project.

In	the	following	paragraphs,	we	provide	an	overview	of	the	most	commonly	used	open
source	projects	for	embedded	devices.	Beyond	those	there	are,	of	course,	a	couple	of
commercial	embedded	Linux	offerings	from	operating	system	vendors	(OSVs).

1.2.1	Embedded	Linux	Distributions
Similar	to	desktop	and	server	Linux	distributions,	an	ever-evolving	variety	of	embedded
Linux	distributions	is	developed	by	community	projects	and	commercial	operating	system
vendors.	Some	of	them	are	targeted	for	a	specific	class	of	embedded	systems	and	devices,
while	others	are	more	general	in	nature	with	the	idea	to	provide	a	foundation	rather	than	a
complete	system.

Android

Despite	its	primary	target	being	mobile	phones	and	tablet	computers,	Android
(www.android.com,	http://developer.android.com,	http://source.android.com)	is	enjoying
growing	popularity	as	an	operating	system	for	all	kinds	of	embedded	devices.	That	does
not	come	as	any	surprise,	as	its	source	code	is	freely	available	and	includes	a	build	system
with	configuration	tools	that	lets	developers	adapt	the	system	to	different	hardware
devices.

http://www.android.com
http://developer.android.com
http://source.android.com

In	particular,	if	the	target	device	is	utilizing	an	ARM-based	SoC	and	has	a	touch	screen,
then	Android	is	a	popular	choice	among	systems	engineers	as	the	necessary	support	for
the	hardware	is	a	core	part	of	the	system.	Ports	to	Intel	x86	architecture	do	exist,	but	there
is	much	less	hardware	available,	and	development	is	typically	also	more	expensive.

However,	Android	does	not	fill	every	need	of	embedded	devices.	While	it	utilizes	the
Linux	kernel	and	other	software	packages	generally	found	in	a	Linux	OS	stack,	its
fundamental	architecture	is	different	from	a	typical	Linux	OS	stack.	Android	uses	its	own
flavor	of	a	C	library	with	a	reduced	set	of	APIs,	as	well	as	its	own	filesystem	layout	and
other	specific	extensions.	These	modifications	make	it	less	than	straightforward	to	port
standard	Linux	software	packages	to	Android.

While	Android	is	an	open	source	project	in	the	sense	that	the	source	code	for	the	entire
system	is	freely	available	and	can	be	used,	modified,	and	extended	for	any	purpose	with
very	few	restrictions,	developers	cannot	contribute	their	changes	back	to	Android.	Google
alone	controls	the	roadmap	of	the	system.	The	CyanogenMod	(www.cyanogenmod.org)
community	distribution	based	on	Google’s	Android	releases	is	trying	to	fill	this	void.

Nevertheless,	the	Linux	kernel	does	owe	Android	one	important	extension:	power
management.	While	frowned	upon	by	some	Linux	kernel	developers	because	of	their
simplistic	architecture,	the	Android	Wake	Locks	have	become	the	de	facto	standard	of
Linux	power	management.

Ångström	Distribution

The	Ångström	Distribution,	with	its	homepage	at	www.angstrom-distribution.org,	is
increasingly	becoming	an	important	resource	for	projects	because	of	its	growing	list	of
supported	development	boards.	Ångström	is	a	community	distribution	that	was	started	by
a	group	of	developers	who	worked	on	the	OpenEmbedded,	OpenZaurus,	and	OpenSimpad
projects.	Ångström	has	been	using	the	OpenEmbedded	tools	from	its	beginning	but	is	now
adapting	the	architecture	and	structure	of	the	Yocto	Project.

OpenWrt

OpenWrt	(www.openwrt.org)	debuted	as	an	open	source	operating	system	targeting
embedded	devices	that	route	network	traffic	such	as	broadband	modems,	routers,
residential	gateways,	and	other	consumer	premises	equipment	(CPE).	OpenWrt’s	core
components	are	the	Linux	kernel,	uClibc,	and	BusyBox.

The	first	versions	of	OpenWrt	were	built	on	the	Linksys	GPL	sources	for	their
WRT54G	residential	gateway	and	wireless	router	and	a	root	filesystem	created	with
Buildroot—hence	the	name	OpenWrt.

OpenWrt	supports	a	wide	variety	of	hardware	devices	and	evaluation	boards.
OpenWrt’s	core	strength	is	the	exhaustive	list	of	possibilities	to	configure	networking
technologies	and	protocols,	including	routing,	mesh	networking,	firewall,	address
translation,	port	forwarding,	load	balancing,	and	much	more.

While	OpenWrt	is	intended	to	operate	devices	that	typically	run	without	regular	human
interaction,	it	provides	a	sophisticated	web	interface	to	comfortably	access	the	many
configuration	options.

http://www.cyanogenmod.org
http://www.angstrom-distribution.org
http://www.openwrt.org

Its	focus	on	connectivity	and	remote	management	make	OpenWrt	a	favorite	among
systems	engineers	developing	connected	devices.	A	writable	filesystem	with	package
management	makes	it	straightforward	to	add	functionality	even	after	the	system	has	been
deployed.

Embedded	Versions	of	Full	Linux	Distributions

For	many	of	the	fully	fledged	Linux	distributions	for	desktop,	server,	and	cloud,	variants
targeting	embedded	systems	are	now	also	available:

	Debian	(www.emdebian.org)

	Fedora	(https://fedoraproject.org/wiki/Embedded)

	Gentoo	(https://wiki.gentoo.org/wiki/Project:Embedded)

	SUSE	(https://tr.opensuse.org/MicroSUSE)

	Ubuntu	(https://wiki.ubuntu.com/EmbeddedUbuntu)

For	system	builders	and	developers	familiar	with	a	desktop	or	server	version	of	a
particular	Linux	distribution,	using	its	embedded	variant	provides	the	advantage	of
familiar	tools,	filesystem	layout,	and	more.

1.2.2	Embedded	Linux	Development	Tools
Besides	utilizing	an	embedded	Linux	distribution,	you	can	also	build	your	own	custom
Linux	OS	stack	with	embedded	Linux	development	tools.	This	gives	you	the	most	control
and	flexibility	but	in	most	cases	requires	more	effort.

Baserock

Baserock	is	an	open	source	project	that	provides	a	build	system	for	Linux	distributions,	a
development	environment,	and	a	development	workflow	in	one	package.	Baserock’s
major	characteristics	are

	Git	as	the	core	to	manage	essentially	everything	from	build	instructions	to	build
artifacts	as	a	means	to	provide	traceability

	Native	compilation	to	avoid	the	complexity	of	cross-build	environments

	Distributed	builds	across	multiple	systems	using	virtual	machines

Currently,	Baserock	supports	building	for	x86,	x86_64,	and	ARMv7	architectures.	The
project’s	homepage	is	at	http://wiki.baserock.org.

Buildroot

Buildroot	is	a	build	system	for	complete	embedded	Linux	systems	using	GNU	Make	and	a
set	of	makefiles	to	create	a	cross-compilation	toolchain,	a	root	filesystem,	a	kernel	image,
and	a	bootloader	image.	The	project’s	homepage	is	at	http://buildroot.uclibc.org.

Buildroot	mainly	targets	small	footprint	embedded	systems	and	supports	various	CPU
architectures.	To	jump	start	development	it	limits	the	choice	of	configuration	options	and
defaults	to	probably	the	most	commonly	used	ones	for	embedded	systems:

http://www.emdebian.org
https://fedoraproject.org/wiki/Embedded
https://wiki.gentoo.org/wiki/Project:Embedded
https://tr.opensuse.org/MicroSUSE
https://wiki.ubuntu.com/EmbeddedUbuntu
http://wiki.baserock.org
http://buildroot.uclibc.org

	uClibc	is	the	target	library	to	build	the	cross-compilation	toolchain.	In	comparison	to
the	GNU	C	Library	(glibc),	uClibc	is	much	more	compact	and	optimized	for	small
footprint	embedded	systems.	uClibc	supports	virtually	all	CPU	architectures	as	well
as	shared	libraries	and	threading.

	BusyBox	is	the	default	set	of	command	line	utility	applications.

These	default	settings	enable	building	a	basic	embedded	Linux	system	with	Buildroot
typically	within	15	to	30	minutes,	depending	on	the	build	host.	However,	these	settings	are
not	absolute,	and	the	simple	and	flexible	structure	of	Buildroot	makes	it	easy	to
understand	and	extend.	The	internal	cross-toolchain	can	be	replaced	by	an	external	one
such	as	crosstool-ng,	and	uClibc	can	be	replaced	with	other	C	libraries.

Buildroot	already	supports	many	standard	Linux	packages,	such	as	the	X.org	stack,
GStreamer,	DirectFB,	and	Simple	DirectMedia	Layer	(SDL).	The	cross-toolchain	can	be
used	to	build	additional	packages	and	have	them	included	with	the	root	filesystem.

Buildroot	is	very	compact	and	straightforward	to	set	up.	A	single-file	(tarball)	download
and	the	installation	of	a	few	additional	packages	on	the	build	host	are	all	that	are	required
to	get	started.	After	unpacking	the	tarball,	the	command	make	menuconfig	launches	a
text-based	user	interface	enabling	configuration	of	a	wide	range	of	supported	targets	and
setting	of	other	options.	In	addition	to	menuconfig,	Buildroot	offers	gconfig	and	xconfig,
which	are	alternative	graphical	user	interfaces.

Buildroot	creates	everything	from	source	by	downloading	the	source	code	files	directly
from	the	upstream	projects.	A	nice	feature	is	that	offline	builds	can	be	done	by
downloading	all	the	sources	first	using	make	source.	Buildroot	pre-fetches	all
necessary	files	and	can	then	configure	and	run	a	build	without	further	connectivity	to	the
Internet.

OpenEmbedded

OpenEmbedded	(www.openembedded.org)	is	a	build	framework	composed	of	tools,
configuration	data,	and	recipes	to	create	Linux	distributions	targeted	for	embedded
devices.	At	the	core	of	OpenEmbedded	is	the	BitBake	task	executor	that	manages	the	build
process.

Historically,	OpenEmbedded	was	created	by	merging	the	work	of	the	OpenZaurus
project	with	contributions	from	other	projects	such	as	Familiar	Linux	and	OpenSIMpad.

OpenEmbedded	has	been	used	to	develop	a	variety	of	open	source	embedded	projects,
most	notably	the	OpenMoko	(http://wiki.openmoko.org)	project	dedicated	to	delivering	a
complete	open	source	software	stack	for	mobile	phones.

OpenEmbedded,	the	Yocto	Project,	and	the	Ångström	Distribution	all	have	the	same
roots	and	build	on	and	complement	each	other	in	various	ways.	We	will	explain	the
commonalities	and	differences	in	the	next	chapter	when	we	dive	into	the	details	of	the
Yocto	Project.

http://www.openembedded.org
http://wiki.openmoko.org

The	Yocto	Project

The	Yocto	Project	is,	of	course,	the	subject	of	this	book.	It	is	listed	here	to	complete	this
overview	of	the	embedded	Linux	landscape.	You	can	find	its	webpage	at
https://www.yoctoproject.org.

The	Yocto	Project	is	not	a	single	open	source	project	but	represents	an	entire	family	of
projects	that	are	developed	and	maintained	under	its	umbrella.	This	book	describes	many
of	the	projects	associated	with	the	Yocto	Project,	in	particular,	Poky,	the	Yocto	Project’s
reference	distribution,	which	includes	the	OpenEmbedded	build	system	and	a
comprehensive	set	of	metadata.

The	embedded	Linux	landscape	is	diverse.	This	list	is	not	all-comprehensive,	and	there
are	many	more	open	source	projects	providing	solutions	for	developing	embedded	devices
with	Linux.	The	projects	mentioned	here	are,	in	my	opinion,	the	most	active	and	most
commonly	used	ones.	Before	reading	on,	you	may	want	to	take	some	time	and	visit	the
web	pages	of	these	projects.	They	will	give	you	a	good	understanding	of	what	the	goals	of
these	projects	are	and	how	they	compare	to	each	other.

There	are	also	a	number	of	commercial	offerings	complementing	the	embedded	Linux
landscape.	Commonly,	these	offerings	include	cross-development	toolchains,	distribution
builders,	application	development	IDEs,	and	more.	An	increasing	number	of	operating
system	vendors	for	embedded	systems	are	using	the	Yocto	Project	as	an	upstream.	They
use	the	Yocto	Project	tools	to	create	their	product	lines.	Many	of	them	are	members	of	the
Yocto	Project	and	support	it	with	engineering	and	financial	resources.

1.3	A	Custom	Linux	Distribution—Why	Is	It	Hard?
Let’s	face	it—building	and	maintaining	an	operating	system	is	not	a	trivial	task.	Many
different	aspects	of	the	operating	system	have	to	be	taken	into	consideration	to	create	a
fully	functional	computer	system:

	Bootloader:	The	bootloader	is	the	first	piece	of	software	responsible	for	initializing
the	hardware,	loading	the	operating	system	kernel	into	RAM,	and	then	starting	the
kernel.	The	bootloader	is	commonly	multistaged	with	its	first	stage	resident	in
nonvolatile	memory.	The	first	stage	then	loads	a	second	stage	from	attached	storage
such	as	flash	memory,	hard	drives,	and	so	on.

	Kernel:	The	kernel,	as	its	name	implies,	is	the	core	of	an	operating	system.	It
manages	the	hardware	resources	of	the	system	and	provides	hardware	abstraction
through	its	APIs	to	other	software.	The	kernel’s	main	functions	are	memory
management,	device	management,	and	responding	to	system	calls	from	application
software.	How	these	functions	are	implemented	depends	on	the	processor
architecture	as	well	as	on	peripheral	devices	and	other	hardware	configuration.

	Device	Drivers:	Device	drivers	are	part	of	the	kernel.	They	provide	application
software	with	access	to	hardware	devices	in	a	structured	form	through	kernel	system
calls.	Through	the	device	drivers,	application	software	can	configure,	read	data
from,	and	write	data	to	hardware	devices.

	Life	Cycle	Management:	From	power	on	to	shutdown,	a	computer	system	assumes

https://www.yoctoproject.org

multiple	states	during	which	it	provides	different	sets	of	services	to	application
software.	Life	cycle	management	determines	what	services	are	running	in	what
states	and	in	what	order	they	need	to	be	started	to	maintain	a	consistent	operating
environment.	An	important	piece	of	life	cycle	management	is	also	power
management,	putting	a	system	into	energy	saving	modes	when	full	functionality	is
not	required,	and	resuming	fully	operational	mode	when	requested.

	Application	Software	Management:	Application	software	and	libraries	make	up
the	majority	of	software	installed	on	a	typical	system,	providing	the	end-user
functionality.	Frequently,	many	hundreds	to	multiple	thousands	of	software	packages
are	necessary	for	a	fully	operational	system.

Linux	and	the	plethora	of	open	source	software	packages	are	like	the	building	blocks	of
a	construction	kit.	Unfortunately,	it	is	more	like	a	puzzle	than	like	Legos.	It	can	be	a
daunting	task	to	figure	out	dependencies,	incompatibilities,	and	conflicts	between	the
different	packages.	Some	packages	even	provide	the	same	or	similar	functionality.	Which
one	to	choose?	Eventually,	you	will	have	to	draw	your	own	blueprint	to	build	the	Linux
distribution	for	your	embedded	project.	In	principal,	you	have	two	ways	to	go:

	Top-down:	In	this	approach,	you	start	with	one	of	the	many	available	Linux
distributions	and	customize	it	according	to	your	requirements	by	adding	and/or
removing	software	packages.	The	author	took	this	approach	many	years	ago	with	a
high-speed	image	processing	system	running	on	x86	server	hardware.	It	is	a	viable
approach	and	has	its	appeal	because	using	a	tested	and	maintained	distribution
alleviates	some	of	the	more	tedious	tasks	of	building	and	maintaining	your	own
distribution.	And	you	may	be	able	to	get	support	for	it.	However,	it	may	limit	you	in
your	choice	of	hardware,	since	most	off-the-shelf	Linux	distributions	are	built	for
x86	hardware.	And,	of	course,	picking	the	right	distribution	to	start	off	with	and
rightsizing	it	for	your	target	device	is	not	that	simple	either.

	Bottom-up:	The	bottom-up	approach	entails	building	your	own	custom	Linux
distribution	from	source	code	starting	with	a	bootloader	and	the	kernel	and	then
adding	software	packages	to	support	the	applications	for	your	target	device.	This
approach	gives	you	the	most	control	(and	you	will	learn	a	lot	about	Linux	and
operating	systems	in	general),	but	it	is	also	a	challenging	task.	You	will	have	to
make	many	choices	along	the	way,	from	selecting	the	right	toolchain	and	setting
kernel	configuration	options	to	choosing	the	right	software	packages.	Some	of	these
choices	are	interdependent,	such	as	the	choice	of	toolchain	and	target	library,	and
taking	the	wrong	turn	can	quickly	send	you	down	a	dead	end.	After	you	have
successfully	built	and	deployed	your	own	distribution,	you	are	left	with	the	burden
of	maintaining	it—finding	patches	and	security	updates	for	the	kernel	and	all	the
other	packages	you	have	integrated	with	your	distribution.

This	is	where	the	strengths	of	the	Yocto	Project	lie.	It	combines	the	best	of	both	worlds
by	providing	you	with	a	complete	tool	set	and	blueprints	to	create	your	own	Linux
distribution	from	scratch	starting	with	source	code	downloads	from	the	upstream	projects.
The	blueprints	for	various	systems	that	ship	with	the	Yocto	Project	tools	let	you	build
complete	operating	system	stacks	within	a	few	hours.	You	can	choose	from	blueprints	that
build	a	target	system	image	for	a	basic	system	with	command-line	login,	a	system	with	a

graphical	user	interface	for	a	mobile	device,	a	system	that	is	Linux	Standard	Base
compliant,	and	many	more.

You	can	use	these	blueprints	as	a	starting	point	for	your	own	distribution	and	modify
them	by	adding	and/or	removing	software	packages.	The	remaining	chapters	of	this	book
walk	you	through	the	entire	process	of	building	and	customizing	your	Linux	distribution
and	creating	your	own	blueprints	using	the	Yocto	Project	tools,	which	will	give	you
repeatable	results	every	time	you	build	your	system.

1.4	A	Word	about	Open	Source	Licensing
When	building	a	system	based	on,	or	that	includes,	open	source	software,	you	will
inevitably	have	to	pay	attention	to	open	source	licensing.	Originating	authors	of	software
are	of	course	free	to	choose	whatever	license	they	prefer	for	their	works,	which	has	led	to
a	long	and	growing	list	of	open	source	licenses.	There	is	no	single	license,	and	whether
you	like	it	or	not,	you	will	have	to	deal	with	many	of	them.	Some	open	source	projects
even	use	more	than	one	software	license.	One	of	them	is	BusyBox.

One	of	the	most	common,	if	not	the	most	common,	open	source	licenses	is	the	GNU
General	Public	License	(GPL).1	Now	in	its	third	version,	the	GPL	is	widely	considered	the
mother	of	open	source	licenses.	Although	some	sources	name	the	Berkeley	Software
Distribution	(BSD)	License,	created	in	1990,	as	the	first	open	source	license,	the	GPL
predates	it	by	a	year,	having	been	written	by	Richard	Stallman	and	introduced	in	1989.

1.	For	a	complete	text	of	the	GPL	license,	refer	to	Appendix	A	or	see	www.gnu.org/licenses/gpl.html.

One	popular	myth	attributed	to	open	source	licenses	is	that	open	source	software	is	free.
However,	the	second	paragraph	of	the	GPL	clarifies	the	common	misunderstanding:
“When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.”	Professional
engineering	managers	probably	wholeheartedly	agree—while	you	can	download	open
source	software	for	free,	developing	and	deploying	products	based	on	it	commonly	carries
significant	engineering	cost.	In	that	sense,	open	source	software	is	no	different	from
commercial	software	offerings.

In	comparison	to	commercial	or	closed	source	software	licenses,	open	source	licenses
are	permissive,	meaning	they	grant	you	the	freedom	to	use	and	run	the	software,	the	right
to	study	and	modify	it,	and	the	permission	to	distribute	the	original	code	and	its
modifications.	This	broad	freedom	makes	it	tempting	to	treat	open	source	licenses	rather
casually.	In	one	word:	Don’t!	Open	source	licenses	are	binding	and	enforceable,	as	any
commercial	license	is.

Most	open	source	licenses	explicitly	stipulate	a	few	major	conditions	you	must	comply
with	when	shipping	products	based	on	open	source:

	Attribution:	Authors	must	be	attributed	as	the	creators	of	the	work.	You	must	not
remove	any	copyright	notices	of	any	of	the	authors	of	the	source	code.

	Conveyance:	Conveyance	typically	refers	to	conveying	verbatim	copies	of	the
software’s	source	code,	conveying	modified	versions	of	the	source	code,	and
conveying	non-source	forms,	such	as	binary	files	or	firmware	embedded	in	products.
In	the	latter	case,	many	open	source	licenses,	including	the	GPL,	require	you	to

http://www.gnu.org/licenses/gpl.html

convey	the	corresponding	source	code	with	the	product	or	auxiliary	documentation.

	Derivative	Works:	This	term	commonly	refers	to	a	creation	that	includes	all	or
major	portions	of	a	previously	created	work.	What	this	exactly	means	for	open
source	software	is	still	unclear,	since	there	are	no	legal	test	cases	for	it	yet.	Most
typically,	it	refers	to	modification	of	the	source	code	and/or	additions	to	it	but,	for
some	licenses,	also	to	linking,	even	dynamically	at	runtime,	to	libraries.	Under	the
terms	of	the	license,	the	author	of	a	derivative	work	is	required	to	distribute	the	work
under	exactly	the	same	licensing	term	as	the	original	work.	This	makes	the	license
self-perpetuating.

This	book	was	not	written	with	the	intention	of	providing	legal	advice	concerning	open
source	licensing.	However,	we	strongly	urge	you	to	pay	close	attention	to	the	licenses	used
by	software	packages	you	include	with	your	product	before	actually	shipping	the	product.
While	the	legal	field	of	open	source	licensing	is	still	quite	new,	a	growing	number	of	legal
experts	are	now	specializing	in	this	field.	If	in	doubt,	seek	professional	advice	from	the
experts.

1.5	Organizations,	Relevant	Bodies,	and	Standards
As	Linux	and	open	source	continue	to	grow	their	market	share	in	computing,
telecommunications,	consumer	electronics,	industrial	automation,	and	many	other	fields,
organizations	and	standards	are	emerging	to	influence	acceptance	and	adoption	of	Linux
and	open	source	technologies	themselves	as	well	as	the	principles	of	open	collaboration
and	innovation	they	stand	for.

This	section	introduces	some	of	the	organizations,	bodies,	and	standards	with	which
you	may	want	to	become	familiar.

1.5.1	The	Linux	Foundation
The	Linux	Foundation	(www.linuxfoundation.org)	is	a	“non-profit	consortium	dedicated
to	fostering	the	growth	of	Linux.	Founded	in	2000,	the	Linux	Foundation	sponsors	the
work	of	Linux	creator	Linus	Torvalds	and	is	supported	by	leading	technology	companies
and	developers	from	around	the	world.”

The	Linux	Foundation	marshals	the	resources	and	contributions	of	its	members	and	the
open	source	community	by

	Promoting	Linux	and	providing	a	neutral	environment	for	collaboration	and
education

	Protecting	and	supporting	Linux	development

	Improving	Linux	as	a	technical	platform

The	Linux	Foundation	directly	sponsors	the	work	of	Linus	Torvalds	and	other	key
Linux	developers	so	that	they	remain	independent	and	can	focus	on	improving	Linux.	The
Linux	Foundation	also	sponsors	several	workgroups	and	collaborative	projects	to	define
standards	and	to	advance	Linux	in	certain	areas	and	industries.	Some	of	these	projects	are
outlined	in	the	following	sections.

http://www.linuxfoundation.org

1.5.2	The	Apache	Software	Foundation
More	than	140	open	source	software	projects	are	hosted	by	the	Apache	Software
Foundation	(ASF).	For	these	projects,	the	ASF	provides	a	collaboration	framework
including	financial	backing,	intellectual	property	management,	and	legal	support.	The
ASF	website	can	be	found	at	www.apache.org.

You	are	probably	familiar	with	some	of	the	most	well-known	ASF	projects,	such	as	the
Apache	HTTP	Server,	Ant	build	tool	for	Java,	Cassandra	cloud	database,	CloudStack
cloud	computing	infrastructure,	Hadoop	distributed	computing	platform,	and	Tomcat	web
server	for	Java	Servlet	and	JavaServer	Pages.

All	ASF	projects	and	all	software	produced	under	the	umbrella	of	the	ASF	are	licensed
under	the	terms	of	the	Apache	Licenses.	One	important	property	of	the	Apache	Licenses	is
that	contributors	retain	full	rights	to	use	their	original	contributions	for	any	purpose
outside	the	Apache	projects	while	granting	the	ASF	and	the	projects	the	rights	to	distribute
and	build	upon	their	work.

1.5.3	Eclipse	Foundation
The	Eclipse	Project	(www.eclipse.org)	was	created	in	2001	by	IBM	to	build	a	support
community	of	developers	and	software	vendors	around	the	Eclipse	Platform.	The	Eclipse
Platform	started	as	a	flexible	IDE	framework	for	software	development	tools.	In	2004,	the
Eclipse	Foundation	was	founded	as	a	legal	entity	to	marshal	the	resources	of	the	project.
The	Eclipse	Foundation	provides	IT	infrastructure	and	IP	management	to	the	projects
operating	under	its	umbrella	and	supports	their	operations	with	development	and
engineering	processes	to	ensure	project	transparency	and	product	quality.

Besides	the	Eclipse	IDE,	the	list	of	projects	hosted	under	the	auspices	of	the	Eclipse
Foundation	includes	development	tools	for	virtually	any	programming	language,	software
and	data	modeling	tools,	web	development	tools,	and	many	more.

Embedded	software	development	frameworks	frequently	build	on	top	of	the	Eclipse
IDE	to	offer	convenient	round-trip	development	including	target	debugging	and	profiling
within	the	same	IDE.	The	Yocto	Project	provides	an	Eclipse	plug-in	enabling	the	use	of	a
Yocto	Project–created	toolchain	directly	from	within	the	IDE.

1.5.4	Linux	Standard	Base
As	outlined	in	previous	sections,	there	are	many	ways	to	build	a	Linux	OS	stack.	While
flexibility	is	good,	it	comes	with	the	burden	of	fragmentation.	The	goal	of	the	Linux
Standard	Base	(LSB)	is	to	establish	a	set	of	common	standards	for	Linux	distributions.
Common	standards	provide	application	developers	assurance	that	the	code	that	they
develop	on	one	Linux	distribution	will	also	run	on	other	Linux	distributions	without
additional	adaptations.

In	addition,	LSB	gives	developers	peace	of	mind	when	it	comes	to	the	continuity	of	a
particular	Linux	distribution.	As	long	as	future	versions	of	a	distribution	remain	compliant
with	a	particular	LSB	version,	the	application	will	continue	to	run	on	the	future	versions
of	the	distribution	too.

http://www.apache.org
http://www.eclipse.org

The	LSB	project	provides	a	comprehensive	set	of	specifications,	documentation,	and
tools	to	test	the	compliance	of	a	distribution	with	a	particular	LSB	version.

While	API	and	application	binary	interface	(ABI)	compliance	may	not	necessarily	be	at
the	top	of	the	list	for	embedded	systems	engineers,	familiarizing	yourself	with	the
concepts	and	specifications	may	help	with	your	embedded	project	in	the	long	run.	Even	if
you	do	not	intend	for	third-party	developers	to	contribute	applications	to	your	embedded
platform,	compliance	considerations	similar	to	those	of	the	LSB	project	undoubtedly
support	the	platform	strategy	of	your	products.

LSB	is	a	Linux	Foundation	workgroup.	You	can	find	its	website	at
www.linuxfoundation.org/collaborate/workgroups/lsb.

1.5.5	Consumer	Electronics	Workgroup
The	Consumer	Electronics	(CE)	Workgroup	is	a	workgroup	operating	under	the	umbrella
of	the	Linux	Foundation.	Its	mission	is	to	promote	the	use	of	Linux	in	embedded	systems
used	in	consumer	electronics	products	as	well	as	promote	enhancement	of	Linux	itself.
The	CE	Workgroup	started	its	work	in	2003	as	the	Consumer	Electronics	Linux	Forum
(CELF)	and	merged	with	the	Linux	Foundation	in	2010	for	better	alignment	with	the
Linux	community.	You	can	find	the	CE	Workgroup’s	website	at
www.linuxfoundation.org/collaborate/workgroups/celf.

One	of	the	major	activities	of	the	CE	Workgroup	is	the	Long-Term	Support	Initiative
(LTSI).	LTSI’s	goal	is	to	create	and	maintain	a	stable	Linux	kernel	tree	that	is	supported
with	relevant	patches	for	about	2	to	3	years,	which	is	the	typical	life	of	consumer
electronic	products	such	as	smartphones,	game	consoles,	and	TV	sets.	LTSI	details	are
published	on	http://ltsi.linuxfoundation.org.

1.6	Summary
Embedded	Linux	is	already	powering	many	devices	and	services	you	use	on	a	daily	basis.
Generally	unnoticed,	it	directs	data	traffic	through	Internet	routers,	puts	high-definition
pictures	on	TV	screens,	guides	travelers	inside	navigation	devices,	measures	energy
consumption	in	smart	meters,	collects	traffic	information	in	roadside	sensors,	and	much
more.	Linux	and	open	source	are	powering	the	Internet	of	Things	from	connected	devices
to	networking	infrastructure	and	data	processing	centers.	This	chapter	set	the	stage	for	the
material	to	come,	covering	the	following	topics:

	Definition	of	embedded	systems	from	the	engineer’s	perspective	and	the	broad	set	of
responsibilities	associated	with	taking	an	embedded	product	from	design	to
production

	Technology	developments	contributing	to	the	rapid	adoption	of	Linux	for	embedded
devices

	Overview	of	the	embedded	Linux	landscape

	Challenges	associated	with	building	and	maintaining	an	operating	system	stack

	Importance	of	open	source	licensing	for	embedded	projects

http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://www.linuxfoundation.org/collaborate/workgroups/celf
http://ltsi.linuxfoundation.org

	Several	organizations	and	standards	relevant	to	embedded	Linux

1.7	References
Apache	License,	www.apache.org/licenses

The	Apache	Software	Foundation,	www.apache.org

Eclipse	Foundation,	www.eclipse.org

GNU	GPL	License,	www.gnu.org/licenses/gpl.html

The	Linux	Foundation,	www.linuxfoundation.org

Linux	Standard	Base,	www.linuxfoundation.org/collaborate/workgroups/lsb

http://www.apache.org/licenses
http://www.apache.org
http://www.eclipse.org
http://www.gnu.org/licenses/gpl.html
http://www.linuxfoundation.org
http://www.linuxfoundation.org/collaborate/workgroups/lsb

2.	The	Yocto	Project

In	This	Chapter

2.1	Jumpstarting	Your	First	Yocto	Project	Build

2.2	The	Yocto	Project	Family

2.3	A	Little	Bit	of	History

2.4	Yocto	Project	Terms

2.5	Summary

2.6	References

Yocto	is	the	prefix	of	the	smallest	fraction	for	units	of	measurements	specified	by	the
International	System	of	Units	(abbreviated	SI	from	French	Le	Système	International
d’Unités).	It	gives	the	name	to	the	Yocto	Project,	a	comprehensive	suite	of	tools,
templates,	and	resources	to	build	custom	Linux	distributions	for	embedded	devices.	To	say
that	the	name	is	an	understatement	is	an	understatement	in	itself.

In	this	chapter	we	start	in	medias	res	with	setting	up	the	OpenEmbedded	build	system,
provided	by	the	Yocto	Project	in	the	Poky	reference	distribution,	and	building	our	first
Linux	OS	stack	relying	entirely	on	the	blueprint	that	Poky	provides	by	default.	The	tasks
we	perform	in	this	chapter	set	the	stage	for	the	coming	chapters	in	which	we	analyze	the
various	aspects	of	the	Yocto	Project	from	the	Poky	workflow	to	the	OpenEmbedded	build
system,	including	the	build	engine	BitBake,	to	customizing	operating	system	stacks	to
board	support	packages	and	the	application	development	toolkit,	and	much	more.

We	conclude	with	the	relationship	of	the	Yocto	Project	with	OpenEmbedded	and	a
glossary	of	Yocto	Project	terms.

2.1	Jumpstarting	Your	First	Yocto	Project	Build
Getting	your	hands	dirty—or	learning	by	doing—is	undoubtedly	the	best	way	to	acquire
new	skills.	Consequently,	we	start	by	building	our	first	Linux	OS	stack	for	use	with	the
QEMU	(short	for	Quick	Emulator,	a	generic	open	source	machine	emulator	for	different
CPU	architectures).

You	learn	how	to	prepare	your	computer	to	become	a	Yocto	Project	development	host,
obtain	and	install	the	build	system,	set	up	and	configure	a	build	environment,	launch	and
monitor	the	build	process,	and	finally	verify	the	build	result	by	booting	your	newly	built
Linux	OS	stack	in	the	QEMU	emulator.

The	following	section	outlines	the	hardware	and	software	prerequisites	for	a	Yocto
Project	build	host.	If	you	do	not	wish	to	set	up	a	build	host	right	away,	the	Yocto	Project
provides	a	Build	Appliance,	a	preconfigured	system	in	a	virtual	machine,	that	lets	you	try
out	the	Yocto	Project	tools	without	installing	any	software.	Just	jump	ahead	to	Section
2.1.7,	which	outlines	how	to	experiment	with	the	Yocto	Project	Build	Appliance.

2.1.1	Prerequisites
You	probably	have	guessed	it:	to	build	a	Linux	system	with	the	Yocto	Project	tools,	you
need	a	build	host	running	Linux.

Hardware	Requirements

Despite	their	capability	to	build	Linux	OS	stacks,	the	Yocto	Project	tools	require	a	build
host	with	an	x86	architecture	CPU.	Both	32-bit	and	64-bit	CPUs	are	supported.	A	system
with	a	64-bit	CPU	is	preferred	for	throughput	reasons.	The	Yocto	Project’s	build	system
makes	use	of	parallel	processing	whenever	possible.	Therefore,	a	build	host	with	multiple
CPUs	or	a	multicore	CPU	significantly	reduces	build	time.	Of	course,	CPU	clock	speed
also	has	an	impact	on	how	quickly	packages	can	be	built.

Memory	is	also	an	important	factor.	BitBake,	the	Yocto	Project	build	engine,	parses
thousands	of	recipes	and	creates	a	cache	with	build	dependencies.	Furthermore,	the
compilers	require	memory	for	data	structures	and	more.	The	tools	do	not	run	on	a	system
with	less	than	1	GB	of	RAM;	4	GB	or	more	is	recommended.

Disk	space	is	another	consideration.	A	full	build	process,	which	creates	an	image	with	a
graphical	user	interface	(GUI)	based	on	X11	currently	consumes	about	50	GB	of	disk
space.	If,	in	the	future,	you	would	like	to	build	for	more	architectures	and/or	add	more
packages	to	your	builds,	you	will	require	additional	space.	It	is	recommended	that	the	hard
disk	of	your	system	has	at	least	100	GB	of	free	space.	Since	regular	hard	disks	with	large
capacity	have	become	quite	affordable,	we	recommend	that	you	get	one	with	500	GB	or
more	to	host	all	your	Yocto	Project	build	environments.

Since	build	systems	read	a	lot	of	data	from	the	disk	and	write	large	amounts	of	build
output	data	to	it,	disks	with	higher	I/O	throughput	rates	can	also	significantly	accelerate
the	build	process.	Using	a	solid-state	disk	can	further	improve	your	build	experience,	but
these	devices,	in	particular	with	larger	capacity,	are	substantially	higher	in	cost	than
regular	disks	with	spinning	platters.	Whether	you	are	using	conventional	hard	drives	or
solid-state	disks,	additional	performance	gains	can	be	realized	with	a	redundant	array	of
independent	disks	(RAID)	setup,	such	as	RAID	0.

Internet	Connection

The	OpenEmbedded	build	system	that	you	obtain	from	the	project’s	website	contains	only
the	build	system	itself—BitBake	and	the	metadata	that	guide	it.	It	does	not	contain	any
source	packages	for	the	software	it	is	going	to	build.	These	are	automatically	downloaded
as	needed	while	a	build	is	running.	Therefore,	you	need	a	live	connection	to	the	Internet,
preferably	a	high-speed	connection.

Of	course,	the	downloaded	source	packages	are	stored	on	your	system	and	reused	for
future	builds.	You	are	also	able	to	download	all	source	packages	upfront	and	build	them
later	offline	without	a	connection	to	the	Internet.

Software	Requirements

First	of	all,	you	will	need	a	recent	Linux	distribution.	The	Yocto	Project	team	is
continually	qualifying	more	and	more	distributions	with	each	release.	Using	the	previous
to	current	release	of	one	of	the	following	distributions	typically	works	without	any	issues:

	CentOS

	Fedora

	openSUSE

	Ubuntu

In	general,	both	the	32-bit	and	the	64-bit	variants	have	been	verified;	however,	it	is
recommended	that	you	use	the	64-bit	version	if	your	hardware	supports	it.	You	can	find	a
detailed	list	of	all	supported	distributions	in	the	Yocto	Project	Reference	Manual	located	at
www.yoctoproject.org/docs/current/ref-manual/ref-manual.html.

In	addition	to	the	Linux	distribution,	you	need	to	install	a	series	of	software	packages
for	the	build	system	to	run.	We	cover	the	installation	in	Section	2.1.3.

2.1.2	Obtaining	the	Yocto	Project	Tools
There	are	several	ways	for	you	to	obtain	the	Yocto	Project	tools,	or	more	precisely,	the
Yocto	Project	reference	distribution,	Poky:

	Download	the	current	release	from	the	Yocto	Project	website.

	Download	the	current	release	or	previously	released	versions	from	the	release
repository.

	Download	a	recent	nightly	build	from	the	Autobuilder	repository.

	Clone	the	current	development	branch	or	other	branches	from	the	Poky	Git
repository	hosted	by	the	Yocto	Project	Git	repository	server.

The	Yocto	Project	team	releases	a	new	major	version	of	the	build	system	every	6
months,	in	the	April–May	and	October–November	timeframes.	All	released	versions	of
the	Yocto	Project	tools	have	undergone	multiple	rounds	of	quality	assurance	and	testing.
They	are	stable	and	are	accompanied	with	release	notes	and	an	updated	documentation	set
describing	the	features.	For	Yocto	Project	novices,	we	recommend	using	the	recent	stable
release.

Minor	version	releases	that	resolve	issues	but	do	not	add	any	new	features	are	provided
as	necessary	between	the	6-month	release	cycles.	Since	there	are	no	new	features,	the
documentation	typically	does	not	change	with	the	minor	releases.

Previous	major	and	minor	releases	are	archived	and	still	available	for	download	from
the	download	repository.	Sometimes	new	major	releases	introduce	a	new	layer	structure,
new	configuration	files,	and/or	new	settings	in	configuration	files.	Hence,	migrating	an
existing	build	environment	to	the	newer	release	may	require	migration	effort.	Staying	with
a	previous	release	allows	you	to	postpone	or	entirely	put	off	migration.

Nightly	builds	track	the	current	development	status	of	the	codebase	in	the	Yocto	Project

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html

Git	repository.	These	builds	have	undergone	basic	quality	assurance	and	Autobuilder
testing.	They	are	not	tested	as	rigorously	as	the	regular	major	and	minor	releases,	but	you
get	at	least	some	confidence	that	the	core	functionality	is	operational.

Cloning	the	current	development	branch	(master	branch)	from	the	Poky	Git	repository
gives	you	direct	access	to	the	current	state	of	the	development	effort.	Modifications	to	this
branch	have	not	undergone	any	testing	other	than	the	tests	the	developers	performed
before	signing	off	on	their	submissions.	While	the	quality	is	generally	high	and	any
serious	breakage	of	core	functionality	typically	gets	detected	within	a	short	period	of	time
after	a	developer	checked	in	a	change,	there	is	a	good	chance	that	the	system	may	not
work	as	expected.	Unless	you	are	directly	involved	in	Yocto	Project	development,	there	is
no	immediate	need	to	directly	work	with	the	master	branch.

Besides	the	master	branch,	the	Poky	Git	repository	also	contains	milestone	branches,
development	branches	for	the	various	versions,	and	a	long	list	of	tags	referencing
particular	revisions	of	the	various	branches.

In	the	chapters	to	come,	we	outline	how	to	download	the	Yocto	Project	releases	from
the	various	locations.	We	also	explore	the	Yocto	Project	Git	repositories	for	Poky,	board
support	packages,	the	Linux	kernel,	and	more	in	detail.

Downloading	the	Current	Poky	Release

Navigate	to	https://www.yoctoproject.org/downloads	and	click	on	the	latest	release	of
Poky.	This	URL	directs	you	to	a	detailed	download	site	with	links	to	various	download
servers	and	mirrors.	The	site	also	contains	the	release	information	and	an	errata.

Downloading	the	release	places	a	compressed	archive	of	the	Poky	reference	distribution
named	poky-<codename>-<release>.tar.bz2	on	your	system.

2.1.3	Setting	Up	the	Build	Host
Setting	up	your	build	host	requires	the	installation	of	additional	software	packages.	All	of
the	four	mainstream	Linux	distributions	have	those	packages	readily	available	in	their
package	repositories.	However,	they	differ	in	what	packages	are	preinstalled	as	part	of	the
distribution’s	default	configuration.

After	installing	the	additional	packages,	you	need	to	unpack	the	Poky	tarball,	which
includes	all	the	necessary	configuration	data,	recipes,	convenience	scripts,	and	BitBake.

BitBake	requires	Python	with	a	major	version	of	2.6	or	2.7.	BitBake	currently	does	not
support	the	new	Python	3,	which	introduced	changes	to	the	language	syntax	and	new
libraries	breaking	backwards	compatibility.

Installing	Additional	Software	Packages

What	command	to	use	and	what	additional	packages	to	install	depends	on	the	Linux
distribution	you	installed	on	your	build	host.

To	install	the	necessary	packages	on	a	CentOS	build	host,	use	the	command	in	Listing
2-1.

https://www.yoctoproject.org/downloads

Listing	2-1	CentOS
Click	here	to	view	code	image

user@centos:~$	sudo	yum	install	gawk	make	wget	tar	bzip2	gzip	\
python	unzip	perl	patch	diffutils	diffstat	git	cpp	gcc	gcc-c++	\
glibc-devel	texinfo	chrpath	socat	perl-Data-Dumper	\
perl-Text-ParseWords	perl-Thread-Queue	SDL-devel	xterm

For	setup	on	a	Fedora	build	host,	execute	the	command	in	Listing	2-2.

Listing	2-2	Fedora
Click	here	to	view	code	image

user@fedora:~$	sudo	dnf	install	gawk	make	wget	tar	bzip2	gzip	python	\
unzip	perl	patch	diffutils	diffstat	git	cpp	gcc	gcc-c++	glibc-devel	\
texinfo	chrpath	ccache	perl-Data-Dumper	perl-Text-ParseWords	\
perl-Thread-Queue	socat	findutils	which	SDL-devel	xterm

Listing	2-3	shows	the	installation	command	for	an	openSUSE	build	host.

Listing	2-3	openSUSE
Click	here	to	view	code	image

user@opensuse:~$	sudo	zypper	install	python	gcc	gcc-c++	git	chrpath	\
make	wget	python-xml	diffstat	makeinfo	python-curses	patch	socat	\
libSDL-devel	xterm

On	an	Ubuntu	build,	run	the	command	in	Listing	2-4.

Listing	2-4	Ubuntu
Click	here	to	view	code	image

user@ubuntu:~$	sudo	apt-get	install	gawk	wget	git-core	diffstat	\
unzip	texinfo	gcc-multilib	build-essential	chrpath	socat	\
libsdl1.2-dev	xterm

After	a	successful	installation,	you	may	want	to	verify	that	the	correct	version	of	Python
has	been	installed:	python	--version.	The	output	should	show	a	major	version
number	of	2.6	or	2.7.

Installing	Poky

Installing	Poky	merely	requires	unpacking	the	compressed	tarball	you	downloaded	from
the	Yocto	Project	website	earlier.	We	recommend	that	you	create	a	subdirectory	in	your
home	directory	for	all	things	related	to	your	Yocto	Project	builds.	Listing	2-5	shows	the
necessary	steps.

Listing	2-5	Installing	Poky
Click	here	to	view	code	image

user@buildhost:~$	mkdir	~/yocto
user@buildhost:~$	cd	~/yocto

user@buildhost:~$	tar	xvfj	<downloadpath>/poky-<codename>-release.tar.bz2

Now	your	build	system	is	ready	for	setting	up	a	build	environment	and	creating	your
first	Linux	OS	stack.

2.1.4	Configuring	a	Build	Environment
Poky	provides	the	script	oe-init-build-env	to	create	a	new	build	environment.	The
script	sets	up	the	build	environment’s	directory	structure	and	initializes	the	core	set	of
configuration	files.	It	also	sets	a	series	of	shell	variables	needed	by	the	build	system.	You
do	not	directly	execute	the	oe-init-build-env	script	but	use	the	source	command
to	export	the	shell	variable	settings	to	the	current	shell:
Click	here	to	view	code	image

$	source	<pokypath>/oe-init-build-env	<builddir>

Executing	the	command	creates	a	new	build	environment	in	the	current	directory	with
the	name	provided	by	the	parameter	<builddir>.	You	may	omit	that	parameter,	and
then	the	script	uses	the	default	build.	After	setting	up	the	build	environment,	the	script
changes	directory	to	the	build	directory.

Use	the	script	in	the	form	of	Listing	2-6	to	create	a	new	build	environment	as	well	as	to
initialize	an	existing	build	environment	previously	created.	When	creating	a	new	build
environment	the	script	provides	you	with	some	instructions.

Listing	2-6	New	Build	Environment	Setup
Click	here	to	view	code	image

You	had	no	conf/local.conf	file.	This	configuration	file	has	therefore	been
created	for	you	with	some	default	values.	You	may	wish	to	edit	it	to	use	a
different	MACHINE	(target	hardware)	or	enable	parallel	build	options	to	take
advantage	of	multiple	cores,	for	example.	See	the	file	for	more	information,
as
common	configuration	options	are	commented.

The	Yocto	Project	has	extensive	documentation	about	OE	including	a	reference
manual	which	can	be	found	at:
				http://yoctoproject.org/documentation

For	more	information	about	OpenEmbedded	see	their	website:
				http://www.openembedded.org/

You	had	no	conf/bblayers.conf	file.	The	configuration	file	has	been	created
for	you	with	some	default	values.	To	add	additional	metadata	layers	into	your
configuration,	please	add	entries	to	this	file.

The	Yocto	Project	has	extensive	documentation	about	OE	including	a	reference
manual	which	can	be	found	at:
				http://yoctoproject.org/documentation

For	more	information	about	OpenEmbedded	see	their	website:
				http://www.openembedded.org/

###	Shell	environment	set	up	for	builds.	###

You	can	now	run	‘bitbake	<target>’

Common	targets	are:
				core-image-minimal
				core-image-sato
				meta-toolchain
				meta-toolchain-sdk
				adt-installer
				meta-ide-support

You	can	also	run	generated	qemu	images	with	a	command	like	‘runqemu	qemux86’

Inside	the	newly	created	build	environment,	the	script	added	the	directory	conf	and
placed	the	two	configuration	files	in	it:	bblayers.conf	and	local.conf.	We
explain	bblayers.conf	in	detail	in	Chapter	3,	“OpenEmbedded	Build	System.”	For
now	we	look	only	at	local.conf,	which	is	the	master	configuration	file	of	our	build
environment.

In	local.conf,	various	variables	are	set	that	influence	how	BitBake	builds	your
custom	Linux	OS	stack.	You	can	modify	the	settings	and	also	add	new	settings	to	the	file
to	override	settings	that	are	made	in	other	configuration	files.	We	explain	this	inheritance
and	how	to	use	it	with	various	examples	throughout	this	book.	For	our	first	build,	we
focus	on	a	few	settings	and	accept	the	defaults	for	the	remaining	ones.	If	you	open	the
local.conf	file	in	a	text	editor,	you	find	the	variable	settings	shown	in	Listing	2-7
(among	many	others,	which	along	with	comment	lines	we	have	removed	from	this	listing).

Listing	2-7	conf/local.conf
Click	here	to	view	code	image

BB_NUMBER_THREADS	?=	“${@bb.utils.cpu_count()}”
PARALLEL_MAKE	?=	“-j	${@bb.utils.cpu_count()}”
MACHINE	??=	“qemux86”
DL_DIR	?=	“${TOPDIR}/downloads”
SSTATE_DIR	?=	“${TOPDIR}/sstate-cache”
TMP_DIR	=	“${TOPDIR}/tmp”

Lines	starting	with	the	hash	mark	(#)	are	comments.	If	a	hash	mark	precedes	a	line	with
a	variable	setting,	you	need	to	remove	the	hash	mark	for	the	settings	to	become	active.
The	values	shown	are	the	default	values.	BitBake	uses	those	values	even	if	you	do	not
enable	them	explicitly.	The	variable	settings	shown	in	Listing	2-7	are	the	ones	that	you
typically	want	to	change	after	creating	a	new	build	environment.	They	are	described	in
Table	2-1.

Table	2-1	Configuration	Variables

The	default	value	for	the	two	parallelism	options	BB_NUMBER_THREADS	and
PARALLEL_MAKE	is	automatically	computed	on	the	basis	of	the	number	of	CPU	cores	in
the	system	using	all	the	available	cores.	You	can	set	the	values	to	less	than	the	cores	in
your	system	to	limit	the	load.	Using	a	larger	number	than	the	number	of	physical	cores	is
possible	but	does	not	speed	up	the	build	process.	BitBake	and	Make	spawn	more	threads
accordingly,	but	they	run	only	if	there	are	CPU	cores	available.	Never	forget	the	quotes
around	the	variable	settings.	Also	note	that	for	PARALLEL_MAKE,	you	have	to	include
the	-j,	such	as	"-j	4"	because	this	value	is	passed	to	the	make	command	verbatim.

Setting	the	MACHINE	variable	selects	the	target	machine	type	for	which	BitBake	builds
your	Linux	OS	stack.	Poky	provides	a	series	of	standard	machines	for	QEMU	and	a	few
actual	hardware	board	target	machines.	Board	support	packages	(BSPs)	can	provide
additional	target	machines.	For	our	first	build,	we	choose	qemux86,	an	emulated	target
machine	with	an	x86	CPU.

The	variable	DL_DIR	tells	BitBake	where	to	place	the	source	downloads.	The	default
setting	places	the	files	in	the	directory	downloads	beneath	the	top	directory	of	your
build	environment.	The	variable	TOPDIR	contains	the	full	(absolute)	path	to	the	build
environment.	Source	downloads	can	be	shared	among	multiple	build	environments.	If
BitBake	detects	that	a	source	download	is	already	available	in	the	download	directory,	it
does	not	download	it	again.	Therefore,	we	recommend	that	you	set	the	DL_DIR	variable
to	point	to	a	directory	path	outside	of	the	build	environment.	When	you	no	longer	need	a
particular	build	environment,	you	can	easily	delete	it	without	deleting	all	the	source	file
downloads.

The	same	holds	true	for	the	SSTATE_DIR	variable,	which	contains	the	path	to	the
shared	state	cache.	The	OpenEmbedded	build	system	produces	a	lot	of	intermediate
output	when	processing	the	many	tasks	entailed	in	building	the	packages	comprising	the
Linux	OS	stack.	Similar	to	the	source	downloads,	the	intermediate	output	can	be	reused
for	future	builds	and	shared	between	multiple	build	environments	to	speed	up	the	build
process.	By	default,	the	configuration	places	the	shared	state	cache	directory	beneath	the

build	environment’s	top	directory.	We	suggest	that	you	change	the	setting	to	a	path	outside
the	build	environment.

The	variable	TMP_DIR	contains	the	path	to	the	directory	where	BitBake	performs	all
the	build	work	and	stores	the	build	output.	Since	the	output	stored	in	this	directory	is	very
specific	to	your	build	environment,	it	makes	sense	to	leave	it	as	a	subdirectory	to	the	build
environment.	The	amount	of	data	stored	in	this	directory	can	eventually	consume	many
gigabytes	of	hard	disk	space	because	it	contains	extracted	source	downloads,	cross-
compilation	toolchains,	compilation	output,	and	images	for	kernel	and	root	file	systems
for	your	target	machines	and	more.

To	conserve	disk	space	during	a	build,	you	can	add
INHERIT	+=	rm_work

which	instructs	BitBake	to	delete	the	work	directory	for	building	packages	after	the
package	has	been	built.

2.1.5	Launching	the	Build
To	launch	a	build,	invoke	BitBake	from	the	top-level	directory	of	your	build	environment
specifying	a	build	target:

$	bitbake	<build-target>

We	go	into	detail	about	what	build	targets	are	and	how	to	use	them	to	control	you	build
output	in	the	following	chapters.	For	our	first	build	we	use	a	build	target	that	creates	an
entire	Linux	OS	stack	with	a	GUI.	From	the	top-level	directory	of	the	build	environment
you	created	and	configured	during	the	previous	sections,	execute	the	following:

$	bitbake	core-image-sato

The	core-image-sato	target	creates	a	root	file	system	image	with	a	user	interface
for	mobile	devices.	Depending	on	your	build	hardware	and	the	speed	of	your	Internet
connection	for	downloading	the	source	files,	the	build	can	take	anywhere	from	one	to
several	hours.

You	may	also	instruct	BitBake	to	first	download	all	the	sources	without	building.	You
can	do	this	with
Click	here	to	view	code	image

$	bitbake	-c	fetchall	core-image-sato

After	the	download	completes,	you	can	disconnect	your	build	system	from	the	Internet
and	run	the	build	offline	at	a	later	point	in	time.

BitBake	typically	immediately	aborts	a	build	process	if	it	encounters	an	error	condition
from	which	it	cannot	recover.	However,	you	can	instruct	BitBake	to	continue	building
even	if	it	encounters	an	error	condition	as	long	as	there	are	tasks	left	that	are	not	impeded
by	the	error:

$	bitbake	-k	core-image-sato

The	-k	option	tells	BitBake	to	continue	building	until	tasks	that	are	not	dependent	on
the	error	condition	are	addressed.

2.1.6	Verifying	the	Build	Results
Since	our	target	machine	is	an	emulated	system,	we	can	verify	our	build	result	by
launching	the	QEMU	emulator.	For	that	purpose,	Poky	provides	a	convenient	script	that
prepares	the	QEMU	execution	environment	and	launches	the	emulator	with	the	proper
kernel	and	root	file	system	images:

$	runqemu	qemux86

In	its	simplest	form,	the	runqemu	script	is	invoked	with	the	machine	target	name.	It
then	automatically	finds	the	proper	kernel	and	root	file	system	images	for	the	target	in	the
build	output.	You	have	to	enter	your	system	administrator	(or	sudo)	password	for	the
script	to	set	up	the	virtual	network	interface.	Figure	2-1	shows	the	running	system.

Figure	2-1	QEMU	with	core-image-sato	target

You	can	terminate	your	QEMU	virtual	machine	by	clicking	on	the	Shutdown	button	on
the	Utilities	screen.	This	properly	shuts	down	the	system	by	running	through	the	shutdown
sequence.	Alternatively,	you	can	simply	type	Ctrl-C	in	the	terminal	where	you	launched
QEMU.

2.1.7	Yocto	Project	Build	Appliance
If	you	simply	would	like	to	try	out	the	Yocto	Project	and	Poky	without	setting	up	a	Linux
build	host,	you	can	use	the	Yocto	Project	Build	Appliance.	The	Build	Appliance	is	a
complete	Yocto	Project	build	host,	including	a	Linux	OS	with	the	software	packages
required	by	the	OpenEmbedded	build	system	and	Poky	installed,	bundled	as	a	virtual
machine	image.	It	even	already	includes	all	the	source	package	downloads,	speeding	up
your	first	build	and	allowing	you	to	build	offline	without	a	network	connection.

The	Build	Appliance	download	is	located	on	the	Yocto	Project	website	at
https://www.yoctoproject.org/download/build-appliance-0.	The	Build	Appliance	is
provided	as	a	compressed	ZIP	archive	that	you	need	to	unpack	on	your	system	after
downloading	it.

To	utilize	the	Build	Appliance,	you	need	either	VMWare	Player	or	VMWare
Workstation	installed	on	your	computer.	You	can	obtain	either	one	of	them	matching	the
operating	system	on	your	computer	from	the	download	section	of	VMWare’s	website	at
www.vmware.com.	Follow	the	installation	instructions	provided	by	VMWare.

Once	you	have	installed	VMWare	Player	or	VMWare	Workstation,	the	Build	Appliance
manual	at	https://www.yoctoproject.org/documentation/build-appliance-manual	provides
detailed	instructions	on	how	to	configure	the	virtual	machine	and	boot	the	Build
Appliance.

Booting	the	Build	Appliance	directly	launches	the	Hob	GUI	for	BitBake,	as	shown	in
Figure	2-2.

https://www.yoctoproject.org/download/build-appliance-0
http://www.vmware.com
https://www.yoctoproject.org/documentation/build-appliance-manual

Figure	2-2	Yocto	Project	Build	Appliance

Select	qemux86	from	the	drop-down	box	for	the	machine	and	core-image-sato	for	the
base	image.	Then	start	the	build.	Depending	on	your	host	system	and	the	virtual	machine
configuration,	it	may	take	multiple	hours	to	build	the	image.	You	can	observe	the	build
process	from	the	Log	screen	of	Hob.	The	Log	screen	shows	the	packages	to	be	built	in	a
run-queue	split	up	into	the	individual	tasks.	Currently	running	tasks	are	highlighted.

After	the	build	completes,	you	can	launch	your	image	with	the	QEMU	emulator	directly
from	Hob.

2.2	The	Yocto	Project	Family
The	Yocto	Project	is	not	just	a	single	open	source	project	but	combines	multiple	projects
under	one	umbrella.	You	have	already	encountered	the	most	prominent	members	of	this
family	of	projects:	the	OpenEmbedded	build	system,	which	includes	BitBake	and
OpenEmbedded	Core,	and	Poky,	the	Yocto	Project	reference	distribution.

Essentially,	all	the	members	of	the	family	support	the	OpenEmbedded	build	system.
The	Yocto	Project	team	maintains	the	build	system	together	with	the	OpenEmbedded
Project,	a	separate	organization.	New	functionality	is	added	to	the	subprojects	as	the	build
system	evolves.

Table	2-2	provides	an	overview	of	the	subprojects	maintained	as	part	of	the	Yocto
Project.

Table	2-2	Yocto	Project	Family

Although	there	is	tight	integration	of	the	subprojects	within	the	Yocto	Project,	the
developers	ensure	that	there	are	no	cross	dependencies	and	that	the	subprojects	are
interoperable	and	can	also	be	used	independently	without	the	build	system.

2.3	A	Little	Bit	of	History
Both	OpenEmbedded	and	the	Yocto	Project	have	their	roots	in	the	OpenZaurus	project,	an
open	source	project	striving	to	improve	the	code	of	the	first	Linux-based	personal	digital
assistant,	the	Sharp	Zaurus	SL-5000D.	The	SL-5000D,	which	first	shipped	in	2001,	was	a
device	targeted	to	developers,	and	Sharp	provided	the	necessary	tools	to	modify	and
update	the	ROM	code	of	the	device.	At	first,	the	project	focused	on	repackaging	the
existing	ROM	code	to	make	it	more	developer-friendly.	Over	time,	the	project	evolved,
and	the	original	Sharp	code	was	entirely	replaced	by	a	Debian-based	Linux	distribution
built	from	source.	It	quickly	outgrew	its	build	system,	making	it	necessary	for	the	project
to	create	a	new	device	and	distribution-independent	build	system.	The	OpenEmbedded
project	was	born.

2.3.1	OpenEmbedded
The	OpenEmbedded	project	debuted	in	2003	by	combining	the	efforts	of	the	OpenZaurus
project	with	contributions	from	other	embedded	Linux	projects	with	similar	goals,	such	as
the	Familiar	Linux	and	OpenSIMpad	projects.

The	OpenEmbedded	Project	maintained	the	build	system	and	the	metadata	that
described	how	to	build	the	software	packages	and	assemble	the	operating	system	images
as	a	common	codebase.	The	number	of	packages	added	to	the	metadata	inventory	quickly
grew	to	more	than	2,100	recipes	building	over	5,000	packages.

In	2005,	the	project	team	decided	to	split	the	project	into	the	BitBake	build	system	and
the	OpenEmbedded	metadata.

OpenEmbedded	got	support	from	various	Linux	distributions	using	it	as	their	build
system.	Among	them	are	the	Ångström	Distribution,	Openmoko,	WebOS,	and	others.
Commercial	entities	adopted	the	system	for	their	product	offerings,	among	them
MontaVista	Software	and	OpenedHand,	the	startup	that	developed	the	Poky	Linux
distribution.

2.3.2	BitBake
BitBake,	the	build	engine	at	the	core	of	OpenEmbedded	and	the	Yocto	Project’s	Poky
reference	distribution,	is	derived	from	Portage,	the	build	and	package	management	system
of	Gentoo	Linux.	Portage	comprises	two	components:

	ebuild	is	the	actual	build	system	that	takes	care	of	building	software	packages	from
source	code	and	installing	them.

	emerge	is	an	interface	to	ebuild	and	a	tool	to	manage	ebuild	package	repositories,
resolving	dependencies	and	more.

All	Portage	tools	are	written	in	Python.	BitBake	evolved	from	Portage	by	extending	it
for	building	software	packages	with	native	and	cross-development	toolchains,	supporting
multiple	package	management	systems	and	other	functionality	necessary	for	cross-
building.

BitBake	uses	the	same	metadata	syntax	as	the	Portage	build	scripts	but	introduced	new
features	such	as	an	inheritance	mechanism	supported	by	classes,	appending	recipes,	and
global	configuration	files,	among	others.

2.3.3	Poky	Linux
OpenEmbedded	significantly	simplified	building	Linux	OS	stacks	for,	but	not	limited	to,
embedded	devices.	However,	it	remained	a	challenge	with	quite	a	steep	learning	curve	to
modify	and	adapt	the	system	to	create	different	distributions	and	port	the	system	to	new
hardware.

The	software	startup	company	OpenedHand	originally	developed	Poky	Linux,	a
versatile	development	platform	as	well	as	a	Linux	distribution	for	mobile	devices,	for
internal	use.	Poky	Linux	provided	the	test	platform	for	the	company’s	Matchbox	window
manager	for	embedded	devices.	Matchbox	is	most	notably	used	by	the	Nokia	770	and

N800	tablet	devices,	Openmoko’s	Neo1973,	and	the	One	Laptop	Per	Child	(OLPC)
project’s	XO	laptop	computer.

Built	with	OpenEmbedded,	the	Poky	Linux	distribution	provided	a	more	intuitive	way
to	configure	operating	system	images	for	target	devices.	It	also	offered	several	blueprints
for	target	device	images	that	were	easy	to	adapt	and	modify.	Since	Poky	Linux	was	open
source,	it	was	quickly	adopted	by	others	to	build	embedded	devices.

Intel	Corporation	acquired	OpenedHand	in	2008	with	the	goal	to	further	develop	Poky
Linux	as	a	universal	distribution	for	embedded	devices.

2.3.4	The	Yocto	Project
To	build	out	Poky	Linux	to	support	many	different	architectures	and	hardware	platforms,
Intel	was	looking	for	other	commercial	entities—particularly	other	semiconductor
manufacturers	and	embedded	Linux	companies—to	support	the	project	and	contribute	to
it.	As	Intel	is	a	dominant	player	in	the	chip	market	and	has	substantial	resources,	it	proved
difficult	for	Intel	to	get	its	competition	and	other	companies	to	support	it	in	its	efforts	to
improve	Poky	Linux.

In	2010,	Intel	approached	the	Linux	Foundation	with	the	idea	to	create	a	collaborative
project	under	the	auspices	of	the	Foundation	with	neutral	stewardship.	That	effort	would
also	include	the	open	source	community,	particularly	the	OpenEmbedded	project.

The	Linux	Foundation	publicly	announced	the	launch	of	the	Yocto	Project	on	October
26,	2010.	On	March	1,	2011,	the	Linux	Foundation	announced	the	alignment	of	the	Yocto
Project	technology	with	OpenEmbedded	and	the	support	of	multiple	corporate
collaborators	to	the	project.	This	announcement	was	followed	by	another	press	release	on
April	6,	2011,	communicating	the	formation	of	the	Yocto	Project	Steering	Group	and	the
first	Yocto	Project	software	release.

2.3.5	The	OpenEmbedded	and	Yocto	Project	Relationship
The	technology	alignment	between	OpenEmbedded	and	the	Yocto	Project	brought	several
major	improvements	to	both	projects:

	Aligned	Development:	A	common	problem	among	open	source	projects	is
fragmentation:	two	projects	with	the	same	roots	and	similar	goals	fork	and	grow
apart.	Resources	are	divided	and	ultimately	efforts	are	duplicated	to	provide	similar
functionality	in	both	branches.	Eventually,	users	and	supporters	are	forced	to	make	a
decision	between	the	two	efforts.	The	tight	alignment	of	OpenEmbedded	and	the
Yocto	Project	ensures	that	users	can	get	the	benefits	of	both	projects.

	BitBake	Metadata	Layers:	Metadata	layers	enable	logical	grouping	of	recipes	and
configuration	files	into	structures	that	can	easily	be	included	in	and	migrated	to
different	build	environments.	Metadata	layers	also	simplify	dependency
management,	which	is	a	complex	task	when	building	operating	system	stacks.

	OpenEmbedded	Core	Metadata	Layer:	The	OpenEmbedded	and	Yocto	Project
development	teams	agreed	to	create	a	common	metadata	layer	shared	between	the
two	projects	and	containing	all	the	base	recipes	and	configuration	settings.	Each

project	then	adds	additional	metadata	layers	according	to	its	goals.

Despite	the	close	collaboration	between	OpenEmbedded	and	the	Yocto	Project,	the	two
projects	are	separate	entities.	Both	are	open	source	projects,	and	both	are	supported	by	a
community	of	open	source	developers	as	well	as	commercial	entities.

OpenEmbedded	focuses	on	cutting-edge	technology,	recipes,	and	a	large	set	of	board
support	packages	for	different	hardware	platforms.	The	Yocto	Project	focuses	on	the	build
system	itself	and	tooling	for	cross-development.	The	goal	of	the	Yocto	Project	is	to
provide	powerful	yet	easy-to-use	and	well-tested	tools	together	with	a	core	set	of	metadata
to	jumpstart	embedded	system	development.	Additional	board	support	packages	and	other
components	are	offered	through	OpenEmbedded	and	the	Yocto	Project	ecosystem.

The	OpenEmbedded	Project	also	maintains	a	layer	index,	which	is	a	searchable
database	of	layers,	recipes,	and	machines.	Looking	for	a	recipe	to	build	a	particular	open
source	package?	Enter	the	name	into	the	layer	index,	and	chances	are	that	somebody	has
already	created	a	recipe	for	it.

2.4	Yocto	Project	Terms
Table	2-3	defines	a	set	of	terms	commonly	used	in	conjunction	with	and	throughout	the
Yocto	Project.	Throughout	this	book,	we	use	these	terms	consistently	with	their	definitions
provided	here.

Table	2-3	Yocto	Project	Terms

2.5	Summary
The	Yocto	Project	is	a	family	of	projects	related	to	embedded	Linux	software
development.	At	its	core	is	the	OpenEmbedded	build	system	and	the	Poky	reference
distribution.	Originally	developed	by	OpenedHand	as	Poky	Linux,	Poky	evolved	into	the
Yocto	Project,	a	collaborative	project	under	the	auspices	of	the	Linux	Foundation.
Supported	by	corporations	and	independent	software	developers,	it	aligned	its	technology
with	OpenEmbedded	to	form	a	broad	community	delivering	state-of-the-art	tools	for
developing	embedded	Linux	systems.

Getting	started	with	the	Yocto	Project	is	as	simple	as	downloading	the	Build	Appliance
and	booting	it	from	the	VMWare	virtual	machine	manager.	While	the	Build	Appliance	is
not	recommended	for	serious	development,	it	offers	a	good	introduction	to	the
OpenEmbedded	build	system	without	the	need	to	set	up	a	Linux	build	host.

Installing	a	Linux	build	host	for	use	with	Poky	requires	a	few	more	steps	but	avoids	the
overhead	and	performance	impact	of	the	virtual	machine.

2.6	References
The	Linux	Foundation,	Linux	Foundation	and	Consumer	Electronics	Linux	Forum	to
Merge,	www.linuxfoundation.org/news-media/announcements/2010/10/linux-foundation-
and-consumer-electronics-linux-forum-merge

The	Linux	Foundation,	Yocto	Project	Aligns	Technology	with	OpenEmbedded	and	Gains
Corporate	Collaborators,	www.linuxfoundation.org/news-
media/announcements/2011/03/yocto-project-aligns-technology-openembedded-and-
gains-corporate-co

http://www.linuxfoundation.org/news-media/announcements/2010/10/linux-foundation-and-consumer-electronics-linux-forum-merge
http://www.linuxfoundation.org/news-media/announcements/2011/03/yocto-project-aligns-technology-openembedded-and-gains-corporate-co

3.	OpenEmbedded	Build	System

In	This	Chapter

3.1	Building	Open	Source	Software	Packages

3.2	OpenEmbedded	Workflow

3.3	OpenEmbedded	Build	System	Architecture

3.4	Summary

3.5	References

Poky	is	the	Yocto	Project’s	reference	distribution.	It	includes	the	OpenEmbedded	build
system.	It	provides	all	the	necessary	tools,	recipes,	and	configuration	data	required	to
build	a	Linux	OS	stack.	As	we	saw	in	the	previous	chapter,	Poky	is	a	mostly	self-
contained	system	bundled	as	a	simple	archive.	Only	a	few	additional	components	need	to
be	installed	on	the	build	host	to	use	Poky.

This	chapter	starts	by	analyzing	the	typical	workflow	for	open	source	software
packages.	It	then	explains	how	the	OpenEmbedded	work	flow	integrates	building	of
individual	software	packages	with	the	processes	for	creating	a	complete	Linux	OS	stack
and	bootable	filesystem	images.	Armed	with	this	knowledge,	we	then	have	a	detailed	look
at	the	Poky	architecture	and	its	components.

3.1	Building	Open	Source	Software	Packages
If	you	have	built	open	source	software	packages	for	a	Linux	host	system	before,	you	may
have	noticed	that	the	workflow	follows	a	specific	pattern.	Some	of	the	steps	of	this
workflow	you	execute	yourself,	whereas	others	are	typically	carried	out	through	some	sort
of	automation	such	as	Make	or	other	source-to-binary	build	systems.

1.	Fetch:	Obtain	the	source	code.

2.	Extract:	Unpack	the	source	code.

3.	Patch:	Apply	patches	for	bug	fixes	and	added	functionality.

4.	Configure:	Prepare	the	build	process	according	to	the	environment.

5.	Build:	Compile	and	link.

6.	Install:	Copy	binaries	and	auxiliary	files	to	their	target	directories.

7.	Package:	Bundle	binaries	and	auxiliary	files	for	installation	on	other	systems.

If	you	are	building	the	software	package	only	for	use	on	the	host	system	you	use	for
building,	then	you	would	normally	stop	after	installing	the	binaries	on	your	system.
However,	if	you	are	looking	to	distribute	the	binaries	for	installation	and	use	on	other
systems,	you	would	also	include	the	package	step,	which	creates	an	archive	that	can	be
used	by	the	package	management	system	for	installation.

Let’s	have	a	look	at	the	individual	steps.

3.1.1	Fetch
It	all	starts	with	obtaining	the	source	code	for	a	software	package.	Typically,	open	source
projects	have	a	download	area	from	where	the	source	code	together	with	instructions,
documentation,	and	other	information	can	be	downloaded	in	the	form	of	an	archive,	which
commonly	is	also	compressed.	What	theoretically	sounds	like	a	straightforward	task	in
fact	requires	a	lot	of	attention	to	detail.	There	are	no	generally	adhered-to	conventions
when	it	comes	to	downloading	source	code	packages.

Of	course,	each	open	source	project	has	its	own	URL	to	access	its	website,	file	servers,
and	download	areas.	In	addition,	downloads	may	be	accessible	through	one	or	more
protocols,	such	as	HTTP,	HTTPS,	FTP,	SFTP,	and	others.	Some	projects	may	also	provide
access	to	released	versions	and	development	branches	of	their	source	code	from	a	source
control	management	(SCM)	system	such	as	Git,	Subversion,	Concurrent	Versions	System
(CVS;	also	known	as	Concurrent	Revisioning	System),	and	more.

Commonly,	sources	obtained	from	remote	locations	such	as	download	sites	or
repositories	may	be	supplemented	with	patches	and	auxiliary	files	that	are	stored	on	a
local	filesystem.

For	an	automated	build	system	such	as	the	OpenEmbedded	build	system,	this	variety	of
ways	to	obtain	the	source	code	means	it	needs	to	be	flexible	and	capable	of	handling	this
variety	mostly	transparently	for	the	developer.

3.1.2	Extract
After	the	source	code	is	downloaded,	it	must	be	unpacked	and	copied	from	its	download
location	to	an	area	where	you	are	going	to	build	it.	Typically,	open	source	packages	are
wrapped	into	archives,	most	commonly	into	compressed	tar	archives,	but	CPIO	and	other
formats	that	serialize	multiple	files	into	a	single	archive	are	also	in	use.	The	most
frequently	used	compression	formats	are	GZIP	and	BZIP,	but	some	projects	utilize	other
compression	schemes.	Once	again,	a	build	system	must	be	able	to	automatically	detect	the
format	of	the	source	archive	and	use	the	correct	tools	to	extract	it.

If	the	sources	are	obtained	from	an	SCM,	extracting	archives	generally	means	checking
them	out	from	the	SCM	into	the	area	where	BitBake	builds	them.

3.1.3	Patch
Patching	is	the	process	of	incrementally	modifying	the	source	code	by	adding,	deleting,
and	changing	the	source	files.	There	are	various	reasons	why	source	code	could	require
patching	before	building:	applying	bug	and	security	fixes,	adding	functionality,	providing
configuration	information,	making	adjustments	for	cross-compiling,	and	so	forth.	For
instance,	the	Linux	kernel	requires	a	file	that	provides	many	hundreds	of	configuration
settings	to	the	kernel	build	system,	such	as	target	architecture,	hardware	information,
device	drivers,	and	many	more.

Applying	a	patch	can	be	as	simple	as	copying	a	file	into	the	directory	structure	of	the
source	code.	In	this	case,	the	build	system	of	course	needs	to	know	where	to	copy	the	file
to.	Commonly,	patches	are	applied	using	the	patch	utility,	which	takes	a	patch	file	as	input

that	has	been	created	with	the	diff	utility.	Diff	compares	an	original	file	with	a	modified
file	and	creates	a	differential	file	that	includes	not	only	the	changes	but	also	metadata	such
as	the	name	and	path	of	the	file	and	the	exact	location	of	the	modifications	and	a	context.
The	format	of	the	file	is	standardized	and	referred	to	as	the	unified	format.	A	patch	file
using	the	unified	format	can	contain	information	to	patch	multiple	files	at	a	time,	and	it
can	add	or	remove	entire	files.	Because	all	information	about	the	files	being	modified,
added,	or	removed	is	contained	within	the	patch	file,	the	build	system	does	not	need	to
know	anything	about	the	directory	structure	of	the	source	code	to	be	patched.

The	order	in	which	patches	are	applied	is	of	significance	because	patches	may	be
dependent	on	each	other.	Applying	a	large	number	of	patches	in	the	correct	order	can	be	a
difficult	task.	The	Quilt	patch	management	system	greatly	simplifies	that	task	by	creating
a	patch	stack	to	maintain	the	order.	Among	many	other	functions,	Quilt	also	allows	for
backing	out	patches	that	have	been	applied	together	with	all	dependent	patches.	Quilt	is	a
series	of	shell	scripts	that	was	originally	developed	for	the	Linux	kernel	but	is	now	also
commonly	used	by	many	other	open	source	projects.

3.1.4	Configure
Providing	a	software	package	in	source	code	form	serves,	among	others,	the	purpose	that
users	can	build	the	software	themselves	for	a	wide	range	of	target	systems.	With	variety
comes	diversity	requiring	the	build	environment	for	the	software	package	to	be	configured
appropriately	for	the	target	system.	Accurate	configuration	is	particularly	important	for
cross-build	environments	where	the	CPU	architecture	of	the	build	host	is	different	from
the	CPU	architecture	of	the	target	system.

Many	software	packages	now	use	the	GNU	build	system,	also	known	as	Autotools,	for
configuration.	Autotools	is	a	suite	of	tools	aimed	at	making	source	code	software
packages	portable	to	many	UNIX-like	systems.	Autotools	is	a	rather	complex	system
reflecting	the	variety	and	diversity	of	target	systems	and	dependencies.	In	a	nutshell,
Autotools	creates	a	configure	script	from	a	series	of	input	files	that	characterize	a
particular	source	code	body.	Through	a	series	of	processing	steps,	configure	creates	a
makefile	specifically	for	the	target	system.	Autotools	is	frequently	criticized	for	being
hard	to	use.	The	difficulty,	of	course,	depends	on	the	perspective.	From	the	user
perspective,	running	a	single	script	to	configure	the	build	environment	of	a	source	code
package	for	a	target	system	is	certainly	a	huge	benefit.	Developers	who	want	to	provide
that	convenience	to	the	users	of	their	software	need	to	understand	the	workings	of
Autotools	and	how	to	create	the	necessary	input	files	correctly.	Nevertheless,	it	is	worth
the	effort	and	greatly	simplifies	building	software	packages	with	automated	build	systems
such	as	the	OpenEmbedded	build	system	for	many	different	target	systems.

Some	software	packages	use	their	own	configuration	system.	In	such	cases,	an
automated	build	system	needs	to	provide	the	flexibility	to	adjust	the	configuration	step
accordingly.

3.1.5	Build
The	vast	majority	of	software	packages	utilize	Make	to	build	binaries	such	as	executable
program	files	and	libraries	as	well	as	auxiliary	files	from	source	code.	Some	software
packages	may	use	other	utilities,	such	as	CMake	or	qmake,	for	software	packages	using
the	Qt	graphical	libraries.

3.1.6	Install
The	install	step	copies	binaries,	libraries,	documentation,	configuration,	and	other	files	to
the	correct	locations	in	the	target’s	filesystem.	Program	files	are	typically	installed	in
/usr/bin,	for	user	programs,	and	/usr/sbin,	for	system	administration	programs.
Libraries	are	copied	to	/usr/lib	and	application-specific	subdirectories	inside
/usr/lib.	Configuration	files	are	commonly	installed	to	/etc.	Although	there	are
commonly	used	conventions	on	where	to	install	certain	files,	software	developers
sometimes	choose	different	directories	to	install	files	belonging	to	their	software	packages.
The	Filesystem	Hierarchy	Standard	(FHS)1	is	a	specification	for	the	layout	of	filesystems
for	UNIX	operating	systems.

1.	https://wiki.linuxfoundation.org/en/FHS

Most	software	packages	provide	an	install	target	as	part	of	their	makefile,	which
performs	the	installation	steps.	Correctly	written	installation	targets	use	the	install	utility
to	copy	the	files	from	the	build	environment	to	their	respective	target	directories.	The
install	utility	can	also	set	file	ownership	and	permissions	while	copying	the	files.

3.1.7	Package
Packaging	is	the	process	of	bundling	the	software,	binaries,	and	auxiliary	files	into	a
single	archive	file	for	distribution	and	direct	installation	on	a	target	system.	Packaging	can
be	as	simple	as	a	compressed	tar	archive	that	the	user	then	extracts	on	the	target	system.

For	convenience	and	usability,	most	software	packages	bundle	their	files	for	use	with	an
installer	or	package	management	system.	Some	systems	include	the	installation	software
with	the	software	archive	and	create	an	executable	file	for	self-contained	installation.
Others	rely	on	a	package	manager	that	is	already	installed	on	the	target	system	and	only
bundle	the	actual	software	together	with	metadata	information	for	the	package	manager.
All	systems	have	in	common	that	they	not	only	copy	the	files	from	the	software	package
to	the	target	system	but	also	verify	dependencies	and	system	configuration	to	avoid
mismatching	that	eventually	could	render	the	system	inoperable.

Linux	systems	commonly	rely	on	a	package	management	system	that	is	part	of	the
distribution	rather	than	using	self-contained	installation	packages.	The	advantages	are	that
the	package	manager,	as	the	only	instance,	maintains	the	software	database	on	the	system
and	that	the	software	packages	are	smaller	in	size	because	they	do	not	need	to	contain	the
installation	software.	However,	the	maintainers	for	each	Linux	distribution	decide	on	its
package	management	system,	which	requires	software	packages	to	be	packaged	multiple
times	for	different	target	systems.

The	most	commonly	used	package	management	systems	for	Linux	distributions	are

https://wiki.linuxfoundation.org/en/FHS

RPM	Package	Manager	(RPM;	originally	Red	Hat	Package	Manager)	and	dpkg,	Debian’s
package	management	program.	For	embedded	devices,	the	Itsy	Package	Management
System	(ipkg)	has	gained	popularity.	Ipkg	is	a	lightweight	system	that	resembles	dpkg.
Development	of	ipkg	is	discontinued,	and	many	embedded	projects	that	have	been	using
ipkg	are	now	using	opkg,	which	was	forked	from	ipkg	by	the	Openmoko	project.	Opkg	is
written	in	C—it	is	actively	maintained	by	the	Yocto	Project	and	used	by	OpenEmbedded
and	many	other	projects.

Install	and	package	are	not	necessarily	sequential	steps.	And	they	are	also	optional.	If
you	are	building	a	software	package	for	local	use	only	and	not	for	redistribution,	there	is
no	need	to	package	the	software.	If	you	are	a	package	maintainer	and	create	packages	for
redistribution,	you	may	not	need	to	perform	the	step	to	install	the	software	package	on
your	build	system.

The	steps	outlined	here	are	essentially	the	same	whether	you	are	building	a	software
package	natively	or	are	performing	a	cross-build.	However,	you	must	consider	many
intricacies	when	setting	up	and	configuring	the	build	environment	and	building	the
package	for	a	cross-build.	We	address	the	complexities	of	cross-building	software
throughout	this	book.

3.2	OpenEmbedded	Workflow
Figure	3-1	illustrates	the	OpenEmbedded	workflow.	The	workflow	is	not	intrinsic	to
BitBake.	BitBake	does	not	establish	a	workflow	at	all.	The	workflow	and	its	configuration
are	determined	by	the	metadata,	which	is	organized	into	different	categories	of	files.

Figure	3-1	OpenEmbedded	workflow

3.2.1	Metadata	Files
Metadata	files	are	subdivided	into	the	categories	configuration	files	and	recipes.

Configuration	Files

Configuration	files	contain	global	build	system	settings	in	the	form	of	simple	variable
assignments.	BitBake	maintains	the	variable	settings	in	a	global	data	dictionary,	and	they
can	be	accessed	within	any	metadata	file.	A	variable	can	be	set	in	one	configuration	file
and	overwritten	in	another.	Recipes	can	also	set	and	overwrite	variables,	but	the
assignments	made	in	recipes	remain	local	to	the	recipe.	BitBake	employs	a	particular
syntax	for	assigning	metadata	variables.	Priorities	for	assigning	and	overwriting	metadata
variables	are	determined	by	various	factors,	such	as	layer	structure,	layer	priorities,	file
parsing	order,	and	assignment	syntax.	We	explain	the	details	of	the	BitBake	metadata
syntax	and	priorities	in	Chapter	4,	“BitBake	Build	Engine.”

BitBake	distinguishes	several	different	types	of	configuration	files,	but	all	have	the
common	file	extension	.conf.

BitBake	Master	Configuration	File	(bitbake.conf)

BitBake’s	master	or	main	configuration	file	is	named	bitbake.conf.	BitBake	expects
this	file	to	be	present	in	all	of	the	directories	listed	in	its	metadata	search	path.	This	file
contains	all	the	default	configuration	settings.	Other	configuration	files	and	recipes
commonly	override	some	of	the	variable	settings	in	this	file	according	to	their	specific
requirements.

The	bitbake.conf	file	is	part	of	the	OpenEmbedded	Core	(OE	Core)	metadata	layer
and	can	be	found	in	the	configuration	file	subdirectory	conf	of	that	layer.

Layer	Configuration	(layer.conf)

The	OpenEmbedded	build	system	uses	layers	to	organize	metadata.	A	layer	is	essentially	a
hierarchy	of	directories	and	files.	Every	layer	has	its	own	configuration	file	named
layer.conf.	This	file	contains	path	settings	and	file	patterns	for	the	recipe	files	of	the
layer.	The	layer.conf	file	can	be	found	in	the	conf	subdirectory	of	the	layer.

Build	Environment	Layer	Configuration	(bblayers.conf)

A	build	environment	needs	to	tell	BitBake	what	layers	it	requires	for	its	build	process.	The
file	bblayers.conf	provides	BitBake	with	information	on	what	layers	to	include	with
the	build	process	and	the	filesystem	paths	where	they	are	found.	Each	build	environment
has	its	own	bblayers.conf	file,	which	can	be	found	in	the	conf	subdirectory	of	the
build	environment.

Build	Environment	Configuration	(local.conf)

Local	configuration	of	a	build	environment	is	provided	through	a	configuration	file	named
local.conf.	The	local.conf	file	contains	settings	that	apply	to	the	particular	build
environment,	such	as	paths	to	download	locations,	build	outputs,	and	other	files;
configuration	settings	for	the	target	system	such	as	the	target	machine,	package
management	system,	and	distribution	policy;	and	many	other	settings.	The	local.conf
file	can	be	found	in	the	conf	subdirectory	of	the	build	environment.

Distribution	Configuration	(<distribution-name>.conf)

Distribution	configuration	files	contain	variable	settings	reflecting	policies	that	apply	for	a
particular	distribution	built	by	the	OpenEmbedded	build	system.	For	the	Poky	reference
distribution,	the	default	image	name	is	also	Poky,	and	its	configuration	settings	are
contained	in	a	file	named	poky.conf.	Distribution	policy	settings	typically	include
toolchain,	C	library,	distribution	name,	and	more.	A	distribution	is	selected	by	setting	the
variable	DISTRO	in	the	build	environment’s	local.conf	file.	Of	course,	you	are	not
limited	to	the	distribution	policies	provided	by	Poky	as	a	reference.	You	can	create	your
own	distribution	policy	file	and	use	it	with	your	build	environment.

Distribution	configuration	files	are	typically	found	in	the	conf/distro	subdirectory
of	a	layer	defining	a	distribution	such	as	the	meta-yocto	layer.

Machine	Configuration	(<machine-name>.conf)

One	of	the	most	powerful	features	of	the	OpenEmbedded	workflow	is	its	capability	to
strictly	separate	parts	of	the	build	process	that	are	dependent	on	the	particular	hardware
system,	the	machine,	and	its	architecture	from	the	parts	that	do	not	depend	on	it.	This
capability	greatly	simplifies	the	creation	of	board	support	packages	(BSP),	allowing	them
to	provide	only	the	necessary	parts	that	are	dependent	on	the	hardware	and	thus
complementing	the	machine-independent	pieces	of	the	build	system.	Consequently,
building	the	same	Linux	distribution	for	another	machine	is	as	straightforward	as
replacing	one	BSP	with	another.

A	major	part	of	this	architecture	consists	of	the	machine	configuration	files	that	contain
variable	settings	for	machine	dependencies	referenced	by	the	recipes	that	build	software
packages	requiring	machine-specific	adaptions.	Machine	configuration	files	are	named
after	the	machine	and	can	be	found	in	the	conf/machine	subdirectory	of	a	BSP	layer.

Recipes

BitBake	recipes	form	the	core	of	the	build	system	as	they	define	the	build	workflow	for
each	software	package.	The	recipes	contain	the	instructions	for	BitBake	on	how	to	build	a
particular	software	package	by	implementing	the	process	steps	outlined	in	Section	3.1.
BitBake	recipes	are	identified	by	their	.bb	file	extension.

Recipes	contain	simple	variable	assignments	as	well	as	build	instructions	in	the	form	of
executable	metadata,	which	are	essentially	functions	that	execute	the	process	steps.	We
explain	the	details	of	executable	metadata	and	BitBake	tasks	in	the	next	chapter	when
discussing	the	internals	of	BitBake.

In	contrast	to	configuration	files,	all	variable	assignments	made	within	recipes	are	local
to	the	recipe	only.	While	recipes	commonly	reference	variable	settings	made	in
configuration	files	and	sometimes	overwrite	them	for	their	purposes,	all	settings	remain
local	to	the	recipe.

Many	software	packages	are	built	in	very	similar	ways	using	virtually	identical	build
instructions	following	the	same	process	steps.	Repeatedly	duplicating	the	same	recipes
while	adjusting	only	a	few	parts	that	are	specific	to	the	software	package	would	result	in	a

lot	of	redundant	effort.	Hence,	BitBake	provides	the	concept	of	classes,	a	simple
inheritance	mechanism	that	allows	recipes	to	easily	share	common	workflows.	Classes	can
be	defined	by	any	BitBake	layer	and	are	identified	by	their	.bbclass	file	extension.

Another	BitBake	mechanism	for	recipes	that	fosters	reuse	is	append	files,	which	are
identified	by	their	.bbappend	file	extension.	Append	files	are	commonly	used	by	layers
building	on	top	of	other	layers	to	tweak	recipes	contained	in	those	layers	for	their	special
requirements.	In	most	cases,	they	overwrite	variable	settings	or	modify	them.	Append	files
bear	the	same	base	filename	as	the	core	recipe	from	another	layer	that	they	are	appending.

3.2.2	Workflow	Process	Steps
The	workflow	established	by	the	OE	Core	metadata	layer	and	executed	by	BitBake
essentially	follows	the	steps	outlined	in	Section	3.1.

Source	Fetching

The	recipes	call	out	the	location	of	the	sources	such	as	source	file	packages,	patches,	and
auxiliary	files.	BitBake	can	retrieve	sources	locally	from	the	build	host	or	remotely	via
network	from	external	source	repositories.	Source	files	can	be	presented	in	a	wide	variety
of	formats	such	as	plain	and	compressed	tarballs.	They	can	be	retrieved	via	file	transfer
protocols	as	well	as	obtained	from	source	control	management	(SCM)	systems	such	as
Git,	SVN,	and	many	more.2

2.	The	complete	list	of	protocols	and	SCM	includes	HTTP,	FTP,	HTTPS,	Git,	Subversion	(SVN),	Perforce	(P4),
Mercurial	SCM	(Hg),	Bazar	(BZR),	CVS,	Open	Build	Service	(OSC),	REPO,	SSH,	and	SVK.

Recipes	specify	the	locations	of	the	source	files	by	including	their	URIs	in	the
SRC_URI	variable.	The	URIs	in	SRC_URI	usually	point	to	the	upstream	source
repositories	of	the	software	package,	such	as	the	file	download	servers	or	the	SCM	of	the
upstream	projects.

Before	attempting	to	download	a	source	software	package	from	upstream	repositories
specified	by	the	recipe’s	SRC_URI	variable,	BitBake	first	checks	the	local	download
directory	to	see	whether	the	correct	version	of	the	source	files	has	already	been	retrieved.
If	it	cannot	find	the	sources	in	the	local	download	area,	BitBake	then	attempts	to	retrieve
the	source	files	from	a	list	of	mirror	file	servers	called	premirrors	if	they	are	configured.	If
none	of	the	premirrors	contains	the	necessary	files,	BitBake	next	tries	the	actual	upstream
repositories,	as	specified	in	SRC_URI.	If	it	cannot	find	the	files	there	or	if	the	upstream
repositories	are	inaccessible,	BitBake	attempts	to	download	the	files	from	a	second	list	of
mirror	servers.	In	the	context	of	this	book,	we	call	these	servers	postmirrors,	although	in
OpenEmbedded	terminology,	they	are	simply	referred	to	as	mirrors.

The	Yocto	Project	maintains	high-availability	file	servers	on	which	the	team	places	all
upstream	software	packages.	The	Poky	distribution	configuration	instructs	BitBake	to	use
the	Yocto	Project	mirrors	before	attempting	to	download	files	directly	from	upstream
repositories.	Using	the	Yocto	Project	mirrors	makes	builds	less	dependent	on	the
availability	of	the	upstream	file	servers.

You	may	also	set	up	mirrors	as	part	of	your	own	build	infrastructure	to	maintain	direct
control	of	the	sources	included	with	your	builds.

Source	Unpacking	and	Patching

Once	the	sources	are	downloaded	into	the	local	download	directory,	they	are	extracted	into
the	local	build	environment.	If	any	patches	were	specified	as	part	of	the	source	download,
then	they	are	applied	using	Quilt.	Commonly,	source	packages	are	not	suitable	for	cross-
building,	and	hence	the	majority	of	the	patches	are	integration	patches	modifying	the
source	for	proper	building	with	BitBake.

Configure,	Compile,	and	Install

Through	its	classes,	OpenEmbedded	provides	various	schemes	to	build	standard	software
packages,	such	as	Make-based	packages,	GNU	Autotools–based	packages,	and	CMake-
based	packages.	These	schemes	offer	standardized	ways	to	specify	custom	environment
settings.	We	explore	the	details	of	building	packages	with	BitBake	using	the	standard
schemes	and	customizing	them	in	Chapter	8,	“Software	Package	Recipes.”

Although	configuring,	compiling,	and	installing	are	distinct	steps	in	the	build	process,
they	are	typically	addressed	within	the	same	class	because	all	of	them	involve	invoking
parts	of	the	package’s	own	build	system.

The	install	step	is	executed	using	the	pseudo3	command,	allowing	the	creation	of
special	files	and	permissions	for	owner,	group,	and	others	to	be	set	correctly.	All	files	are
installed	into	a	private	system	root	directory	residing	within	the	build	environment	for	the
particular	package.

3.	https://www.yoctoproject.org/tools-resources/projects/pseudo

Output	Analysis	and	Packaging

During	output	analysis,	the	software	generated	and	installed	by	the	previous	step	is
categorized	according	to	its	functionality:	runtime	files,	debug	files,	development	files,
documentation,	locales.	This	allows	the	files	to	be	split	up	into	multiple	physical	packages
for	the	package	management	system.

Following	the	analysis,	the	packages	are	created	using	one	or	more	of	the	common
packaging	formats	RPM,	dpkg,	and	ipkg.

BitBake	creates	packages	for	the	package	management	system	classes	contained	in	the
variable	PACKAGE_CLASSES	in	the	build	environment’s	configuration	file
local.conf.	Although	BitBake	can	create	packages	for	one	or	more	of	the	classes,	it
uses	only	the	first	one	listed	to	create	the	final	root	filesystem	for	the	distribution.

Image	Creation

The	various	images	for	the	root	filesystem	of	the	distribution	are	created	using	the
package	feeds	from	the	packaging	step.	The	packages	are	installed	from	the	package	feeds
into	a	root	filesystem	staging	area	using	the	package	management	system.

Which	packages	are	installed	into	an	image	is	decided	on	by	image	recipes	that
assemble	a	functional	set	for	a	working	system	based	on	the	defined	set	of	requirements.
For	example,	a	minimal	image	may	contain	just	enough	packages	to	boot	the	system	for
console	operation	with	a	minimal	set	of	basic	applications,	whereas	an	image	with	a

https://www.yoctoproject.org/tools-resources/projects/pseudo

graphical	user	interface	may	include	an	X	server	and	many	other	application	packages.

Image	creation	is	handled	by	the	core-image	class,	which,	among	many	other	tasks,
evaluates	the	variable	IMAGE_INSTALL	for	a	list	of	packages	to	be	included	with	the
image.

Images	can	be	created	in	a	variety	of	formats,	including	tar.bz2	for	extraction	in	a
formatted	filesystem	and	other	formats,	such	as	ext2,	ext3,	ext4,	and	jffs,	that	can
be	directly	bit-copied	to	a	suitable	storage	device.

SDK	Generation

As	an	additional	step,	which	is	not	part	of	the	standard	build	process,	with	the	goal	of
creating	a	bootable	operating	system	stack,	a	software	development	kit	(SDK)	can	be
created.

An	SDK	contains	native	applications	for	the	development	host,	such	as	cross-tool-
chain,	QEMU	emulator,	and	installation	scripts.	It	may	also	contain	root	filesystem	images
for	use	with	the	emulator	that	are	based	on	the	contents	of	the	image	creation	step.	The
SDK	can	then	be	used	by	application	developers	to	create	and	test	applications	using	the
very	same	environment	that	has	been	used	to	build	the	target	system	without	actually
using	the	OpenEmbedded	build	system.

The	SDK	with	its	tools	may	be	used	on	the	development	host	directly	from	the
command	line	as	well	as	through	the	integration	with	the	Eclipse	IDE.	For	the	latter,	the
Yocto	Project	provides	a	plug-in	for	Eclipse	that	can	directly	be	installed	from	the	Eclipse
workbench.

3.3	OpenEmbedded	Build	System	Architecture
Three	base	components	make	up	the	OpenEmbedded	build	system	architecture:

	Build	system

	Build	environment

	Metadata	layers

Figure	3-2	depicts	the	components	and	their	relationship	to	each	other.

Figure	3-2	Poky	architecture

The	OpenEmbedded	build	system	provides	all	of	the	necessary	components,	other	than
a	few	additional	software	packages	that	come	with	any	Linux	distribution,	for	building
embedded	Linux	OS	stacks.	Included	are	the	BitBake	build	engine;	a	set	of	integration
scripts	that	provide	additional	functionality	for	convenience;	various	tools;	OE	Core,	the
core	set	of	metadata	required	by	BitBake	to	build	images;	and	the	entire	documentation	set
in	DocBook	format.	The	Poky	reference	distribution	also	includes	a	minimum	set	of	base
metadata	layers:	Yocto	Project	BSP	(meta-yocto-bsp)	and	Yocto	Project	Distribution
(meta-yocto).

As	we	saw	in	Chapter	2,	“The	Yocto	Project,”	the	script	oe-init-build-env
creates	and	initializes	the	build	environment.	This	script	is	one	of	the	scripts	contained
within	the	build	system.	A	build	system	and	build	environments	form	a	1:n	relationship:	a
build	system	can	be	associated	with	any	number	of	build	environments,	but	a	build
environment	can	be	associated	with	only	one	build	system.	This	is	an	important	limitation
you	need	to	be	aware	of	when	you	are	using	more	than	one	Yocto	Project	release	at	a	time.
You	can	use	a	build	environment	only	with	the	version	of	the	build	system	it	was
originally	created	with.	Using	a	build	system	to	initialize	a	build	environment	that	is
different	from	the	one	originally	used	to	create	the	build	environment	leads	to	build
failures.

A	build	system	always	has	to	include	metadata	layers,	which	provide	recipes	and
configuration	files.	When	you	create	a	build	environment	with	the	oe-init-build-
env	script	of	the	build	system,	the	script	automatically	sets	up	a
conf/bblayers.conf	file	that	includes	the	three	base	layers:	meta,	meta-yocto-
bsp,	and	meta-yocto.	These	base	layers	are	sufficient	to	build	the	standard	Poky
reference	distribution.	However,	as	an	embedded	Linux	developer,	you	eventually	want	to
create	your	own	distribution,	add	your	own	software	packages,	and	potentially	provide
your	own	BSP	for	your	target	hardware.	This	goal	is	accomplished	by	including	other
metadata	layers	with	the	build	system.

In	the	following	section,	we	explore	the	structures	of	the	build	system,	the	build
environment,	and	the	metadata	layers	in	more	detail.

3.3.1	Build	System	Structure
Whether	you	download	the	Poky	distribution	in	the	form	of	a	tarball	and	extract	it	or	you
directly	clone	it	from	the	Yocto	Project	Git	repository,	it	installs	as	a	simple	structure
consisting	of	directories	and	files	in	a	single	directory	similar	to	Listing	3-1	(the	directory
names	are	italicized	to	distinguish	them	from	the	filenames).

Listing	3-1	OpenEmbedded	Build	System	Structure
Click	here	to	view	code	image

yocto@yocto-dev:~/yocto$	tree	-L	1	poky
poky

	bitbake
	documentation
	LICENSE
	meta
	meta-hob
	meta-selftest
	meta-skeleton
	meta-yocto
	meta-yocto-bsp
	oe-init-build-env
	oe-init-build-env-memres
	README
	README.hardware
	scripts

9	directories,	5	files

Because	the	OpenEmbedded	build	system	is	mostly	self-contained	and	does	not	install
any	of	its	components	into	the	system	directories	of	your	build	host,	it	is	rather	easy	to	use
multiple	versions	of	the	build	system	with	different	build	environments	on	the	same	build
host.	This	is	a	very	convenient	feature	because	you	eventually	develop	and	maintain	a
product	generation	with	one	version	of	the	build	system	while	developing	the	next
generation	with	a	newer	version	to	take	advantage	of	new	functionality	and	features.

BitBake,	the	build	engine,	is	an	integral	part	of	the	OpenEmbedded	build	system.	It
evolves	with	the	build	system,	and	the	Yocto	Project	developers	add	new	functionality	to
BitBake	to	support	new	features	required	by	the	build	system.	Consequently,	BitBake	is

included	with	the	build	system,	and	you	can	find	it	in	the	bitbake	subdirectory.	Be
aware	that	some	Linux	distributions	include	a	BitBake	package	that	you	can	install	using
the	distributions	package	management	system.	If	you	have	BitBake	installed	on	your
development	host	as	part	of	the	distribution,	we	recommend	uninstalling	it	because	it	may
interfere	with	the	version	contained	in	the	build	system.	The	build	system	and	BitBake	are
matched	to	each	other.	Inadvertently	using	a	BitBake	version	that	does	not	match	the	build
system	may	result	on	build	failures.

The	bitbake	directory	contains	a	doc	subdirectory	that	contains	the	BitBake
documentation	and	man	pages.	The	documentation	is	written	in	DocBook	format,	and	you
can	build	PDF	and	HTML	versions	of	the	manual	by	invoking	the	make	command.	We
have	a	closer	look	at	BitBake	in	the	next	chapter.

The	documentation	directory	contains	the	documentation	for	the	Poky	build
system.	The	following	are	the	various	manuals	you	can	also	find	on	the	Yocto	Project’s
website:

	Application	Development	Toolkit	User’s	Guide	(adt-manual)

	BSP	Developer’s	Guide	(bsp-guide)

	Development	Manual	(dev-manual)

	Linux	Kernel	Development	Manual	(kernel-dev)

	Profiling	and	Tracing	Manual	(profile-manual)

	Reference	Manual	(ref-manual)

	Yocto	Project	Quick	Start	(yocto-project-qs)

	Toaster	Manual	(toaster-manual)

The	respective	manuals	are	provided	as	sources	in	DocBook	format	in	separate
directories.	To	create	a	manual	in	PDF	and	HTML	formats,	use	the	command

$	make	DOC=<manual>

replacing	<manual>	with	the	name	of	the	directory.	For	example,
$	make	DOC=mega-manual

creates	a	“mega-manual”	that	contains	all	the	manuals	in	one	file.

The	LICENSE	file	contains	the	licensing	information	for	the	Poky	build	system.	A	mix
of	MIT	and	GPLv2	licenses	are	used.	BitBake	is	licensed	under	the	GPLv2	license,	and	all
metadata	is	licensed	under	the	MIT	license.	If	there	is	any	source	code	included	in	the	tree
for	individual	recipes,	such	as	patches,	it	is	licensed	under	the	license	stated	in	the
respective	recipe.

License	information	for	any	other	files	is	either	explicitly	stated	in	the	respective	file	or,
in	the	absence	thereof,	defaults	to	GPLv2.

It	is	important	to	note	that	there	can	be,	and	commonly	is,	a	difference	in	licensing	of
the	source	code	of	a	package	and	the	metadata	(recipe)	that	builds	that	package.	Be	sure
not	to	confuse	the	two	because	it	can	have	implications	for	the	product	you	are

developing.

The	directories	starting	with	meta	are	all	metadata	layers:

	meta:	OE	Core	metadata	layer

	meta-hob:	Metadata	layer	used	by	the	Hob	graphical	user	interface	for	BitBake

	meta-selftest:	Layer	for	testing	BitBake	that	is	used	by	the	oe-selftest
script

	meta-skeleton:	Template	layer	you	can	use	to	create	your	own	layers

	meta-yocto:	Yocto	Project	distribution	layer

	meta-yocto-bsp:	Yocto	Project	BSP	layer

We	explain	the	structure	of	metadata	layers	in	Section	3.3.3.

The	script	oe-init-build-env	creates	and	initializes	build	environments.	It	is
used	in	two	ways:	to	create	an	empty	build	environment	with	default	settings	and	to
initialize	a	build	environment	that	has	previously	been	created.	We	used	the	former	in
Chapter	2	to	create	our	first	build	environment.	The	script’s	command	line	is
Click	here	to	view	code	image

$	oe-init-build-env	<buildenv>

with	<buildenv>	being	substituted	for	the	name	of	the	build	environment.	If	no	build
environment	name	is	provided,	then	the	script	uses	the	default	name	build.	The	script
creates	a	subdirectory	in	the	current	directory	using	the	provided	build	environment	name.
Inside	that	directory,	it	creates	a	subdirectory	named	conf	in	which	it	creates	the	two
configuration	files	bblayers.conf	and	local.conf	that	are	required	for	every	build
environment.	After	that,	the	script	initializes	all	necessary	shell	environment	variables	and
changes	directory	to	the	build	environment.

If	the	build	environment	directory	already	exists	and	is	an	OpenEmbedded	build
environment,	then	oe-init-build-env	only	initializes	the	shell	environment
variables	and	changes	directory.

The	second	script,	oe-init-build-env-memres,	also	creates	and	initializes	build
environments	like	oe-init-build-env	but	also	launches	a	memory-resident	BitBake
server,	which	is	listening	on	a	TCP	port	for	commands.	This	easily	allows	for	running
BitBake	on	remote	build	servers	and	controlling	it	from	a	local	system	over	the	network.
The	script’s	command	line	is
Click	here	to	view	code	image

$	oe-init-build-env	<buildenv>	<port>

Either	the	<port>	argument	or	both	arguments,	<buildenv>	and	<port>,	can	be
omitted,	in	which	cases	the	defaults	build	and	12345	are	used.

Finally,	there	is	the	subdirectory	scripts,	which	contains	a	collection	of	integration
and	support	scripts	for	working	with	Yocto	Project	builds.	The	most	commonly	used
scripts	are	as	follows:

	bitbake-whatchanged:	Lists	all	components	that	need	to	be	rebuilt	as	a
consequence	of	changes	made	to	metadata	between	two	builds

	cleanup-workdir:	Removes	build	directories	of	obsolete	packages	from	a	build
environment

	create-recipe:	Creates	a	recipe	that	works	with	BitBake

	hob:	Launches	Hob,	the	graphical	user	interface	for	BitBake

	runqemu:	Launches	the	QEMU	emulator

	yocto-bsp:	Creates	a	Yocto	Project	BSP	layer

	yocto-kernel:	Configures	Yocto	Project	kernel	recipes	inside	a	Yocto	Project
BSP	layer

	yocto-layer:	Creates	a	metadata	layer	that	works	with	BitBake

Throughout	this	book,	we	use	these	and	other	scripts	form	the	scripts	subdirectory.	We
explain	their	use	and	functions	when	we	first	introduce	them.

3.3.2	Build	Environment	Structure
The	OpenEmbedded	build	system	carries	out	all	its	work	inside	a	build	environment.	The
build	environment,	too,	has	a	specific	layout	and	structure.	The	layout	with	all	directories
and	files	in	it	is	created	automatically	by	the	build	system.	The	build	environment
structure	of	directories	and	files	is	deeply	nested.	Listing	3-2	shows	the	first	two	levels	of
the	structure	after	a	build	has	been	run.

Listing	3-2	Build	Environment	Structure
Click	here	to	view	code	image

yocto@yocto-dev:~/yocto$	tree	-L	2	build
x86/

	bitbake.lock
	cache

			 	bb_codeparser.dat
			 	bb_persist_data.sqlite3
			 	local_file_checksum_cache.dat
	conf

			 	bblayers.conf
			 	local.conf
			 	sanity_info
	tmp

				 	abi_version
				 	buildstats
				 	cache
				 	deploy
				 			 	images
				 			 	licenses
				 			 	deb
				 			 	ipk
				 			 	rpm
				 	log
				 	qa.log
				 	saved_tmpdir

				 	sstate-control
				 	stamps
				 	sysroots
				 	work
				 			 	all-poky-linux
				 			 	i586-poky-linux
				 			 	qemux86-poky-linux
				 			 	x86_64-linux
				 	work-shared

A	newly	created	build	environment	contains	only	the	subdirectory	conf	with	the	two
files	bblayers.conf	and	local.conf.	We	encountered	the	latter	in	Chapter	2	when
we	set	up	and	configured	our	first	build	environment.	This	file	contains	all	the
configuration	settings	for	the	build	environment.	You	can	also	add	variable	settings	to	it
that	locally	override	settings	from	included	layers.

The	bblayers.conf	file	contains	the	layer	setup	for	the	build	environment.	Listing
3-3	shows	a	typical	bblayers.conf	file.

Listing	3-3	bblayers.conf
Click	here	to	view	code	image

#	LCONF_VERSION:	version	number	for	bblayers.conf
#	It	is	increased	each	time	build/conf/bblayers.conf
#	changes	incompatibly
LCONF_VERSION	=	“6”

BBPATH	=	“${TOPDIR}”
BBFILES	?=	””

BBLAYERS	?=	”	\
		/absolute/path/to/poky/meta	\
		/absolute/path/to/poky/meta-yocto	\
		/absolute/path/to//poky/meta-yocto-bsp	\
		”
BBLAYERS_NON_REMOVABLE	?=	”	\
		/absolute/path/to/poky/meta	\
		/absolute/path/to/poky/meta-yocto	\
		”

The	most	important	variable	in	this	file	is	BBLAYERS,	which	is	a	space-delimited	list	of
paths	to	all	the	layers	included	by	this	build	environment.	This	is	the	place	where	you
would	add	additional	layers	to	be	included	with	your	build	environment.	The	file	also	sets
BBPATH	to	the	top-level	directory	of	the	build	environment	and	initializes	the	recipe	file
list	BBFILES	with	an	empty	string.

Other	directories	and	files	are	created	during	the	build	process.	All	build	output	is
placed	into	the	tmp	subdirectory.	You	can	configure	this	directory	by	setting	the	TMPDIR
variable	in	the	conf/local.conf	file	of	the	environment.	Build	output	inside	the	tmp
directory	is	organized	into	a	variety	of	subdirectories:

	buildstats:	This	subdirectory	stores	build	statistics	organized	by	build	target
and	date/time	stamp	when	the	target	was	built.

	cache:	When	BitBake	initially	parses	metadata,	it	resolves	dependencies	and
expressions.	The	results	of	the	parsing	process	are	written	into	a	cache.	As	long	as
the	metadata	has	not	changed,	BitBake	retrieves	metadata	information	from	this
cache	on	subsequent	runs.

	deploy:	The	build	output	for	deployment,	such	as	target	filesystem	images,
package	feeds,	and	licensing	information,	is	contained	in	the	deploy	subdirectory.

	log:	Here	is	where	you	can	find	the	BitBake	logging	information	created	by	the
cooker	process.

	sstate-control:	This	subdirectory	contains	the	manifest	files	for	the	shared
state	cache	organized	by	architecture/target	and	task.

	stamps:	BitBake	places	completion	tags	and	signature	data	for	every	task
organized	by	architecture/target	and	package	name	into	this	subdirectory.

	sysroots:	This	subdirectory	contains	root	filesystems	organized	by
architecture/target.	Contents	includes	a	root	filesystem	for	the	build	host	containing
cross-tool-chain,	QEMU,	and	many	tools	used	during	the	build	process.

	work:	Inside	this	directory,	BitBake	creates	subdirectories	organized	by
architecture/target	where	it	builds	the	actual	software	packages.

	work-shared:	This	subdirectory	is	similar	to	work	but	is	for	shared	software
packages.

There	are	also	two	files	inside	the	tmp	directory	that	are	worth	explaining:
abi_version	and	saved_tmpdir.	The	former	contains	the	version	number	for	the
layout	of	the	tmp	directory.	This	number	is	incremented	when	the	layout	changes	and
allows	verification	if	the	build	environment	is	compatible	with	the	build	system.	The	latter
contains	the	absolute	filesystem	path	of	the	tmp	directory.	Many	files	residing	inside	the
tmp	directory	contain	absolute	filesystem	paths.	That	arrangement,	unfortunately,	makes
the	directory	not	relocatable.	Although	this	restriction	may	be	inconvenient,	the
saved_tmpdir	file	allows	you	to	easily	check	whether	the	directory	has	been	moved
from	its	original	location.

While	build	environments,	and	in	particular	the	tmp	directory	typically	located	within
them,	cannot	be	easily	relocated,	BitBake	can	essentially	re-create	all	contents	of	the	tmp
directory	from	the	shared	state	cache.	The	shared	state	cache	stores	the	intermediate
output	of	the	tasks	identified	by	a	signature	that	is	created	from	its	input	metadata,	such	as
task	code,	variables,	and	more.	As	long	as	the	input	does	not	change,	the	signature	does
not	change,	causing	BitBake	to	use	the	output	from	the	shared	state	cache	rather	than
running	the	task.	That	shortens	build	time	considerably,	particularly	for	tasks	that	can	take
a	long	time	to	run,	such	as	configuring	or	compiling.

3.3.3	Metadata	Layer	Structure
Metadata	layers	are	containers	to	group	and	organize	recipes,	classes,	configuration	files,
and	other	metadata	into	logical	entities.	Layers	commonly	build	on	and	extend	each	other.
The	OE	Core	layer	forms	a	foundation	for	the	layer	architecture	of	the	Poky	build	system.
It	provides	recipes	for	a	core	set	of	software	packages	that	are	needed	by	most	Linux	OS
stacks,	including,	of	course,	the	Linux	kernel	but	also	bootloaders,	graphics,	networking,
and	many	other	packages.	OE	Core	also	provides	the	base	classes	to	build	software
packages,	package	the	software	with	package	management	systems,	create	filesystem
images,	and	extend	the	BitBake	functionality.

The	OE	Core	layer	by	itself,	complemented	by	BitBake	and	the	convenience	and
integration	scripts,	is	sufficient	for	building	a	Linux	OS	stack	for	an	emulated	device.	OE
Core	includes	basic	image	targets	as	well	as	machine	definitions	for	the	QEMU	emulator
for	ARM,	MIPS,	PowerPC,	x86,	and	x86_64	architectures.

A	build	environment	for	a	device	operating	system	stack	would	typically	include	other
layers,	such	as	a	BSP	layer	for	actual	hardware;	a	distribution	layer	specifying	the	OS
configuration	for	user	accounts,	system	startup,	and	more;	and	a	user	interface	layer	and
application	layers	for	the	user	space	applications	providing	the	device	functionality.	Figure
3-3	depicts	the	architecture.

Figure	3-3	Layer	architecture

Layer	Layout

All	layers,	no	matter	what	purpose	they	serve,	have	the	same	basic	structure	shown	in
Listing	3-4	(directory	names	are	italicized	to	distinguish	them	from	the	filenames).

Listing	3-4	Layer	Layout
Click	here	to	view	code	image

meta-<layername>
	conf

			 	layer.conf
			 	machine

			 			 	<machine	1>.conf
			 			 	<machine	2>.conf
			 			 	…
			 			 	<machine	m>.conf
			 	distro
			 			 	<distro	1>.conf
			 			 	<distro	2>.conf
			 			 	…
			 			 	<distro	r>.conf
	classes

			 	class<1>.bbclass
			 	class<2>.bbclass
			 	…
			 	class<l>.bbclass
	recipes-<category	1>

			 	<package	a>

			 			 	<package	a>_<version	1>.bb
			 			 	<package	a>_<version	2>.bb
			 	<package	b>

			 			 	<package	b>_<version	1>.bb
			 			 	<package	b>_<version	2>.bb
			 	…
			 	<package	z>

	recipes-<category	2>
			 	…
	recipes-<category	n>

				 	…

A	metadata	layer	is	essentially	a	structure	comprising	directories	and	files.	The	name	of
the	top-level	directory	of	the	layer	does	not	strictly	matter;	however,	by	convention,	all
layer	directory	names	start	with	the	term	meta	followed	by	a	hyphen	and	the	name	of	the
layer.

Every	layer	must	include	a	conf	subdirectory	that	must	contain	the	layer	configuration
file	layer.conf.	BitBake	requires	this	file	to	set	up	paths	and	search	patterns	for
metadata	files.	Listing	3-5	shows	the	boilerplate	layer.conf	file.

Listing	3-5	layer.conf
Click	here	to	view	code	image

#	Add	the	layer’s	directory	to	BBPATH
BBPATH	=.	“${LAYERDIR}:”

#	Add	the	layer’s	recipe	files	to	BBFILES
BBFILES	+=	“${LAYERDIR}/recipes-*/*/*.bb	\
												${LAYERDIR}/recipes-*/*/*.bbappend”

#	Add	the	name	of	the	layer	to	the	layer	collections
BBFILE_COLLECTIONS	+=	“layername”

#	Set	the	recipe	file	search	pattern
BBFILE_PATTERN_layername	=	“^${LAYERDIR}/”

#	Set	the	priority	of	this	layer
BBFILE_PRIORITY_layername	=	“5”

#	Set	version	of	this	layer
#	(should	only	be	incremented	if	changes	break	compatibility)

LAYERVERSION_layername	=	“2”

#	Specify	other	layers	this	layer	depends	on.	This	is	a	white	space-
#	delimited	list	of	layer	names.	If	this	layer	depends	on	a	particular
#	version	of	another	layer,	it	can	be	specified	by	adding	the	version
#	with	a	colon	to	the	layer	name:	e.g.,	anotherlayer:3.
LAYERDEPENDS_layername	=	“core”

The	first	assignment	adds	the	layer’s	directory	to	the	BBPATH	variable.	The	variable
LAYERDIR	is	expanded	by	BitBake	to	the	canonical	path	name	of	the	layer.	Then	the
layer’s	recipes	are	added	to	the	BBFILES	variable.	You	can	see	that	the	wildcard
expressions	match	the	layout	of	the	recipes’	directories	in	the	layer.	Wildcards	for	both
recipes	and	recipe	append	files	need	to	be	added	to	BBFILES.

BBFILE_COLLECTIONS	is	a	list	of	layer	names	delimited	by	spaces.	Each	layer	adds
its	name	to	the	list.	BBFILE_PATTERN	contains	a	regular	expression	to	match	the
recipes	of	this	layer	within	the	BBFILES	variable.	This	variable	is	conditional	on	the
layer,	and	hence	the	variable	name	needs	to	be	suffixed	with	the	name	of	the	layer.4

4.	We	discuss	conditional	variable	settings	in	Chapter	4.

Since	layers	depend	on	and	extend	each	other,	the	order	of	processing	is	important.
Therefore,	each	layer	is	assigned	a	priority	by	setting	the	variable	BBFILE_PRIORITY.
Layer	priorities	range	from	1	to	10	with	1	being	the	lowest	and	10	being	the	highest
priority.	If	two	layers	use	the	same	priority,	then	their	order	in	the	BBLAYERS	variable	of
the	file	bblayers.conf	file	determines	the	priority.

Optionally,	a	layer	can	also	define	a	version	number	by	setting	the	variable
LAYERVERSION.	The	layer	version	can	be	used	together	with	the	LAYERDEPENDS
variable	to	prevent	including	incompatible	versions	of	a	layer.	If	a	layer	depends	on	other
layers,	these	dependencies	can	be	set	by	adding	the	layers	to	the	LAYERDEPENDS
variable,	which	contains	a	list	of	space-delimited	layer	names.	If	the	dependency	is	on	a
particular	version	of	the	layer,	the	version	number	can	be	specified	by	adding	a	colon	and
the	version	number.

The	conf	subdirectory	may	contain	other	files	and	directories,	in	particular,	the
distro	and	machine	subdirectories.	These	are	optional.	Typically,	only	a	distribution
layer	would	contain	a	distro	subdirectory,	and	only	BSP	layers	normally	contain	the
machine	subdirectory.	If	present,	each	of	these	two	subdirectories	contain	files	for
distribution	and	machine	configuration.5

5.	We	explain	distribution	layers	and	BSP	layers	in	the	following	chapters.

If	a	layer	defines	its	own	classes,	they	are	located	in	the	classes	subdirectory.

The	layer’s	recipes	are	grouped	by	category	and	package.	A	category	is	a	collection	of
packages	that	logically	belong	together.	For	example,	the	category	recipes-
connectivity	of	the	OE	Core	metadata	layer	contains	recipes	that	build	packages	for
networking,	telephony,	and	other	connectivity	software.	Within	each	category
subdirectory,	there	are	subdirectories	for	the	different	software	packages.	These	package
subdirectories	contain	recipes,	patches,	and	other	files	required	to	build	the	software

package.	Commonly,	a	package	subdirectory	contains	recipes	to	build	different	versions	of
the	particular	package.

Creating	Layers

Using	layers	for	BSPs,	application	software,	distribution	policy,	and	so	forth,	makes	a	lot
of	good	sense	for	your	own	projects.	Most	projects	start	out	small,	but	then	more	and	more
functionality	is	added.	Even	if	you	have	only	one	or	two	recipes	to	begin	with,	it	is	good
practice	to	place	your	recipes	into	your	own	layer	rather	than	add	them	to	the	OE	Core
layer	or	any	of	the	Yocto	Project	layers.

Your	own	layers	separate	your	recipes	from	the	common	recipes,	making	it	easy	for	you
to	migrate	from	one	version	of	the	OpenEmbedded	build	system	to	the	next.	You	only
need	to	create	a	new	build	environment	with	the	newer	build	system	and	include	your
layers	into	this	build	environment.

By	using	bbappend	files	in	your	layers,	you	can	adjust	recipes	from	common	layers
rather	than	duplicate	or	rewrite	them.	Consider	the	recipes	in	meta/recipes-
kernel/linux	for	building	the	Linux	kernel.	For	the	most	part,	they	already	provide
everything	necessary	for	building	the	kernel.	For	your	own	BSP	layer,	you	normally	need
to	tweak	only	a	couple	of	settings	to	fully	support	your	target	hardware.	Rather	than
duplicating	the	kernel	recipe,	you	can	use	bbappend	files	or	include	files	to	customize
the	base	recipe	to	your	requirements.

Creating	layers	is	simple	and	straightforward	with	the	yocto-layer	script.	After
sourcing	a	build	environment,	this	script	is	readily	available	in	your	command	search	path.
Simply	invoke	the	script	as
Click	here	to	view	code	image

$	yocto-layer	create	<layername>

The	script	prompts	you	for	the	priority	of	your	new	layer	if	you	would	like	to	create	an
example	recipe	and/or	an	example	bbappend	file	and	then	creates	the	layer	including	the
conf/layer.conf	file	and	example	files	in	the	current	directory.	All	you	need	to	do	is
add	the	layer	to	the	BBLAYERS	variable	in	the	conf/bblayers.conf	file	of	your
build	environment	to	include	it	with	the	build	process.	Of	course,	you	also	have	to	modify
the	example	recipes	and/or	new	recipes,	configuration	files,	and	classes	as	your	project
requires.

3.4	Summary
This	chapter	presented	an	overview	of	the	build	system,	its	workflow,	and	its	components.

	Open	source	software	packages	are	most	commonly	built	following	a	standard
workflow.

	The	OpenEmbedded	build	system	automates	the	workflow	steps	for	the	many
hundreds	of	packages	that	are	built	from	source	code	to	create	a	fully	functional
Linux	OS	stack.

	BitBake	not	only	builds	the	software	packages	but	also	packages	executables,

libraries,	documentation,	and	more	into	packages	that	can	be	utilized	by	the	common
package	management	systems	dpkg,	RPM,	and	ipgk.
	The	build	system	creates	root	filesystem	images	that	can	be	installed	on	target
systems.

	Optionally,	BitBake	can	build	an	SDK	that	includes	cross-development	tools	for
developers	to	build	applications	for	the	target	systems.

	The	three	core	components	that	make	up	the	architecture	are	the	OpenEmbedded
build	system,	build	environment,	and	metadata	layers.

	The	Poky	reference	distribution	includes	the	OpenEmbedded	build	system	as	well	as
the	three	metadata	layers	OE	Core	(meta),	Yocto	Distribution	(meta-yocto),	and
Yocto	BSP	(meta-yocto-bsp),	which	are	automatically	added	to	a	build
environment	when	it	is	created.

	Layers	group	metadata	into	logical	entities	such	as	BSPs,	distribution	layer,
application	layers,	and	more.

3.5	References
Yocto	Project	Documentation,	https://www.yoctoproject.org/documentation/current

https://www.yoctoproject.org/documentation/current

4.	BitBake	Build	Engine

In	This	Chapter

4.1	Obtaining	and	Installing	BitBake

4.2	Running	BitBake

4.3	BitBake	Metadata

4.4	Metadata	Syntax

4.5	Source	Download

4.6	HelloWorld—BitBake	Style

4.7	Dependency	Handling

4.8	Version	Selection

4.9	Variants

4.10	Default	Metadata

4.11	Summary

4.12	References

BitBake	is	a	build	tool	comparable	to	Make	and	Apache	Ant.	However,	because	of	its
flexible	and	extensible	architecture,	BitBake’s	capabilities	go	far	beyond	what	typical
software	build	engines	provide.	BitBake’s	metadata	syntax	not	only	enables	variables	and
execution	of	simple	commands	but	also	can	embed	entire	shell	scripts	and	Python
functions.

BitBake	is	derived	from	Portage,	the	build	and	package	management	system	used	by
the	Gentoo	Linux	distribution.	BitBake	is	written	entirely	in	Python,	making	it	mostly
platform	independent	as	long	as	the	platform	provides	a	Python	runtime	environment.

Like	any	software	build	tool,	BitBake	on	its	own	does	not	provide	the	functionality	to
build	a	software	package.	It	must	be	complemented	by	build	instructions	that	are	included
in	metadata	files.	BitBake	metadata	files	are	comparable	to	Make’s	makefiles	and	to	Ant’s
build.xml	files.	OpenEmbedded	and	the	Yocto	Project	provide	the	necessary	metadata	to
build	thousands	of	software	packages	and	integrate	them	into	filesystem	images
containing	fully	functional	Linux	OS	stacks.

4.1	Obtaining	and	Installing	BitBake
BitBake	is	a	core	component	of	the	OpenEmbedded	build	system,	described	in	the
previous	chapter.	BitBake	is	a	Yocto	Project	subproject	jointly	maintained	by
OpenEmbedded	and	the	Yocto	Project.	BitBake	source	repositories	were	originally	hosted
on	http://developer.berlios.de/projects/bitbake,	but	the	active	development	branches	were
moved	to	the	OpenEmbedded	Git	repository	at	http://git.openembedded.org/bitbake	after
the	creation	of	the	Yocto	Project.

http://developer.berlios.de/projects/bitbake
http://git.openembedded.org/bitbake

The	build	system	that	you	download	from	the	Yocto	Project	website	or	clone	from	the
Yocto	Project	Git	repository	always	includes	the	version	of	BitBake	matching	Poky’s
metadata.	Therefore,	when	using	Poky,	you	do	not	have	to	worry	about	downloading	and
installing	BitBake.1	However,	if	you	are	interested	in	using	BitBake	for	other	projects,
such	as	to	track	the	current	BitBake	development	status,	or	are	looking	to	contribute	to
BitBake,	you	can	download	it	from	the	OpenEmbedded	repository	and	install	it	on	your
system.

1.	Using	a	version	of	BitBake	other	than	the	one	included	with	the	build	system	is	discouraged.	BitBake	is	tightly
integrated	with	the	build	system	that	provides	it.

We	illustrate	the	download	and	installation	of	BitBake	so	you	can	see	how	BitBake
works.	It	is	a	useful	setup	to	experiment	with	BitBake	and	learn	about	its	inner	workings
without	the	integration	that	comes	with	the	OpenEmbedded	build	system.

4.1.1	Using	a	Release	Snapshot
Compressed	tar	archives	of	released	BitBake	versions	can	be	downloaded	via	web
browser	from	the	OpenEmbedded	Git	repository	or	using	the	wget	command:
Click	here	to	view	code	image

wget	https://git.openembedded.org/bitbake/snapshot/bitbake-1.17.0.tar.bz2

Executing
Click	here	to	view	code	image

tar	xvjf	bitbake-1.17.0.tar.bz2	-C	~

extracts	the	archive	into	your	home	directory,	creating	a	subdirectory	named	bitbake-
1.17.0	containing	the	BitBake	sources.

4.1.2	Cloning	the	BitBake	Development	Repository
The	command
Click	here	to	view	code	image

git	clone	git://git.openembedded.org/bitbake.git	~/bitbake

clones	the	BitBake	Git	repository	into	the	directory	bitbake	in	your	home	directory	and
check	out	the	master	branch.	As	usual	with	Git	repositories,	the	master	branch	is	the
actual	development	branch.

4.1.3	Building	and	Installing	BitBake
The	BitBake	source	tree	contains	a	setup.py	script	that	allows	you	to	precompile	the
BitBake	Python	source	modules,	create	the	documentation,	and	eventually	install	BitBake
on	your	system.

From	the	directory	where	you	have	extracted	or	cloned	the	BitBake	source,	execute
./setup.py	build

to	compile	BitBake	and	to	create	the	documentation	in	HTML	and	PDF	formats	from	the
DocBook	sources.	Compiling	BitBake	requires	the	Python	Lex-Yacc	(PLY)	package	to	be

installed	on	your	system.	Virtually	all	Linux	distributions	provide	this	package.	Executing
./setup.py	install

installs	BitBake	and	its	libraries	into	the	default	Python	installation	directory	on	your
development	system,	which	on	most	Linux	distributions	is
/usr/lib/python<version>/site-packages.	Installing	BitBake	is	of	course
optional,	as	you	can	use	BitBake	directly	from	its	source	directory.

4.2	Running	BitBake
If	you	have	worked	with	Make	before,	you	know	that	you	can	execute	it	without	any
parameters,	and	Make	looks	for	a	file	called	GNUmakefile,	makefile,	or	Makefile
in	the	current	directory	and	builds	the	default	target	it	finds	in	the	file.	Ant	is	quite	similar,
as	it	searches	for	a	file	named	build.xml	in	the	current	directory.	Both	tools	also	allow
you	to	explicitly	specify	a	file	containing	the	build	instructions	as	a	command-line
parameter.

BitBake	essentially	works	in	the	same	way.	However,	BitBake	always	must	be	called
with	the	base	name	of	a	recipe	or	target	as	a	parameter:

$	bitbake	core-image-minimal

In	this	example,	core-image-minimal	corresponds	to	the	recipe	core-image-
minimal.bb.	However,	unlike	Make	and	Ant,	BitBake	does	not	automatically	look	for
the	recipe	in	the	current	directory.	BitBake	requires	that	you	set	up	an	execution
environment	before	it	can	locate	and	execute	build	instructions.

4.2.1	BitBake	Execution	Environment
When	launched,	BitBake	first	searches	for	the	conf/bblayers.conf	configuration
file	in	the	current	working	directory	(see	Listing	4-1).

Listing	4-1	conf/bblayers.conf
Click	here	to	view	code	image

BBPATH	=	“${TOPDIR}”
BBFILES	?=	””

BBLAYERS	?=	”	\
		/path/to/directory/for/layer1	\
		/path/to/directory/for/layer2	\
		/path/to/directory/for/layer3	\
		”

Although	this	file	is	optional,	it	is	present	in	any	BitBake	build	environment	using	the
layer	architecture,	which	includes	all	build	environments	created	by	the	Yocto	Project
tools.	BitBake	expects	this	file	to	contain	a	variable	called	BBLAYERS,	which	contains	a
list	of	paths	to	directories	where	the	layers	included	in	the	build	environment	can	be
found.	Each	of	these	layer	directories	is	expected	to	contain	a	file	named
conf/layer.conf	(see	Listing	4-2).

Listing	4-2	conf/layer.conf

Click	here	to	view	code	image

#	We	have	a	conf	and	classes	directory,	add	to	BBPATH
BBPATH	.=	“:${LAYERDIR}”

#	We	have	recipes-*	directories,	add	to	BBFILES
BBFILES	+=	“${LAYERDIR}/recipes-*/*/*.bb	\
								${LAYERDIR}/recipes-*/*/*.bbappend”

BBFILE_COLLECTIONS	+=	“layer1”
BBFILE_PATTERN_layer1	=	“^${LAYERDIR}/”
BBFILE_PRIORITY_layer1	=	“6”

The	purpose	of	the	layer	configuration	file	conf/layer.conf	is	to	set	up	the
variables	BBPATH	and	BBFILES	correctly	so	that	BitBake	can	find	the	recipes,	classes,
and	configuration	files	contained	in	the	layer:

	BBPATH:	BitBake	uses	this	variable	to	locate	classes	(.bbclass	files)	in	a
subdirectory	named	classes	and	configuration	files	(.conf	files)	in	a
subdirectory	called	conf	and	subdirectories	thereof.	The	variable	contains	a	list	of
colon-delimited	directory	paths.

	BBFILES:	This	variable	contains	a	list	of	paths	with	wildcards,	for	the	recipe	files.

A	layer	typically	adds	the	path	to	its	own	top-level	directory	to	the	list	of	paths
contained	in	BBPATH.	BitBake	automatically	sets	the	variable	LAYERDIR	to	the	path	to
the	top-level	directory	of	a	layer	when	it	begins	parsing	the	files	in	that	layer.

The	layer	also	adds	the	paths	to	the	recipe	files	it	provides	to	a	list	of	file	paths
contained	in	the	BBFILES	variable.	The	file	paths	represent	the	directory	structure	that
contains	the	recipes	of	the	layer,	which	is,	by	convention,	a	layout	with	two	levels	of
subdirectories,	as	explained	in	Chapter	3,	“OpenEmbedded	Build	System.”

The	three	variables	BBFILE_COLLECTIONS,	BBFILE_PATTERN,	and
BBFILE_PRIORITY	provide	BitBake	with	information	on	how	to	locate	and	treat	the
recipes	of	this	layer	in	regard	to	other	layers:

	BBFILE_COLLECTIONS:	Contains	a	list	of	the	names	of	configured	layers.	This
list	is	used	by	BitBake	to	find	other	BBFILE_*	variables	in	its	data	directory.	Each
layer	typically	adds	its	own	name	to	the	list.

	BBFILE_PATTERN:	A	regular	expression	telling	BitBake	how	to	locate	recipe	files
from	this	layer	within	BBFILES.	The	value	that	a	layer	sets	this	variable	to
corresponds	to	the	paths	it	adds	to	the	BBFILES	variable.	Since	all	paths	in
BBFILES	typically	begin	with	the	top-level	directory	of	the	layer,	the	regular
expression	reflects	that	convention.	The	name	of	the	variable	must	be	appended	with
an	underscore	and	the	name	of	the	layer.

	BBFILE_PRIORITY:	Assigns	a	priority	to	the	recipes	contained	in	this	layer.	The
name	of	the	variable	must	be	appended	with	the	name	of	the	layer.

A	larger	priority	value	corresponds	to	a	higher	priority.	Priorities	are	especially
important	if	a	recipe	with	the	same	name	appears	in	more	than	one	layer.	In	that	case,

BitBake	picks	the	recipe	from	the	layer	with	the	higher	priority	even	if	the	recipe
contained	in	the	layer	with	lower	priority	has	a	later	version	than	the	recipe	of	the	layer
with	the	higher	priority.

The	priority	also	determines	in	what	order	BitBake	appends	append	files	to	the	recipes.
An	append	file	from	a	layer	with	higher	priority	is	added	after	an	append	file	from	a	layer
with	lower	priority.

In	most	cases,	you	execute	BitBake	directly	from	the	top-level	directory	of	the
execution	or	build	environment.	If,	for	some	reason,	execution	from	the	top-level	directory
is	not	desirable,	you	can	set	the	BBPATH	variable	before	launching	BitBake:
Click	here	to	view	code	image

$	BBPATH=”/absolute/path/to/build_env”	bitbake	<target>

Note	that	BitBake	expects	the	BBPATH	variable	to	contain	an	absolute	path;	otherwise,	it
does	not	find	the	configuration	file	conf/bblayers.conf.

After	parsing	conf/bblayers.conf,	BitBake	looks	for	the	configuration	file
conf/bitbake.conf,	which	provides	the	build	system	setup.	If	layers	are	not	used
and	therefore	no	conf/bblayers.conf	file	is	present,	then	the	BBPATH	variable
needs	to	be	set	up	as	shown	previously,	and	the	file	conf/bitbake.conf	must	contain
variable	assignments	for	BBFILES.

After	locating	and	parsing	conf/bitbake.conf	and	other	configuration	files,
BitBake	locates	and	parses	all	classes.	At	least	one	class,	base	contained	in	the	file
base.bbclass,	must	be	present	for	BitBake	to	operate	correctly.	This	class	provides
the	basic	functions	and	tasks,	including	the	default	build	task.

4.2.2	BitBake	Command	Line
Running	BitBake	with	the	--help	option	provides	an	overview	of	the	tool’s	command-
line	options	(see	Listing	4-3).

Listing	4-3	BitBake	Command-Line	Options
Click	here	to	view	code	image

$	bitbake	—help
Usage:	bitbake	[options]	[recipename/target	…]

				Executes	the	specified	task	(default	is	‘build’)	for	a	given	set	of
			target	recipes	(.bb	files).	It	is	assumed	there	is	a	conf/bblayers.conf
			available	in	cwd	or	in	BBPATH	which	will	provide	the	layer,	BBFILES	and
			other	configuration	information.

Options:
		—version													show	program’s	version	number	and	exit
		-h,	—help												show	this	help	message	and	exit
		-b	BUILDFILE,	—buildfile=BUILDFILE
																								Execute	tasks	from	a	specific	.bb	recipe	directly.
																								WARNING:	Does	not	handle	any	dependencies	from
																								other	recipes.
		-k,	—continue								Continue	as	much	as	possible	after	an	error.	While
																								the	target	that	failed	and	anything	depending	on	it

																								cannot	be	built,	as	much	as	possible	will	be	built
																								before	stopping.
		-a,	—tryaltconfigs			Continue	with	builds	by	trying	to	use	alternative
																								providers	where	possible.
		-f,	—force											Force	the	specified	targets/task	to	run
																								(invalidating	any	existing	stamp	file).
		-c	CMD,	—cmd=CMD					Specify	the	task	to	execute.	The	exact	options
																								available	depend	on	the	metadata.	Some	examples
																								might	be	‘compile’	or	‘populate_sysroot’	or
																								‘listtasks’	may	give	a	list	of	the	tasks	available.
		-C	INVALIDATE_STAMP,	—clear-stamp=INVALIDATE_STAMP
																								Invalidate	the	stamp	for	the	specified	task	such	as
																								‘compile’	and	then	run	the	default	task	for	the
																								specified	target(s).
		-r	PREFILE,	—read=PREFILE
																								Read	the	specified	file	before	bitbake.conf.
		-R	POSTFILE,	—postread=POSTFILE
																								Read	the	specified	file	after	bitbake.conf.
		-v,	—verbose									Output	more	log	message	data	to	the	terminal.
		-D,	—debug											Increase	the	debug	level.	You	can	specify	this	more
																								than	once.
		-n,	—dry-run									Don’t	execute,	just	go	through	the	motions.
		-S,	—dump-signatures
																								Don’t	execute,	just	dump	out	the	signature
																								construction	information.
		-p,	—parse-only						Quit	after	parsing	the	BB	recipes.
		-s,	—show-versions			Show	current	and	preferred	versions	of	all	recipes.
		-e,	—environment					Show	the	global	or	per-package	environment	complete
																								with	information	about	where	variables	were
																								set/changed.
		-g,	—graphviz								Save	dependency	tree	information	for	the	specified
																								targets	in	the	dot	syntax.
		-I	EXTRA_ASSUME_PROVIDED,	—ignore-deps=EXTRA_ASSUME_PROVIDED
																								Assume	these	dependencies	don’t	exist	and	are
																								already	provided	(equivalent	to	ASSUME_PROVIDED).
																								Useful	to	make	dependency	graphs	more	appealing.
		-l	DEBUG_DOMAINS,	—log-domains=DEBUG_DOMAINS
																								Show	debug	logging	for	the	specified	logging
																								domains.
		-P,	—profile									Profile	the	command	and	save	reports.
		-u	UI,	—ui=UI								The	user	interface	to	use	(e.g.	knotty,	hob,
																								depexp).
		-t	SERVERTYPE,	—servertype=SERVERTYPE
																								Choose	which	server	to	use,	process	or	xmlrpc.
		—revisions-changed			Set	the	exit	code	depending	on	whether	upstream
																								floating	revisions	have	changed	or	not.
		—server-only									Run	bitbake	without	a	UI,	only	starting	a	server
																								(cooker)	process.
		-B	BIND,	—bind=BIND		The	name/address	for	the	bitbake	server	to	bind	to.
		—no-setscene									Do	not	run	any	setscene	tasks.	sstate	will	be
																								ignored	and	everything	needed,	built.
		—remote-server=REMOTE_SERVER
																								Connect	to	the	specified	server.
		-m,	—kill-server					Terminate	the	remote	server.
		—observe-only								Connect	to	a	server	as	an	observing-only	client.

At	first	look,	the	number	of	command-line	options	seems	overwhelming,	but	they	can
easily	be	broken	down	into	a	few	functionality	blocks.

Displaying	Program	Version	and	Help

The	command-line	options	--version	and	--help	or	-h	print	the	program	version
number	and	the	help	information	in	Listing	4-3,	respectively,	to	the	console.

Executing	Builds	with	Dependency	Handling

Calling	BitBake	with	a	target,	the	base	name	of	the	recipe	file	without	the	.bb	extension,
runs	the	default	task	as	defined	by	the	variable	BB_DEFAULT_TASK,	typically	build:

$	bitbake	core-image-minimal

BitBake	evaluates	all	the	dependencies	of	the	target	and	the	task	and	executes	all
dependent	tasks	in	correct	order	imposed	by	the	dependency	chain	before	actually
building	the	target.	An	unfulfilled	dependency	causes	an	error.

Any	error	condition	causes	BitBake	to	stop	execution	even	if	other	tasks	are	ready	to	be
executed.	Using	the	-k	option,
Click	here	to	view	code	image

$	bitbake	-k	core-image-minimal

instructs	BitBake	to	continue	building	even	if	one	or	more	tasks	have	failed.	BitBake
builds	as	much	as	possible	until	the	failed	task	or	tasks	become	gating	for	the	target	and
anything	dependent	on	it.

Using	a	target	without	version	and	revision	always	builds	the	latest	version	of	a
software	package	or	the	version	specified	by	the	variable	PREFERRED_VERSION.
Version	and	revision	numbers	can	be	added	to	the	target	name	to	build	a	specific	version
regardless	whether	it	is	the	latest	version	and	regardless	of	the	value	of
PREFERRED_VERSION.	The	commands

$	bitbake	editor-1.0
$	bitbake	editor-2.0-r3

build	version	1.0	and	version	2.0/revision	r3	of	the	editor	software	package	respectively.

Executing	Builds	without	Dependency	Handling

Using	the	-b	or	--buildfile	option	with	the	name	of	the	recipe	file,	including	the
.bb	extension,	executes	the	default	task	of	the	recipe	but	without	building	dependencies:
Click	here	to	view	code	image

$	bitbake	-b	core-image-minimal.bb
$	bitbake	—buildfile=core-image-minimal.bb

If	any	of	the	dependencies	of	core-image-minimal	are	not	fulfilled,	BitBake	exits
with	an	error	message	without	attempting	to	build	the	dependencies.

Executing	Specific	Tasks

Specific	tasks	of	a	target	can	be	executed	using	the	-c	or	--cmd	options:
Click	here	to	view	code	image

$	bitbake	editor	-c	compile
$	bitbake	editor	—cmd=compile

As	they	are	with	executing	the	default	task,	all	dependencies	are	honored	and	built	if
they	are	not	yet	fulfilled.	Using
Click	here	to	view	code	image

$	bitbake	-b	editor.bb	-c	compile
$	bitbake	-b	editor.bb	—cmd=compile

attempts	to	run	the	compile	task	without	building	any	dependencies.

Forcing	Execution

BitBake	creates	a	timestamp	for	each	successfully	completed	task.	If,	on	subsequent	runs
of	a	task,	the	task’s	time	stamp	is	current	or	later	then	the	time	stamps	of	all	the	tasks	that
task	depends	on	BitBake	does	not	run	the	task.	The	options	-C	or	--clear-stamp
instruct	BitBake	to	run	a	task	regardless	of	the	time	stamp:
Click	here	to	view	code	image

$	bitbake	zlib	-C	compile
$	bitbake	zlib	—clear-stamp=compile

These	options	can	also	be	combined	with	the	-b	or	--buildfile	options.

The	-C	or	--clear-stamp	options	are	equivalent	to	using
Click	here	to	view	code	image

$	bitbake	zlib	-c	compile	-f
$	bitbake	zlib	-c	compile	—force

An	important	function	of	any	build	system	is	the	capability	to	determine	what	parts	of
the	build	process	must	be	executed	again	if	any	of	the	input	changes.	For	that	purpose,
BitBake	implements	the	shared	state	cache.	The	shared	state	cache	operates	on	the	task
level	and	determines	for	each	task	for	every	recipe	what	its	input	is	and	stores	what	output
a	task	adds	to	the	build	process.	If	a	task’s	input	has	not	changed,	then	its	output	does	not
change	on	a	subsequent	build.	If	that	is	the	case,	then	BitBake	obtains	and	restores	the
task’s	output	from	the	shared	state	cache	rather	than	running	the	actual	task.	The	operation
of	obtaining	and	restoring	task	output	from	the	shared	state	cache	is	referred	to	as	set-
scene.	If	set-scene	is	not	desired,	then	it	can	be	turned	off	using	the	--no-setscene
option:
Click	here	to	view	code	image

$	bitbake	zlib	-c	compile	—no-setscene

The	--no-setscene	option	can	also	be	combined	with	the	-b	or	--buildfile
options.

The	shared	state	cache	is	powerful	functionality	that	can	tremendously	speed	up	build
processes	by	reusing	already	processed	task	output	from	the	cache.

Displaying	Metadata

For	debugging	purposes,	it	can	be	very	useful	to	list	all	the	metadata.	The	option	-e	or	–
environment	shows	all	metadata,	variables,	and	functions	immediately	after	BitBake
has	completed	the	parsing	process:

$	bitbake	-e

$	bitbake	—environment

When	used	with	a	target	or	recipe	name,	the	command	displays	the	environment
settings	that	BitBake	applies	to	building	that	package:

$	bitbake	-e	zlib
$	bitbake	–environment	zlib

These	options	can	also	be	combined	with	the	-b	or	--buildfile	options.

Because	displaying	all	metadata	including	the	functions	produces	a	lot	of	output
scrolling	by	on	the	screen,	it	is	advisable	to	use	a	utility	such	as	grep	to	filter	for	the
desired	information.

Another	useful	option	is	-s	or	--show-versions,	which	displays	a	list	of	all
recipes	and	the	version	numbers:

$	bitbake	-s
$	bitbake	—show-versions

These	options	always	list	the	entire	roster	of	recipes,	and	using	a	filter	utility	may	help	to
shorten	the	list	to	the	items	you	are	looking	for.

Creating	Dependency	Graphs

BitBake	can	create	graphs	describing	package	dependencies	in	the	DOT	language.	DOT	is
a	plain	text	graph	description	language	that	can	describe	undirected	and	directed	graphs
and	annotate	them	as	well	as	the	nodes	and	edges	with	attributes.	Software	applications
from	the	Graphviz	package	(www.graphviz.org)	can	read	DOT	files	and	render	them	in
graphical	form.	The	command

$	bitbake	-g	zlib

creates,	in	the	current	working	directory,	three	files	describing	the	dependencies	of	the	zlib
package	using	the	DOT	language:

	package-depends.dot:	Dependency	graph	on	the	actual	package	level
detailing	the	subpackages,	such	as	zlib-dev	and	zlib-dgb

	task-depends.dot:	Dependency	graph	on	the	task	level

	pn-depends.dot:	Dependency	graph	on	the	package	name	level	not	detailing
the	subpackages

Alternatively	to	the	-g	option,	the	--graphviz	option	can	be	used.

If	the	Graphviz	package	is	installed	on	your	development	system,	you	can	create
graphical	renditions	of	the	dependency	graphs	from	these	files.	The	command
Click	here	to	view	code	image

$	dot	-Tpng	-o	pn-depends.png	pn-depends.dot

creates	an	image	file	in	png	format	containing	the	dependency	graph.	The	dependency
graphs	tend	to	get	rather	large	because	all	dependencies,	including	common	ones	such	as
the	compiler	and	C	library,	are	represented.	You	can	omit	common	packages	using	the	-I
or	--ignore-deps	options:
Click	here	to	view	code	image

http://www.graphviz.org

$	bitbake	-g	zlib	-I	expat
$	bitbake	-g	zlib	—ignore-deps=“expat”

These	commands	remove	the	expat	package	from	the	dependency	graph.	Unfortunately,
you	have	to	specify	each	package	individually	to	be	removed	from	the	dependency	graph,
as	there	is	no	way	to	remove	common	dependencies	altogether	with	a	single	option.

The	dependency	graphs	generated	by	BitBake	also	include	transitive	dependencies,
making	the	graphs	larger	than	necessary.	You	can	remove	the	transitive	dependencies
using	the	tred	command	from	the	Graphviz	package:
Click	here	to	view	code	image

$	tred	pn-depends.dot	>	pn-depends-notrans.dot

BitBake	also	includes	a	built-in	visualization	for	dependency	graphs,	the	dependency
explorer.	Using

$	bitbake	-g	-u	depexp	zlib

launches	the	dependency	explorer,	shown	in	Figure	4-1.

Figure	4-1	Dependency	explorer

The	dependency	explorer	lists	runtime,	build-time,	and	reverse	dependencies	per
package.	Runtime	dependencies	are	all	dependencies	a	software	package	requires	during
execution.	The	build-time	dependencies	must	be	fulfilled	when	the	software	package	is

built.	And	the	reverse	dependencies	list	shows	all	packages	that	depend	on	this	package.

Providing	and	Overriding	Configuration	Data

The	options	-r	or	--read	and	-R	or	--postread	offer	a	convenient	way	to	provide
additional	configuration	data	or	to	override	existing	settings	without	modifying	any
configuration	files	of	the	build	environment,	such	as	bitbake.conf	or	local.conf.

As	an	alternative	to	directly	setting	variables	through	the	shell	at	the	command	line,	as
we	saw	earlier,	-r	or	--read	can	be	used	to	provide	configuration	data	to	BitBake
before	the	tool	reads	any	other	files:
Click	here	to	view	code	image

$	bitbake	-r	prefile.conf	<target>
$	bitbake	—read	prefile.conf	<target>

This	technique	can	be	used	for	automatic	build	systems	in	lieu	of	a	bblayers.conf
file	to	set	up	the	BBPATH	and	BBLAYERS	variables	to	dynamically	set	up	build
environments.

Using
Click	here	to	view	code	image

$	bitbake	-R	postfile.conf	<target>
$	bitbake	—postread	postfile.conf	<target>

easily	allows	overriding	variable	settings	made	by	any	other	configuration	file	of	the	build
environment,	as	BitBake	processes	postfile.conf	after	it	completes	parsing	all	other
configuration	files.	For	example,	machine	or	distribution	settings	can	be	dynamically
overridden,	or	variables	can	be	set	for	debugging	purposes.

Running	BitBake	Server

BitBake	is	a	client–server	application.	Every	time	you	run	BitBake,	it	starts	a	server	or
backend	process	called	cooker	in	the	background	and	a	client	or	frontend	process	for	the
user	interface.	The	cooker	backend	process	does	all	the	metadata	file	processing	as	well	as
the	actual	building,	eventually	spawning	multiple	threads.	When	launched	together	in	this
all-in-one	mode,	backend	and	frontend	processes	use	pipe-based	interprocess
communication	(IPC)	to	exchange	information.

Backend	and	frontend	processes	can	also	be	launched	independently	and	on	different
systems,	allowing	you	to	remotely	start	and	monitor	build	processes.	To	launch	a	BitBake
server	process	from	a	build	environment,	use:
Click	here	to	view	code	image

$	bitbake	—server-only	—servertype=xmlrpc	—bind=<ip>:<port>

This	command	starts	a	BitBake	server	as	a	background	process	listening	on	the	IP
address	<ip>	and	port	<port>.	You	can	bind	the	server	to	any	IP	address,	such	as
localhost	or	the	IP	address	of	any	network	interface	of	your	build	system.	You	may	also
use	any	port	number	as	long	as	it	is	not	privileged	or	currently	in	use.	You	must	specify	-
-servertype=xmlrpc	when	launching	a	BitBake	server.	While	this	seems	redundant,
since	process	and	xmlrpc	are	currently	the	only	two	IPC	methods	supported	and

process	cannot	be	used	with	server	mode,	BitBake	may	support	additional	IPC	methods
for	server	mode	in	the	future.
To	connect	to	a	running	BitBake	server	using	the	default	text-terminal-type	user

interface	and	execute	commands,	use
Click	here	to	view	code	image

bitbake	—servertype=xmlrpc	—remote-server=<ip>:<port>	<target>

which	starts	the	build	process	for	<target>	on	the	remote	server.

4.3	BitBake	Metadata
BitBake	uses	metadata	to	control	the	build	process.	In	general,	metadata	describes	the
software	packages,	how	they	are	built,	and	how	they	relate	to	and	depend	on	each	other.
BitBake	distinguishes	two	types	of	metadata:

	Variables:	Variables	are	assigned	values	and	expressions	that	evaluate	to	values.
Variables	can	be	globally	valid	for	the	entire	build	system	or	locally	valid	for	the
current	context,	such	as	for	a	particular	recipe.	Many	BitBake	metadata	variables
contain	not	only	a	single	value	but	a	space-delimited	list	of	values.

	Executable	Metadata:	Executable	metadata	are	functions	and	tasks	embedded	in
recipes	and	classes	that	are	executed	by	BitBake	within	the	context	of	a	recipe.

Metadata	is	organized	in	five	categories	of	files:

	Configuration	Files	(.conf):	Metadata	placed	in	configuration	files	is	global	and
affects	all	recipes	referencing	them.	Configuration	files	may	contain	only	variables
with	no	executable	metadata.	If	the	same	variable	is	assigned	in	multiple
configuration	files,	then	the	order	established	by	the	layer	priority	determines	which
setting	prevails.	The	configuration	file	bitbake.conf	has	the	lowest	priority,	and
the	local	configuration	file	of	the	build	environment	local.conf	has	the	highest.

	Recipe	Files	(.bb):	Recipes	contain	the	metadata	that	describes	a	particular
software	package	and	how	that	software	package	is	built.	A	recipe	typically	provides
executable	metadata	in	the	form	of	tasks	with	instructions	for	downloading,
unpacking,	patching,	compiling,	packaging,	and	installing	the	software	package.

	Class	Files	(.bbclass):	Class	files	provide	a	simple	inheritance	mechanism	for
recipes	to	share	the	same	build	instructions.	BitBake	searches	for	class	files	inside	of
the	classes	subdirectory	of	a	layer.	Recipes	can	include	class	files	by	simply
referencing	them	by	their	name	using	the	inherit	directive.	Classes	are	global,
meaning	that	recipes	located	in	a	layer	can	inherit	classes	from	any	other	layer	the
build	environment	includes.

	Append	Files	(.bbappend):	Append	files	are	extensions	to	recipe	files.	Typically,
a	layer	uses	append	files	to	extend	a	recipe	contained	in	another	layer.	The	append
file	must	have	the	same	base	name	as	the	recipe	it	extends	but	with	the	.bbappend
extension	instead	of	the	.bb	extension.	An	append	file	must	also	have	the	same	path
relative	to	the	layer’s	root	directory	as	the	recipe	it	is	appending.	Append	files	either
add	additional	metadata	or	modify	metadata	defined	in	the	recipe.	The	content	of	an

append	file	is	literally	appended	to	the	original	recipe.	If	append	files	from	different
layers	append	the	same	recipe,	the	layer	priority	determines	in	which	order	BitBake
appends	the	files	to	the	recipe.
	Include	Files	(.inc):	Any	metadata	file	can	include	other	files	using	the	include
and	require	directives.	Include	files	commonly	provide	metadata	that	is	shared
among	multiple	metadata	files.	The	content	of	the	include	file	is	inserted	into	the
including	metadata	file	at	the	position	of	the	respective	directive.	Include	files
themselves	may	also	include	other	files.	This	of	course	bears	the	risk	of	circular
inclusion,	which	BitBake	detects	and	warns	about.	File	inclusion	is	not	limited	to	the
same	layer,	but	a	recipe	in	one	layer	can	include	a	file	from	another.	The	.inc	file
extension	is	purely	conventional.	A	metadata	file	can	include	any	other	metadata
file;	however,	files	containing	executable	metadata	may	be	included	only	by	recipes,
append	files,	and	classes.

BitBake	parses	the	metadata	files	immediately	after	starting	and	creates	a	metadata
cache.	This	cache	is	essentially	a	persistent	form	of	BitBake’s	metadata	dictionary.	As
long	as	there	are	no	changes	to	the	metadata,	BitBake	reads	it	from	the	cache,	significantly
reducing	start	time.

4.4	Metadata	Syntax
BitBake	metadata	files	employ	a	specific	syntax	that	is	rather	straightforward.	To	some
extent,	it	is	similar	to	what	you	may	be	familiar	with	from	Makefiles	and	shell	scripts.

4.4.1	Comments
Comments	in	metadata	files	are	prefixed	with	a	hash	symbol:	#.	Comments	must	start	on
the	first	column	unless	they	are	placed	inside	of	shell	or	Python	functions	(see	Listing	4-
4).

Listing	4-4	Comments
Click	here	to	view	code	image

#	This	is	a	comment.

				#	This	is	an	invalid	comment,	which	causes	a	parse	error.

SUMMARY	=	“Sample	file	with	comments”	#	this	comment	is	also	invalid

helloworld	()	{
			#	comments	in	shell	functions	can	start	on	any	column
			#	and	can	also	be	added	after	statements
			echo	“Hello	World!”	#	this	is	okay	in	a	shell	function
}

python	printdate	()	{
			#	comments	in	Python	functions	can	start	on	any	column
			#	and	can	also	be	added	after	statements
			import	time
			print	time.strftime(“%Y%m%d”,	time.gettime())	#	ok	too
}

As	it	is	with	any	programming	language,	the	frequent	use	of	meaningful	comments
makes	your	code	easier	to	read	and	understand	for	others	and	is	always	encouraged.

4.4.2	Variables
BitBake	variables	are	typeless.	BitBake	treats	all	values	assigned	to	variables	as	strings.

Variable	Names

BitBake	variable	names	may	contain	uppercase	and	lowercase	letters,	numbers,	and	the
special	characters	underscore	(_),	hyphen	(-),	period	(.),	plus	(+),	and	tilde	(~).	They	can
also	begin	with	any	of	these	characters.

While	any	of	the	preceding	characters	are	allowed	in	variable	names,	only	uppercase
letters	and	the	underscore	are	used	by	convention,	and	all	variable	names	start	with	an
uppercase	letter.

Variable	Scope

Variables	defined	in	configuration	files—that	is,	files	that	end	in	.conf—are	global	and
visible	in	all	recipes.	Variables	defined	in	recipes	are	local	to	the	recipe	only.	Recipes	have
their	own	namespace,	and	global	variables	assigned	a	new	value	in	a	recipe	retain	that
value	only	when	BitBake	processes	that	recipe.

Variable	Assignment

All	BitBake	variable	assignments	are	string	literals	with	balanced	delimiters	that	enclose
the	value.	The	delimiters	are	either	double	(")	or	single	(')	quotes.	Double	quotes	are
preferred	by	convention.

Direct	Value	Assignment	(=)

A	variable	can	be	assigned	a	value	using	the	=	sign.	Using
VAR	=	“value”

assigns	value	to	the	variable	VAR.	Quotation	inside	a	variable	assignment	can	be	achieved
by	using	the	backlash	(\)	as	escape	character	or	single	quotes:
Click	here	to	view	code	image

VAR1	=	“This	is	a	"quotation"	inside	a	variable	assignment”
VAR2	=	“This	is	a	second	‘quotation’	inside	a	variable	assignment”

The	second	method	is	preferred	for	readability.

Default	Value	Assignment	(?=)

Variables	can	be	assigned	default	values	using	the	?=	assignment	operator:
A	?=	“value1”
B	?=	“value2”
B	?=	“value3”
C	?=	“value4”
C	=	“value5”

If	a	variable	has	not	previously	been	set,	it	is	assigned	the	default	value.	If	it	has	been
set	prior	to	the	default	value	assignment,	it	retains	its	value.	In	the	preceding	assignment
sequence,	A	contains	value1	if	it	has	not	been	previously	set.	B	contains	value2
because	the	first	use	of	the	?=	operator	sets	the	variable.

The	=	operator	overrides	any	previous	default	value	assignment;	hence	C	contains
value5.

Weak	Default	Value	Assignment	(??=)

When	using	the	weak	or	lazy	default	assignment	operator	??=,	value	assignment	does	not
occur	until	the	end	of	the	parsing	process,	so	that	the	last	rather	than	the	first	??=
assignment	to	a	variable	is	used:

A	??=	“value1”
B	??=	“value2”
B	??=	“value3”
C	?=	“value4”
C	??=	“value5”
D	=	“value6”
D	??=	“value7”

In	this	example,	A	contains	value1	if	it	has	not	been	previously	set.	B	contains
value3	if	it	has	not	been	previously	set	because	the	assignment	does	not	occur	until	the
end	of	the	parsing	process.	C	contains	value4	and	D	contains	value6	because	the	?=
and	=	operators	override	the	??=	operator.

Variable	Expansion

BitBake	variables	can	reference	the	content	of	other	BitBake	variables:
Click	here	to	view	code	image

VAR1	=	“jumps	over”
VAR2	=	“The	quick	brown	fox	${VAR1}	the	lazy	dog.”

The	content	of	a	variable	is	referenced	using	the	${}	reference	operator	with	the
variable	name.	In	the	example,	VAR2	contains	The	quick	brown	fox	jumps
over	the	lazy	dog.

Immediate	Variable	Expansion

Variable	expansion	does	not	occur	until	the	variable	is	actually	used.	Simply	assigning	an
expression	containing	variable	expansion	does	not	expand	the	referenced	variable.	The
assignment	operator	:=,	however,	causes	an	immediate	expansion	on	assignment:
Click	here	to	view	code	image

VAR1	=	“jumps	over”
VAR2	=	“${VAR1}	the	lazy	dog.	“
VAR1	=	“falls	on”
VAR3	=	“The	rain	in	Spain	${VAR1}	the	plain.”
VAR4	:=	“The	quick	brown	fox	${VAR2}”

The	variable	VAR4	contains	The	quick	brown	fox	falls	on	the	lazy
dog.	because	VAR1	contained	in	the	assignment	of	VAR2	is	not	expanded	until	the

content	of	VAR2	is	referenced	during	the	assignment	to	VAR4	using	the	:=	operator.	By
then,	however,	the	value	of	VAR1	has	been	set	to	falls	on.

Python	Variable	Expansion

BitBake	can	evaluate	Python	expressions	in	variable	assignments:
Click	here	to	view	code	image

DATE	=	“${@time.strftime(‘%A	%B	%d,	%Y’,	time.gettime())}”
TODAY	:=	“Today	is:	${DATE}.”

The	@	operator	tells	BitBake	to	treat	the	expression	following	it	as	Python	code.	The
code	must	evaluate	to	a	value.	In	the	example,	TODAY	would	contain	a	value	similar	to
Today	is:	Friday	April	1,	2016.

Variable	Appending	and	Prepending

Variable	content	can	be	concatenated	with	other	string	literals	and	content	from	other
variables	using	the	append	and	prepend	operators.

Appending	(+=)	and	Prepending	(=+)	with	Space

The	+=	and	=+	operators	append	and	prepend	variables	respectively	while	adding	a	single
space	between	the	values:

VAR1	=	“12”
VAR1	+=	“34”
VAR2	=	“89”
VAR2	=+	“67”
VAR3	=	“5”
VAR3	+=	“${VAR1}”
VAR3	=+	“${VAR2}”

This	example	results	in	variable	VAR1	containing	12	34,	variable	VAR2	containing
67	89,	and	variable	VAR3	containing	12	34	5	67	89.

Appending	(.=)	and	Prepending	(=.)	without	Space

The	.=	and	=.	operators	append	and	prepend	variables	respectively	without	placing	an
additional	space	between	the	values:

VAR1	=	“12”
VAR1	.=	“34”
VAR2	=	“89”
VAR2	=.	“67”
VAR3	=	“5”
VAR3	.=	“${VAR1}”
VAR3	=.	“${VAR2}”

This	example	results	in	variable	VAR1	containing	1234,	variable	VAR2	containing
6789,	and	variable	VAR3	containing	123456789.

Appending	and	Prepending	Using	the	_append	and	_prepend	Operators

Variable	values	can	also	be	appended	and	prepended	using	the	special	_append	and
_prepend	operators	that	are	added	to	the	variable	names:

VAR1	=	“12”
VAR1_append	=	“34”
VAR2	=	“89”
VAR2_prepend	=	“67”
VAR3	=	“5”
VAR3_append	=	“${VAR1}”
VAR3_prepend	=	“${VAR2}”

This	example	results	in	variable	VAR1	containing	1234,	variable	VAR2	containing
6789,	and	variable	VAR3	containing	123456789.

The	_append	and	_prepend	operators	do	not	insert	any	spaces.	If	spaces	are
required,	you	have	to	include	them	with	the	string	literal.

Removing	(_remove)

Single	values	in	variables	containing	space-delimited	value	lists	can	be	removed	using	the
_remove	operator:
Click	here	to	view	code	image

VAR1	=	“123	456	789	123456789	789	456	123	123	456”
VAR1_remove	=	“123”
VAR1_remove	=	“456”

This	example	results	in	the	variable	VAR1	containing	the	string	789	123456789
789.

Conditional	Variable	Assignment

The	variable	OVERRIDES	contains	a	list	of	values	separated	by	colons.	Each	one	of	the
values	represents	a	condition	that	needs	to	be	fulfilled:
Click	here	to	view	code	image

OVERRIDES	=	“conda:condb:condc”

BitBake	processes	the	conditions	from	right	to	left,	meaning	that	the	ones	to	the	right
take	precedence	over	the	ones	to	the	left.

Conditional	Variable	Setting

A	variable	is	set	conditionally	by	appending	the	condition	to	the	variable	name	with	an
underscore	(_):

OVERRIDES	=	“sun:rain:snow”
PROTECTION	=	“unknown”
PROTECTION_sun	=	“lotion”

In	this	example,	the	variable	PROTECTION	contains	lotion	because	the	condition
sun	is	contained	in	the	OVERRIDES	list.	Consider	the	following	example	where	both
conditions	are	contained	in	the	OVERRIDES	list:

OVERRIDES	=	“sun:rain:snow”
PROTECTION_rain	=	“umbrella”
PROTECTION_snow	=	“sweater”

In	this	example,	the	variable	PROTECTION	contains	sweater	because	the	condition
snow	has	higher	priority	than	the	condition	rain.

In	the	following	example,	the	variable	PROTECTION	contains	umbrella	because	the
condition	hail	is	not	contained	in	the	OVERRIDES	list:

OVERRIDES	=	“sun:rain:snow”
PROTECTION_rain	=	“umbrella”
PROTECTION_hail	=	“duck”

Like	any	other	metadata,	the	variable	OVERRIDES	can	also	reference	the	contents	of
other	variables:
Click	here	to	view	code	image

OVERRIDES	=	“sun:rain:snow:${OTHER}”
OTHER	=	“hail”

Conditional	variable	setting	allows	the	assignment	of	a	default	value	overriding	it	with	a
specific	value	if	the	particular	condition	is	met.	This	method	is	frequently	used	by	the
build	system	when,	for	instance,	specific	parameters	need	to	be	passed	to	the	compiler	for
compiler	machine–dependent	code.

Conditional	Appending	and	Prepending

Conditions	can	also	be	used	for	appending	and	prepending	variables:
Click	here	to	view	code	image

OVERRIDES	=	“sun:rain:snow”
PROTECTION	=	“sweater”
PROTECTION_append_rain	=	“umbrella”

This	example	results	in	PROTECTION	being	set	to	sweater	umbrella.

Appends	and	prepends	with	higher	priority	(more	to	the	right	of	the	OVERRIDES	list)
take	precedence	as	is	the	case	with	conditional	variable	assignment.

4.4.3	Inclusion
Metadata	files	can	include	other	metadata	files	to	allow	for	shared	settings.	A	common	use
case	is	recipes	that	build	the	different	versions	of	the	same	software	package.	The	include
file	provides	the	shared	settings,	such	as	build	instructions,	installation	directories,	and
more,	which	are	complemented	by	the	actual	recipe	with	settings	specific	for	the	version
to	be	built,	such	as	the	download	location	and	the	name	of	the	source	file.

BitBake	offers	two	inclusion	directives	for	optional	and	required	inclusion:
Click	here	to	view	code	image

include	optional.inc			#	optional	inclusion
required	mandatory.inc	#	required	inclusion

When	using	option	inclusion	with	the	include	directive,	BitBake	attempts	to	locate
the	include	file	but	silently	continue	operation	even	if	it	cannot	find	the	file.	Conversely,
required	inclusion	with	the	required	directive	causes	BitBake	to	exit	with	an	error
message.

For	the	majority	of	use	cases,	including	a	file	with	the	required	directive	is	preferred
because	it	warns	you	if	BitBake	cannot	locate	the	include	file,	protecting	against	mistakes
such	as	typos	in	pathnames	and	filenames.	However,	it	is	sometimes	desirable	to	provide	a

customization	method	that	does	not	require	changing	a	metadata	file	directly.	For	such
cases,	placing	an	include	directive	into	the	metadata	file	provides	a	mechanism	for
optional	customization.	If	customization	is	desired,	the	include	file	can	be	provided,	but	if
it	is	not	necessary	and	the	include	file	does	not	exist,	BitBake	simply	ignores	the
inclusion.
The	include	and	required	directives	can	be	used	with	relative	and	absolute	paths:

Click	here	to	view	code	image
include	file1.inc
include	meta-test/recipes-core/images/file2.inc
required	/home/build/yocto/file3.inc

When	relative	paths	are	used,	BitBake	tries	to	locate	the	file	using	the	list	of	file	paths
specified	by	the	BBPATH	variable.	BitBake	uses	the	first	file	it	finds	that	has	the	correct
path	segment	and	filename.

After	BitBake	locates	the	include	file,	it	parses	its	contents	and	inserts	the	contents	into
the	including	file	at	the	very	position	it	encountered	the	inclusion	directive.	Hence,	include
files	can	override	settings	previously	made	by	the	including	file,	and	vice	versa,	making	it
important	that	the	inclusion	directives	are	placed	at	the	proper	position	in	the	including
file.

Of	course,	an	include	file	must	adhere	to	the	BitBake	metadata	syntax	of	the	including
file.	Recipes	and	classes	can	include	files	that	contain	configuration	settings	as	well	as
executable	metadata.	Configuration	files,	however,	can	only	include	files	that	contain
configuration	settings	but	no	executable	metadata,	since	the	latter	is	not	supported	in
configuration	files.

Included	files	can	themselves	include	other	files.	That	practice	bears	the	risk	of	circular
inclusion,	particularly	for	files	included	with	relative	paths	because	of	the	search	order	of
BBPATH.	BitBake,	however,	detects	circular	inclusion	and	terminates	with	an	error
message.

4.4.4	Inheritance
Through	classes,	BitBake	provides	a	simple	inheritance	mechanism.	Classes	can	be
inherited	by	recipes,	append	files,	and	other	classes	using	the	inherit	directive:

inherit	myclass

Classes	are	metadata	files	with	the	filename	extension	.bbclass	that	are	placed
inside	the	classes	subdirectory	of	metadata	layers.	The	inherit	directive	only	uses
the	class	name,	which	is	the	base	name	of	class	filename	without	the	extension.	It	can	be
used	only	in	recipes,	append	files,	and	other	class	files.

At	first	glance,	inheritance	seems	to	be	very	similar	and	eventually	redundant	to
inclusion.	The	difference,	however,	lays	in	how	BitBake	processes	and	parses	classes:

	BitBake	identifies	classes	by	their	class	name	and	not	by	their	filename	and	path,
which	means	class	names	must	be	unique	across	all	metadata	layers	included	by	a
build	environment.

	BitBake	parses	classes	once	after	it	has	completed	parsing	the	configuration	files
and	before	it	parses	the	recipes.	Include	files	are	parsed	when	BitBake	encounters	an
inclusion	directive.	If	the	same	include	file	is	included	by	multiple	other	files,
BitBake	parses	the	same	file	multiple	times	within	the	context	of	the	including	file.
That	makes	classes	a	more	efficient	mechanism	for	build	instructions	that	are	shared
by	many	different	recipes.	However,	using	include	files	for	recipes	building	different
versions	of	the	same	software	package	is	a	good	choice.	since	typically	only	one
version	at	a	time	of	a	particular	software	package	is	built.

	BitBake’s	DataSmart	copy-on-write	(COW)	data	store	maintains	only	one	copy	of
the	class,	even	if	the	class	file	is	used	by	hundreds	of	recipes,	whereas	using	include
files	may	lead	to	duplication	of	data.

The	use	of	common	classes	simplifies	many	recipes.	For	example,	the	autotools
class	for	building	software	packages	utilizing	the	GNU	Autotools	configuration
mechanisms	can	reduce	a	recipe	to	a	few	lines	of	code	(see	Listing	4-5).

Listing	4-5	Using	the	autotools	Class
Click	here	to	view	code	image

SUMMARY	=	“GNU	nano	-	an	enhanced	clone	of	the	Pico	text	editor”

LICENSE	=	“GPLv3”
LIC_FILES_CHKSUM	=	“file://COPYING;md5=f27defe1e96c2e1ecd4e0c9be8967949”

DEPENDS	=	“ncurses”
PR	=	“r0”

PV_MAJOR	=	“${@bb.data.getVar(‘PV’,d,1).split(‘.’)[0]}\
.${@bb.data.getVar(‘PV’,d,1).split(‘.’)[1]}”

SRC_URI	=	“http://www.nano-editor.org/dist/v${PV_MAJOR}/nano-${PV}.tar.gz\
											file://ncursesw.patch”

SRC_URI[md5sum]	=	“af09f8828744b0ea0808d6c19a2b4bfd”

inherit	autotools	gettext
RDEPENDS_${PN}	=	“ncurses”

The	preceding	recipe	builds	the	GNU	nano	editor,	which	is	an	autotooled	software
package.	The	recipe	itself	only	specifies	SRC_URI	and	package	name,	while	all	the
complexities	of	building	autotooled	software	packages	are	hidden	within	the	autotools
class.

4.4.5	Executable	Metadata
Recipes,	append	files,	and	classes	can	include	definitions	of	executable	metadata.
Executable	metadata	are	shell	or	Python	functions	that	BitBake	can	execute.

BitBake	treats	executable	metadata	exactly	the	same	as	variables:	the	function	name	is
stored	in	the	data	dictionary	together	with	the	function	code	that	represents	the	assigned
value.	Consequently,	functions	can	be	appended	and	prepended	like	regular	variables	and
may	also	have	metadata	attributes.

The	scope	of	metadata	functions	defined	in	recipes	and	append	files	is	local	to	the
particular	file,	whereas	functions	defined	in	classes	are	global.

Shell	Functions

Shell	functions	are	defined	in	a	metadata	file	exactly	as	you	would	define	them	in	a
regular	shell	script	(see	Listing	4-6).

Listing	4-6	Executable	Metadata	Shell	Function

helloworld	()	{
				echo	“Hello,	World!”
}

The	code	inside	the	function’s	body	follows	regular	shell	syntax.	In	fact,	BitBake	calls
the	shell	interpreter	/bin/sh	when	executing	shell	functions.	Ideally,	all	shell	functions
should	be	written	agnostic	to	the	particular	shell	interpreter	the	system	defaults	to.	On	all
Linux	distributions	officially	supported	by	the	Yocto	Project,	the	default	shell	interpreter	is
the	Bourne	Again	Shell	(bash).	To	make	your	own	code	portable,	it	is	advisable	do	avoid
shell-specific	extensions	and	stay	with	the	common	denominator	for	bash	derivatives,
such	as	.sh,	.bash,	.ksh,	and	.zsh.

Python	Functions

Executable	metadata	can	also	be	defined	as	Python	functions	(see	Listing	4-7).

Listing	4-7	Executable	Metadata	Python	Function
Click	here	to	view	code	image

python	printdate	()	{
				import	time
				print	time	strftime(‘%Y%m%d’,	time.gettime())
}

They	keyword	python	tells	BitBake	that	the	code	following	it	is	to	be	interpreted	as
Python	code.

Using	Python	for	executable	metadata	allows	you	to	import	any	Python	module	and
take	advantage	of	the	many	functions	available.	Inside	the	function	body,	you	must	pay
attention	to	Python’s	indentation	scheme	for	code	blocks.	It	is	advisable	to	use	spaces
instead	of	tabs	for	indentation.

Global	Python	Functions

Functions	can	be	defined	globally	using	the	def	keyword	regardless	of	the	file	they	are
defined	in,	as	shown	in	Listing	4-8.

Listing	4-8	Global	Python	Function
Click	here	to	view	code	image

def	machine_paths(d):
				”““List	any	existing	machine	specific	filespath	directories”””

				machine	=	d.getVar(“MACHINE”,	True)
				filespathpkg	=	d.getVar(“FILESPATHPKG”,	True).split(“:”)
				for	basepath	in	d.getVar(“FILESPATHBASE”,	True).split(“:”):
								for	pkgpath	in	filespathpkg:
												machinepath	=	os.path.join(basepath,	pkgpath,	machine)
												if	os.path.isdir(machinepath):
																yield	machinepath

The	syntax	is	exactly	the	same	as	for	defining	any	standard	Python	function.

Since	the	function	is	global,	it	can	be	called	from	any	other	Python	metadata	function.

Anonymous	Python	Functions

Recipes,	append	files,	and	classes	may	define	anonymous	Python	functions	using	the
__anonymous	keyword	as	the	function’s	name	or	by	omitting	the	function	name
altogether	(see	Listing	4-9).

Listing	4-9	Anonymous	Python	Function
Click	here	to	view	code	image

python	__anonymous	()	{
				#	Anonymous	function	using	the	__anonymous	keyword
				…
}
python	()	{
				#	Anonymous	function	omitting	the	function	name
				…
}

BitBake	executes	anonymous	functions	at	the	end	of	the	parsing	process	of	a	particular
unit.	For	example,	an	anonymous	function	defined	inside	a	recipe	is	executed	after	the
recipe	has	been	parsed.

Tasks

The	previous	sections	described	how	to	define	shell	and	Python	functions	as	executable
metadata.	The	question	is,	how	can	BitBake	execute	functions	from	metadata	files?	We
have	already	seen	how	BitBake	executes	anonymous	functions	after	completing	parsing	of
a	recipe	or	class.

BitBake	recognizes	special	functions	called	tasks.	Tasks	are	defined	in	recipes	and
classes	and	can	be

	Directly	invoked	from	the	BitBake	command	line	for	a	particular	recipe.

	Automatically	executed	by	BitBake	as	part	of	the	build	process.

Listing	4-10	provides	examples.

Listing	4-10	Defining	Tasks
Click	here	to	view	code	image

python	do_clean	()	{
				#	task	to	clean	remove	build	output

				…
}
addtask	clean
do_build	()	{
				#	task	to	build	the	software	package
				…
}
addtask	build
do_download	()	{
				#	task	to	download	sources
				…
}
addtask	download	before	do_build
do_unpack	()	{
				#	task	to	unpack	sources
				…
}
addtask	unpack	before	do_build	after	do_download
do_compile	()	{
				#	task	to	compile	software	package
				…
}
addtask	compile	before	do_build	after	do_unpack
do_install	()	{
				#	task	to	install	binaries,	libraries,	and	documentation
				…
}
addtask	install	after	do_build

To	define	a	shell	or	Python	function	as	a	task,	its	name	must	be	prefixed	with	do_.
Other	than	that,	a	task	is	exactly	like	any	other	executable	metadata.	The	directive
addtask	is	used	to	add	a	task	to	the	BitBake	task	list	and	to	define	a	task	execution
chain.

The	code	in	Listing	4-10	defines	the	task	clean	and	adds	it	to	the	task	list	with
addtask.	This	technique	allows	for	the	task	to	be	invoked	from	the	BitBake	command
line.	Let’s	assume	the	code	of	Listing	4-10	is	placed	inside	a	recipe	called
myrecipe.bb.	Using

bitbake	myrecipe	-c	clean

invokes	the	clean	task	of	the	recipe.	The	recipe	adds	the	tasks	build,	download,
unpack,	compile,	and	install,	using	before	and	after	together	with	the
addtask	directive,	creating	an	execution	chain.	Running

bitbake	myrecipe	-c	build

runs	first	the	download	task,	then	the	unpack	task,	then	the	compile	task,	then	the
build	task,	and	finally	the	install	task.

When	BitBake	is	invoked	with	the	recipe	as	parameter	but	without	specifying	a	task	to
be	run,	then	it	runs	the	default	task.	The	default	task	is	defined	by	the	variable
BB_DEFAULT_TASK.	This	variable	is	set	by	the	base	class	to

BB_DEFAULT_TASK	?=	“build”

making	build	the	default	task	similar	to	the	all	target	for	makefiles.	Recipes	and
classes	can	of	course	override	BB_DEFAULT_TASK	setting	it	to	a	different	task.

Accessing	BitBake	Variables	from	Functions

BitBake	variables	can	be	accessed	from	both	shell	and	Python	functions.

Accessing	Variables	from	Shell	Functions

From	within	shell	functions,	BitBake	variables	can	be	directly	accessed	using	the	variable
expansion	notation	(see	Listing	4-11).

Listing	4-11	Accessing	Variables	from	Shell	Functions
Click	here	to	view	code	image

BPN	=	“myapp-v1”
MAKE	=	“make”
EXTRA_OEMAKE	=	“CFLAGS=’-W	-Wall	-Werror	-Wundef	-Wshadow	${CFLAGS}’”

do_compile	()	{
								bbnote	${MAKE}	${EXTRA_OEMAKE}	“$@”
								${MAKE}	${EXTRA_OEMAKE}	“$@”	||	die	“oe_runmake	failed”
}

do_install	()	{
								BPN	=	“myapp”
								docdir	=	“docs”
								install	-d	${D}${docdir}/${BPN}
}

Variables	can	be	read	as	well	as	written	from	shell	functions.	However,	writing	a
variable	only	changes	its	value	locally	within	the	scope	of	the	shell	script.	In	the	Listing	4-
11,	BPN	is	a	BitBake	variable	that	is	overridden	in	the	do_install	function.	The
overridden	value	is	valid	only	for	the	do_install	function.	That	convention	is	easily
understood	considering	that	BitBake	creates	a	shell	script	for	the	do_install	function
with	all	variable	settings	and	expansions	and	then	executes	that	script.

Accessing	Variables	from	Python	Functions

Accessing	BitBake	variables	from	Python	functions	is	slightly	more	complicated	than
from	shell	functions,	since	BitBake	variables	cannot	be	read	or	written	directly	but	must
be	retrieved	from	and	manipulated	through	the	BitBake	data	dictionary	using	special
functions	(see	Listing	4-12).

Listing	4-12	Accessing	Variables	from	Python	Functions
Click	here	to	view	code	image

HELLO	=	“Hello,	World!”
DATE	=	””

python	printhello	()	{
								hello	=	d.getVar(‘HELLO’,	True)
								print	hello
}

python	setdate	()	{
								import	time

								date	=	time.strftime(‘%A	%B	%d,	%Y’,	time.gettime())
								d.setVar(‘DATE’,	date)
}

The	functions	getVar	and	setVar	provide	access	to	variables	through	BitBake’s
data	dictionary,	which	is	referenced	by	the	global	Python	variable	d.	BitBake’s	data
dictionary	is	implemented	as	a	Python	class.	The	functions	getVar	and	setVar	are
methods	of	that	class.	The	first	parameter	for	both	functions	is	the	name	of	the	variable	to
be	accessed.	The	second	parameter	for	getVar	is	a	Boolean	value	telling	the	function
whether	to	expand	the	variable’s	expression.	The	second	parameter	for	setVar	is	the
new	value	of	the	variable.

Creating	a	Local	Data	Dictionary	Copy

Using	setVar	with	the	global	data	dictionary	modifies	that	variable	globally	and
changes	its	value	for	all	following	operations.	If	that	is	not	desired,	a	copy	of	the	data
dictionary	can	be	made:

localdata	=	d.createCopy()

The	createCopy	method	creates	a	new	reference	for	the	data	dictionary.	Since
BitBake’s	data	dictionary	uses	COW,	an	actual	copy	of	a	variable	is	not	created	until	it	is
accessed	by	a	write	operation.

Accessing	Variables	Containing	Value	Lists

Many	BitBake	variables	contain	value	lists	whose	values	are	separated	by	a	delimiter.
Commonly,	these	list	variables	are	converted	into	Python	arrays	after	they	are	retrieved
from	the	data	dictionary	(see	Listing	4-13).

Listing	4-13	Accessing	Variable	Lists
Click	here	to	view	code	image

python	do_download	()	{
								uris	=	(d.getVar(‘SRC_URI’,	True)	or	””).split(”	“)
								for	uri	in	uris:
											#	process	the	source	URIs
										…
}

The	sample	code	of	Listing	4-13	retrieves	the	variable	SRC_URI	from	the	data
dictionary,	which	is	a	string	of	space-delimited	URIs.	It	then	splits	the	string	into	an	array
of	strings	using	the	split	operator.	The	term	or	""	returns	an	empty	string	if	the
variable	SRC_URI	is	not	found	in	the	data	dictionary	to	make	the	code	failsafe.

You	find	variants	of	this	sample	code	frequently	used	in	recipes	and	classes	to	retrieve
and	process	variable	lists.

Appending	and	Prepending	Functions

Like	variables,	functions	can	be	appended	and	prepended	using	the	_append	and
_prepend	operators	(see	Listing	4-14).

Listing	4-14	Appending	and	Prepending	Functions
Click	here	to	view	code	image

python	printdate	()	{
				import	time
				print	time.strftime(‘%A	%B	%d,	%Y’,	time.gettime())
}

python	printdate_prepend	()	{
				print	(‘Today	is:	‘)
}

python	printdate_append	()	{
				print(‘MOTD:	A	good	day	for	the	Yocto	Project.’)
}

The	code	in	Listing	4-14	would	result	in	a	combined	printdate	function	(see	Listing
4-15).

Listing	4-15	Combined	Function
Click	here	to	view	code	image

python	printdate	()	{
				print	(‘Today	is:	‘)
				import	time
				print	time	strftime(‘%A	%B	%d,	%Y’,	time.gettime())
				print(‘MOTD:	A	good	day	for	the	Yocto	Project.’)
}

Of	course,	you	would	normally	not	append	or	prepend	functions	in	the	same	file.
Typical	use	cases	for	appending	or	prepending	are	recipes	that	inherit	a	class	and	add	to	a
function	defined	by	that	class	or	an	append	file	that	extends	a	function	defined	by	the
recipe	it	appends.

Appending	and	prepending	works	for	both	shell	and	Python	functions.

4.4.6	Metadata	Attributes
All	BitBake	metadata—that	is,	variables	as	well	as	functions—can	have	attributes,	also
referred	to	as	flags.	Attributes	provide	a	way	of	tagging	extra	information	to	the	metadata.

BitBake	metadata	syntax	provides	for	setting	attributes	by	adding	the	name	of	the
attribute	in	brackets	to	the	variable	or	function	name:

VAR[flag]	=	“flagvalue”

Attributes	can	be	appended	and	prepended	using	the	+=,	=+,	.=,	and	=.	operators.
Expressions	to	assign	value	to	attributes	may	use	variable	expansion.	However,	it	is	not
possible	to	read	an	attribute’s	value	via	BitBake	metadata	syntax.

The	value	of	an	attribute	can	be	read	and	written	from	Python	functions	using	the
BitBake	data	dictionary	methods	getVarFlag	and	setVarFlag	(see	Listing	4-16).

Listing	4-16	Metadata	Attributes	(Flags)

Click	here	to	view	code	image

func[run]	=	“1”

python	func	()	{
				run	=	d.getVarFlag(‘func’,	‘run’)
				if	run	==	1:
								#	do	some	work
								…
								d.setVarFlag(‘func’,	‘run’,	0)
				else:
								#	do	not	run	at	this	time
}

The	first	argument	to	the	method	getVarFlag	is	the	name	of	the	variable,	and	the
second	is	the	name	of	the	flag.	The	method	setVarFlag	uses	three	parameters:	variable
name,	flag	name,	and	flag	value.

4.4.7	Metadata	Name	(Key)	Expansion
Expansion	can	also	be	applied	to	metadata	names.	The	actual	expansion	happens	at	the
very	end	of	the	data	parsing	process	immediately	before	conditional	assignment,
appending,	and	prepending.

A${B}	=	“foo”
B	=	“2”
A2	=	“bar”

The	variable	A2	contains	foo,	since	the	entire	evaluation	of	the	expression	A${B}	=
"foo"	is	not	evaluated	until	the	end	of	the	parsing	process	after	the	expression	A2	=
"bar".

4.5	Source	Download
In	the	beginning	there	is	the	source,	and	the	source	can	be	anywhere	and	presented	in	any
format.	Consequently,	a	build	system	capable	of	building	a	Linux	OS	stack	consisting	of
many	hundreds	of	software	packages	must	be	able	to	retrieve	them	from	a	vast	variety	of
sources,	often	referred	to	as	upstream	repositories.	Upstream	repositories	can	be	local	or
remote	file	servers	or	software	configuration	or	revision	control	systems	such	as	Git,
Subversion,	and	many	others.	Source	code	may	be	packaged	in	the	form	of	archives,	such
as	tar,	that	are	commonly	compressed	using	various	formats.	When	using	source	control
management	(SCM),	source	code	is	typically	checked	out	file	by	file	in	the	form	of	source
trees.

Besides	providing	the	necessary	functionality	for	retrieving	source	code	packages	from
many	different	sources,	it	is	imperative	that	the	build	system	offers	a	consistent	and
transparent	way	of	accessing	repositories	from	the	build	recipes	without	requiring	the	end
user	to	know	about	the	specifics	of	the	repository	and	protocol	implementations.

BitBake	provides	the	necessary	framework	through	its	fetcher	architecture.	In	BitBake
terminology,	fetching	is	the	process	of	obtaining	source	files.	The	Python	Fetch	class
from	the	BitBake	fetch2	library	(bitbake/lib/bb/fetch2)	presents	a	uniform
interface	for	source	code	fetching	through	source	URIs	following	the	format

Click	here	to	view	code	image
<scheme>://[<user>[:<pwd>]@]<host>[:<port>]/<path>[;<key>=<value>;..]

For	the	most	part,	the	BitBake	fetcher	URIs	are	compliant	with	the	IETF	standard	of
RFC3986	except	for	the	handling	of	paths.	RFC3986	provides	for	absolute	and	relative
paths.	The	standard	defines	valid	absolute	path	references	as
Click	here	to	view	code	image

file://hostname/absolute/path/to/file
file:///absolute/path/to/file

BitBake	supports	the	second	form	for	absolute	paths	but	does	not	recognize	the	first
form.	Valid	relative	paths	can	be	specified	according	to	the	standard	as

file:relative/path/to/file

BitBake	does	support	relative	paths	using	that	format	and	additionally	recognizes	the
format

file://relative/path/to/file

which	is	not	compliant	with	RFC3986.	This	format	is	supported	for	backwards
compatibility	with	earlier	implementations	of	the	fetcher	library	to	avoid	rewriting	older
recipes.

BitBake	URIs	also	have	no	notion	of	queries	and	fragments	provided	by	the	IETF
standard.

The	Fetch	base	class	defers	actual	processing	of	a	URI	and	accessing	the	resource	to	a
specific	implementation	identified	by	the	scheme	of	the	URI.	The	optional	parameter	list
is	dependent	on	the	particular	implementation	of	the	fetcher.	Certain	schemes	may	access
resources	that	require	authentication	with	a	user	name	and	a	password.	Those	can	be
included	with	the	URI	using	the	standard	notation.

An	important	detail	of	the	Fetch	base	class	is	that	the	source	URI	parameter	passed	to
it	during	instantiation	may	contain	not	just	a	single	URI	but	a	list	of	URIs	in	the	preceding
format	that	may	even	use	different	schemes.

4.5.1	Using	the	Fetch	Class
Although	BitBake	provides	the	fetcher	architecture	and	the	fetcher	implementations,	it
does	not	provide	a	default	task	for	fetching	source	files.	To	use	the	fetchers,	you	have	to
implement	a	task	in	your	recipes	or,	preferably,	inside	a	BitBake	class.	Listing	4-17	shows
the	implementation	of	a	sample	do_fetch	task.

Listing	4-17	Sample	do_fetch	Task
Click	here	to	view	code	image

1		python	do_fetch()	{
2
3				bb.note(“Downloading	sources	from	${SRC_URI}	…”)
4
5				src_uri	=	(d.getVar(‘SRC_URI’,	True)	or	””).split()
6				if	len(src_uri)	==	0:
7							bb.fatal(“Empty	URI”)

8
9				try:
10						fetcher	=	bb.fetch2.Fetch(src_uri,	d)
11						fetcher.download()
12			except	bb.fetch2.BBFetchException:
13						bb.fatal(“Could	not	fetch	source	tarball.”)
14
15			bb.note(“Download	successful.”)
16	}
17
18	addtask	fetch	before	do_build

Line	5	of	the	sample	task	first	obtains	the	SRC_URI	variable	from	the	BitBake	data
dictionary.	This	variable	is	assumed	to	contain	a	space-delimited	list	of	URIs	to	the	source
repositories.	The	list	is	converted	into	a	Python	list	variable	(or	array).	Line	10	then
creates	a	fetcher	object	from	the	Fetch	base	class.	Line	11	attempts	to	download	the
sources	from	the	repositories.	The	other	code	of	the	sample	task	provides	logging
information	for	debugging	and	handles	exceptions	raised	by	the	fetcher.

A	recipe	using	this	do_fetch	task	would	simply	have	to	specify	the	SRC_URI
variable.	All	the	actual	work	of	downloading	the	sources	is	handled	by	the	task	and	the
fetcher	implementation.	As	a	matter	of	fact,	the	base.bbclass	provided	by	the
OpenEmbedded	Core	(OE	Core)	metadata	layer	implements	a	do_fetch	task	very
similar	to	the	sample.

That	leaves	one	question	that	the	code	of	the	sample	task	does	not	directly	answer:
Where	do	the	fetchers	download	the	sources	to?	If	you	analyze	the	code	of	the	BitBake
fetcher	library,	you	notice	that	the	fetchers	expect	the	variable	DL_DIR	to	contain	the	path
of	the	directory	to	which	they	download	the	source	file.

4.5.2	Fetcher	Implementations
BitBake	provides	implementations	of	fetchers	for	virtually	all	common	types	of	upstream
repositories	used	for	open	source	projects.	The	following	sections	discuss	the	most
commonly	used	fetchers	and	their	parameters	individually.

Local	File	Fetcher

The	local	file	fetcher	retrieves	files	from	filesystems	that	can	be	accessed	using	the
file://	URI	scheme.	That	does	not	necessarily	mean	that	these	files	reside	on	the	local
host.	They	could	very	well	be	located	on	filesystems	that	are	mounted	from	remote	file
servers.

Paths	contained	in	the	URI	can	be	absolute	or	relative:
Click	here	to	view	code	image

SRC_URI	=	“file:///absolute/path/to/file”
SRC_URI	=	“file://relative/path/to/file”

In	the	case	of	a	relative	path,	the	fetcher	uses	the	variables	FILESPATH	and
FILESDIR	to	locate	the	file:

	FILESPATH	contains	a	list	of	paths	separated	by	colons	(:).	The	fetcher	searches

for	the	file	starting	with	the	first	path	in	the	list.	Each	directory	is	searched	until
there	is	a	first	match.	If	there	are	multiple	directories	containing	a	file	with	that
name,	the	fetcher	downloads	the	first	file	it	finds.
	If	none	of	the	directories	are	contained	in	FILESPATH,	the	fetcher	checks	whether
the	variable	FILESDIR	is	set.	If	it	is	set	and	contains	a	single	valid	path,	the	fetcher
uses	that	path	to	locate	the	file.

The	fetcher	raises	an	error	if	the	file	does	not	exist	in	the	case	of	an	absolute	path	or	if
neither	FILESPATH	nor	FILESDIR	includes	a	path	that	contains	the	file	in	the	case	of	a
relative	path.

The	local	file	fetcher	does	not	actually	“download”—that	is,	copy	the	file	from	the
location	specified	by	the	URI	to	DL_DIR.	Instead,	its	download	method	only	verifies
that	the	file	exists.	Local	files	are	accessed	directly	from	their	original	location.

Commonly,	SRC_URI	specifies	a	single	file.	However,	the	fetcher	can	also	access
multiple	files	either	by	using	wildcards	anywhere	in	the	path	name	or	SRC_URI	or	by
pointing	SRC_URI	to	a	directory:
Click	here	to	view	code	image

SRC_URI	=	“file://*/*.patch”
SRC_URI	=	“file://path/to/dir”

Both	forms	work	equally	with	absolute	and	relative	paths.

The	implementation	of	the	local	file	fetcher	can	be	found	in	the	file
bitbake/lib/bb/fetch2/local.py.

HTTP/HTTPS/FTP	Fetcher

Frequently,	sources	are	downloaded	from	upstream	file	servers	using	HTTP,	HTTPS,	or
FTP	protocol.	BitBake	provides	a	fetcher	implementation	for	these	protocols	using	the
GNU	Wget	utility	by	default.	However,	the	command,	including	any	command-line
options,	can	be	specified	by	setting	the	FETCHCMD_wget	variable.

Following	are	the	parameters	supported	by	this	fetcher:

	md5sum:	MD5	checksum	for	download	verification.	If	provided,	the	fetcher
computes	the	MD5	checksum	for	the	downloaded	file	and	compares	it	to	the	value
provided	with	this	parameter.	If	they	differ,	the	fetcher	raises	an	error.

	sha256sum:	SHA256	checksum	for	download	verification.	If	provided,	the	fetcher
computes	the	SHA256	checksum	for	the	downloaded	file	and	compares	it	to	the
value	provided	with	this	parameter.	If	they	differ,	the	fetcher	raises	an	error.

	downloadfilename:	If	provided,	the	fetcher	renames	the	downloaded	file	to	this
filename.

	name:	Symbolic	reference	for	the	URI.

Providing	a	checksum	for	download	verification	is	mandatory	for	the	fetcher.	Either	of
the	parameters	md5sum	or	sha256sum	must	be	provided.	If	both	are	provided,	they

must	match	both.

Following	are	examples	for	SRC_URI:
Click	here	to	view	code	image

SRC_URI	=	“http://host.site.org/downloads/srcpkg.tar.gz;md5sum=12345”
SRC_URI	=	“https://host.site.org/downloads/srcpkg.tar.gz;sha256sum=6789”
SRC_URI	=	“ftp://user:pwd@host.site.org/repo/srcpkg.tar.gz;md5sum=12345”
SRC_URI	=	\
“ftp://host.site.org/srcpkg.tar.tgz;md5sum=12345;downloadfilename=file.tgz”

The	large	MD5	and	SHA256	checksums	can	make	the	SRC_URIs	hard	to	read	and	to
maintain.	Therefore,	they	can	be	specified	outside	the	SRC_URI	using	this	syntax:
Click	here	to	view	code	image

SRC_URI	=	“http://host.site.org/downloads/srcpkg.tar.gz”
SRC_URI[md5sum]	=	“12345”
SRC_URI[sha256sum]	=	“6789”

When	specifying	more	than	one	URI	in	SRC_URI,	symbolic	references	need	to	be	used
in	order	to	provide	the	checksums	for	all	downloads	outside	the	SRC_URI	variable:
Click	here	to	view	code	image

SRC_URI	=	“http://host.site.org/downloads/srcpkg1.tar.gz;name=pkg1
											ftp://host.anothersite.org/downloads/srcpkg2.tgz;name=pkg2”
SRC_URI[pkg1.md5sum]	=	“12345”
SRC_URI[pkg2.sha256sum]	=	“6789”

The	implementation	of	the	HTTP/HTTPS/FTP	fetcher	can	be	found	in	the	file
bitbake/lib/bb/fetch2/wget.py.

SFTP	Fetcher

The	SFTP	fetcher	allows	downloading	files	from	secure	FTP	sites	with	or	without
authentication:
Click	here	to	view	code	image

SRC_URI	=	“sftp://host.site.org/downloads/srcpkg.tgz;md5sum=12345”
SRC_URI	=	“sftp://user@host.site.org/downloads/srcpkg.tgz;md5sum=12345”

Using	a	password	in	the	URI	for	authentication	is	not	supported.	You	have	to	use	SSH
keys	for	authentication.

The	fetcher	expects	the	sftp	command	to	be	available	on	your	development	host.
There	is	no	BitBake	variable	for	this	fetcher	to	override	the	command	and	command-line
options.

The	SFTP	fetcher	supports	the	same	parameters	as	the	HTTP/HTTPS/FTP	fetcher:
md5sum,	sha256sum,	downloadfilename,	and	name.

The	implementation	of	the	SFTP	fetcher	can	be	found	in	the	file
bitbake/lib/bb/fetch2/sftp.py.

Git	Fetcher

Git	has	become	the	SCM	of	choice	for	many	open	source	projects,	and	of	course	the	Linux
kernel	community	is	using	it	to	manage	the	kernel	development.	The	fetcher	clones
repositories	and	is	capable	of	checking	out	multiple	branches	at	the	same	time.

The	parameters	supported	by	this	fetcher	are	as	follows:

	protocol:	Transfer	protocol	to	use	for	accessing	the	repository.	The	supported
protocols	are	git,	file,	ssh,	http,	https,	and	rsync.	If	the	parameter	is
omitted,	the	fetcher	defaults	to	git.

	branch:	Branch	to	check	out.	If	the	parameter	is	omitted,	the	fetcher	defaults	to
master.	Multiple	branches	can	be	specified	by	separating	them	with	commas.

	name:	Symbolic	names	for	the	branches.	If	multiple	branches	are	checked	out,	then
the	number	of	names	provided	by	this	parameter	must	match	the	number	of
branches.

	tag:	Git	tag	to	retrieve	from	the	branch.	If	the	parameter	is	not	provided,	the	fetcher
defaults	to	HEAD.

	rebaseable:	Tells	the	fetcher	that	the	upstream	repository	may	rebase	in	the
future,	causing	the	tags	and	their	SHA1	hashes	to	change.	The	parameter	instructs
the	fetcher	to	preserve	the	local	cache	so	that	future	merges	can	be	carried	out.	Set
the	parameter	to	rebaseable=1	for	a	rebaseable	Git	repository.	The	default	is
rebaseable=0	if	the	parameter	is	not	provided.

	nocheckout:	Instructs	the	fetcher	to	not	check	out	source	code	from	the	branches
when	unpacking.	That	instruction	is	useful	for	recipes	that	use	their	own	code	for
checking	out	the	source	code.	The	default	value	if	the	parameter	is	not	provided	is
nocheckout=0.	Set	it	to	nocheckout=1	if	the	recipe	uses	its	own	code	for
source	handling.

	bareclone:	Tells	the	fetcher	to	create	a	bare	clone	of	the	repository	and	not	to
check	out	source	code	from	the	branches.	Use	this	option	for	recipes	that	provide
their	own	routines	to	check	out	source	code	from	branches	and	track	branch
requirements.	The	default	value	if	the	parameter	is	not	provided	is	bareclone=0.
Set	it	to	bareclone=1	if	the	recipe	uses	its	own	routines.

Following	are	examples	for	the	Git	fetcher’s	SRC_URI:
Click	here	to	view	code	image

SRC_URI	=	“git://git.site.org/git/repo.git;branch=develop”
SRC_URI	=	“git://git.site/org/git/repo.git;tag=0C12ABD”
SRC_URI	=	“git://git.site.org/git/repo.git;protocol=http”

A	common	mistake	is	to	set	the	scheme	at	the	beginning	of	the	URI	to	http	(or
another	protocol)	when	trying	to	access	a	Git	repository	using	a	different	protocol	rather
than	specifying	the	protocol	parameter.	That,	of	course,	does	not	work	because	the
scheme	tells	the	BitBake	fetcher	infrastructure	what	fetcher	to	use.	The	scheme	implies
the	protocol	but	can	be	overridden	with	the	protocol	parameter.

The	implementation	of	the	Git	fetcher	can	be	found	in	the	file
bitbake/lib/bb/fetch2/git.py.

Git	Submodules	Fetcher

The	Git	submodules	fetcher	is	an	extension	of	the	Git	fetcher	handling	repositories	whose
tree	embeds	foreign	Git	trees.	The	fetcher	detects	whether	a	Git	repository	contains
submodules	and	updates	them	after	cloning	the	main	repository.

The	scheme	of	the	fetcher	is	gitsm.	URI	format	and	parameters	are	the	same	as	for	the
Git	fetcher.
Click	here	to	view	code	image

SRC_URI	=	“gitsm://git.site.org/git/repo.git;branch=develop”

The	implementation	of	the	Git	submodules	fetcher	can	be	found	in	the	file
bitbake/lib/bb/fetch2/gitsm.py.

Subversion	(SVN)	Fetcher

For	checking	out	source	code	modules	from	Subversion	repositories,	BitBake	provides	the
SVN	fetcher.

The	parameters	supported	by	this	fetcher	are	as	follows:

	protocol:	Transfer	protocol	to	use	for	accessing	the	repository.	The	supported
protocols	are	svn,	svn+ssh,	http,	and	https.	If	the	parameter	is	omitted,	the
fetcher	defaults	to	svn.

	module:	The	repository	module	to	check	out.	This	parameter	is	required.

	rev:	The	revision	of	the	module	to	check	out.	If	the	parameter	is	omitted,	HEAD	is
used.

The	SVN	fetcher	can	be	used	without	or	with	authentication:
Click	here	to	view	code	image

SRC_URI	=	“svn://svn.site.org/trunk;module=library;rev=12345;protocol=http”
SRC_URI	=	“svn://user:passwd@svn.anothersite.org/svn;module=trunk”

The	implementation	of	the	Subversion	fetcher	can	be	found	in	the	file
bitbake/lib/bb/fetch2/svn.py.

Concurrent	Versions	System	(CVS)	Fetcher

Repositories	using	Concurrent	Versions	System	(CVS)	can	be	accessed	using	the	CVS
fetcher.	The	parameters	supported	by	this	fetcher	are	presented	in	Table	4-1.

Table	4-1	Parameters	Supported	by	the	CVS	Fetcher

Following	are	examples	for	URIs	supported	by	this	fetcher:
Click	here	to	view	code	image

SRC_URI	=	“cvs://user@cvs.site.org/cvs;module=src;tag=V0-23-1”
SRC_URI	=	“cvs://user:pwd@cvs.site.org/cvs;module=src;localdir=sitesrc”

The	implementation	of	the	CVS	fetcher	can	be	found	in	the	file
bitbake/lib/bb/fetch2/cvs.py.

Other	Fetchers

In	addition	to	the	fetchers	described	in	detail	in	the	previous	sections,	BitBake	supports
these	less	commonly	used	repositories	and	revision	control	systems:

	Bazaar:	Fetcher	for	the	GNU	Project	revision	control	system	Bazaar.	The	scheme	is
bzr://.	The	fetcher	implementation	can	be	found	in	the	file
bitbake/lib/bb/fetch2/bzr.py.

	Mercurial:	Fetcher	for	the	cross-platform,	distributed	revision	control	system
Mercurial.	The	scheme	is	hg://.	The	fetcher	implementation	can	be	found	in	the
file	bitbake/lib/bb/fetch2/hg.py.

	Open	Build	Service:	Fetcher	to	access	sources	managed	by	the	Open	Build	Service
(OBS)	used	by	the	SUSE	Linux	distribution.	The	scheme	is	osc://.	The	fetcher
implementation	can	be	found	in	the	file	bitbake/lib/bb/fetch2/osc.py.

	Perforce:	Fetcher	to	access	sources	managed	by	the	proprietary	commercial	revision
control	system	Perforce.	The	scheme	is	p4://.	The	fetcher	implementation	can	be
found	in	the	file	bitbake/lib/bb/fetch2/perforce.py.

	Repo:	Fetcher	to	access	Git	repositories	that	use	the	Android	repo	tool	for
repository	management.	The	scheme	is	repo://.	The	fetcher	implementation	can
be	found	in	the	file	bitbake/lib/bb/fetch2/repo.py.

	SVK:	Fetcher	to	access	sources	from	SVK	repositories.	The	scheme	is	svk://.
The	fetcher	implementation	can	be	found	in	the	file
bitbake/lib/bb/fetch2/svk.py.

URI	syntax	and	usage	of	these	fetchers	follow	the	same	rules	as	for	the	more
mainstream	fetchers.	The	fetchers	may	use	additional	or	different	parameters	to
accommodate	the	their	particular	functionality.

4.5.3	Mirrors
Recipes	set	the	SRC_URI	variable	to	the	upstream	location	of	the	source	code.	In	addition
to	SRCI_URI,	BitBake	supports	mirror	download	sites	from	which	it	can	alternatively
obtain	source	code	packages.

BitBake	uses	a	defined	sequence	to	access	locations	and	sites	for	files:

1.	BitBake	first	checks	the	local	download	directory	specified	by	DL_DIR	that	the
files	provided	in	SRC_URI	have	already	been	downloaded.	If	that	is	the	case,	it
skips	accessing	any	upstream	and	mirror	sites	and	uses	the	files	in	DL_DIR.	If	some
of	the	files	are	present	and	others	are	not,	BitBake	incrementally	downloads	the
files.	If	SRC_URI	is	an	SCM	repository,	it	verifies	the	correct	branches	and	tag	in
DL_DIR	and	eventually	updates	them	as	required.

2.	If	files	provided	in	SRC_URI	are	not	available	locally,	BitBake	attempts	to
download	them	from	mirror	sites	specified	by	the	PREMIRRORS	variable.

3.	If	the	premirror	sites	do	not	provide	the	package,	BitBake	uses	SRC_URI	to
download	the	files	directly	from	the	upstream	project	site.

4.	If	downloading	from	the	upstream	project	site	is	unsuccessful,	BitBake	uses	the
mirror	sites	provided	by	the	MIRRORS	variable.

5.	If	none	of	the	download	sites	provide	the	required	files,	BitBake	posts	an	error
message.

Using	mirrors	and	the	preceding	sequence	is	BitBake’s	default	behavior.	If	you	do	not
want	to	use	mirrors,	you	need	to	set	either	the	PREMIRRORS	or	MIRRORS	variables	or
both	to	an	empty	string.

The	PREMIRRORS	and	MIRRORS	variables	specify	lists	of	tuples	consisting	of	a
regular	expression	for	the	key	to	match	the	SRC_URI	and	URI	pointing	to	the	respective
mirror:
Click	here	to	view	code	image

MIRRORS	=	“\
ftp://.*/.*				http://downloads.mirrorsite.org/mirror/sources/	\n	\
http://.*/.*			http://downloads.mirrorsite.org/mirror/sources/	\n	\
https://.*/.*		http://downloads.mirrorsite.org/mirror/sources/	\n	\
git://.*/.*				http://downloads.mirrorsite.org/mirror/sources/	\n	\
svn://.*/.*				http://downloads.mirrorsite.org/mirror/sources/	\n”

Key	and	URI	of	a	tuple	are	separated	by	one	or	more	space	characters,	and	the	tuples
are	separated	from	each	other	with	newline	characters.	Typically,	mirrors	use	HTTP
protocol	for	file	download	but	other	file	download	protocols,	such	as	FTP,	HTTPS,	and
SFTP,	are	valid	too	as	long	as	BitBake	has	a	fetcher	for	it.

Operation	for	file	downloads	is	straightforward.	For	instance,	if	BitBake	encounters	an
SRC_URI	using	the	FTP	scheme,	it	looks	for	a	matching	key	in	the	MIRROR	variable	and
then	substitutes	the	scheme	and	path	of	SRC_URI	for	the	mirror’s	URI.	Using	the	above
mirror	list
Click	here	to	view	code	image

SRC_URI	=	“ftp://ftp.site.org/downloads/file.tgz”

effectively	turns	into
Click	here	to	view	code	image

SRC_URI	=	“http://downloads.mirrorsite.org/mirror/sources/file.tgz”

However,	how	do	mirrors	work	for	SCM	repositories	such	as	Git	if	the	URI	of	the
mirror	points	to	a	file	download	site?	In	that	case,	BitBake	expects	the	repository	to	be
packaged	into	a	tarball.	It	downloads	the	tarball	from	the	mirror	and	locally	extracts	the
repository	it	contains.

The	Yocto	Project	provides	a	source	mirror	on	high-availability	infrastructure	at
http://downloads.yoctoproject.org/mirror/sources.	This	mirror	is	enabled	by	default	by	the
Poky	reference	distribution	policy	for	all	Yocto	Project	build	environments.

Creating	Mirrors

Creating	your	own	mirror	site	has	advantages,	such	as	minimizing	network	access	for
teams	and	controlling	the	sources	from	which	your	product’s	Linux	distribution	is	built.
You	can	create	your	own	mirror	site	by	downloading	all	source	packages	from	the	Yocto
Project	mirror	and	placing	them	into	a	directory	of	an	intranet	server.	You	can	also	create	a
mirror	from	the	download	directory	of	a	Yocto	Project	build	environment	you	have	been
using	for	building	a	Linux	distribution	for	your	project.	Your	local	download	directory
already	contains	all	the	necessary	sources,	but	not	yet	in	a	format	that	is	suitable	for	a
mirror	site.	By	default,	and	to	save	build	time,	BitBake	does	not	create	source	tarballs	for
SCM	repositories.	You	can	instruct	BitBake	to	create	the	tarballs	in	your	local	download
directory	by	adding
Click	here	to	view	code	image

http://downloads.yoctoproject.org/mirror/sources

BB_GENERATE_MIRROR_TARBALLS	=	“1”

to	your	conf/local.conf	file.	After	your	build	has	finished	successfully,	simply	copy
all	the	files	in	your	download	directory	to	your	mirror	server.	You	have	to	copy	the	files.
You	cannot	use	symbolic	links	to	the	files	because	the	fetchers	do	not	follow	symbolic
links.

After	your	mirror	server	is	set	up,	you	can	use	its	URI	for	the	MIRRORS	and
PREMIRRORS	variables.

4.6	HelloWorld—BitBake	Style
The	preceding	sections	explained	the	BitBake	essentials	and	set	the	stage	for	employing
BitBake	as	a	build	system.	Now	it	is	time	to	put	it	to	work	with	a	simple	example—the
BitBake	HelloWorld.	This	may	not	be	the	most	primitive	example	you	can	do	with
BitBake,	but	it	demonstrates	how	to	use	it	for	building	an	open	source	software	package
for	the	build	host	as	a	target.

The	example	builds	the	nano	text	editor	(http://nano-editor.org)	from	source.	Nano	uses
GNU	Autotools	for	configuration.	For	this	example	to	work	on	your	build	host,	you	need
to	have	the	GNU	development	package	including	Autotools	installed.	You	of	course	also
need	BitBake.

First	we	need	to	set	up	a	build	environment	for	our	BitBake	HelloWorld	project.	Listing
4-18	shows	its	layout.

Listing	4-18	BitBake	HelloWorld	Build	Environment	Layout
Click	here	to	view	code	image

yocto@yocto-dev:~/bitbake$	tree	-L	3	bbhello
bbhello/

	classes
			 	base.bbclass
	conf

			 	bblayers.conf
			 	bitbake.conf
	meta-hello

				 	conf
				 			 	layer.conf
				 	recipes-editor
								 	nano

We	simply	copied	BitBake’s	default	files	base.bbclass	and	bitbake.conf	into
the	build	environment	from	the	BitBake	installation	directory.	For	the	purpose	of	this
example,	they	contain	all	the	required	settings.

The	file	bblayers.conf	sets	up	the	build	environment	and	also	includes	our	meta-
hello	layer,	which	eventually	contains	the	recipe	to	build	the	nano	editor	(see	Listing	4-
19).

Listing	4-19	bblayers.conf
Click	here	to	view	code	image

http://nano-editor.org

#	Initialize	BBPATH	with	the	top-level	directory	of	the
#	build	environment.
BBPATH	:=	“${TOPDIR}”
#	Initialize	BBFILES	to	an	empty	string	as	it	is	set	up
#	by	the	layer.conf	files	of	the	layers.
BBFILES	?=	””

#	Add	our	layer	to	BBLAYERS.
BBLAYERS	=	”	\
		${TOPDIR}/meta-hello	\
		”

The	file	first	sets	the	BBPATH	variable	to	the	build	environment’s	top-level	directory
and	initializes	BBFILES	to	an	empty	string.	Then	it	adds	the	meta-hello	layer	to
BBLAYERS.	For	simplicity,	this	example	is	all	self-contained	and	includes	the	meta-
hello	within	the	build	environment.

As	outlined	earlier,	all	BitBake	layers	must	contain	a	layer.conf	configuration	file,
which	is	shown	in	Listing	4-20.

Listing	4-20	layer.conf
Click	here	to	view	code	image

#	Add	the	path	of	this	layer	to	BBPATH
BBPATH	.=	“:${LAYERDIR}”

#	Add	recipes	and	append	files	to	BBFILES
BBFILES	+=	“${LAYERDIR}/recipes-*/*/*.bb	\
												${LAYERDIR}/recipes-*/*/*.bbappend”

#	Set	layer	search	pattern	and	priority
BBFILE_COLLECTIONS	+=	“hello”
BBFILE_PATTERN_test	:=	“^${LAYERDIR}/”
BBFILE_PRIORITY_test	=	“5”

The	file	is	essentially	a	copy	of	the	boilerplate	template.	The	only	adjustments
necessary	are	to	the	search	pattern	and	the	priority	settings.

Last,	we	need	a	recipe	to	build	the	nano	editor.	We	place	this	recipe	into	the
subdirectory	recipes-editor	of	the	layer’s	top-level	directory	meta-hello.	The
full	path	to	the	recipes	in	our	layer	matches	the	expression	in	BBFILES	of
layer.conf.	Listing	4-21	shows	the	recipe.

Listing	4-21	nano.bb
Click	here	to	view	code	image

SUMMARY	=	“Recipe	to	build	the	‘nano’	editor”

PN	=	“nano”
PV	=	“2.2.6”

SITE	=	“http://www.nano-editor.org/dist”
PV_MAJOR	=	“${@bb.data.getVar(‘PV’,d,1).split(‘.’)[0]}”
PV_MINOR	=	“${@bb.data.getVar(‘PV’,d,1).split(‘.’)[1]}”

SRC_URI	=	“${SITE}/v${PV_MAJOR}.${PV_MINOR}/${PN}-${PV}.tar.gz”
SRC_URI[md5sum]	=	“03233ae480689a008eb98feb1b599807”
SRC_URI[sha256sum]	=	\
“be68e133b5e81df41873d32c517b3e5950770c00fc5f4dd23810cd635abce67a”

python	do_fetch()	{
				bb.plain(“Downloading	source	tarball	from	${SRC_URI}	…”)
				src_uri	=	(d.getVar(‘SRC_URI’,	True)	or	””).split()
				if	len(src_uri)	==	0:
							bb.fatal(“Empty	URI”)
				try:
							fetcher	=	bb.fetch2.Fetch(src_uri,	d)
							fetcher.download()
				except	bb.fetch2.BBFetchException:
							bb.fatal(“Could	not	fetch	source	tarball.”)
				bb.plain(“Download	successful.”)
}

addtask	fetch	before	do_build

python	do_unpack()	{
				bb.plain(“Unpacking	source	tarball	…”)
				os.system(“tar	x	-C	${WORKDIR}	-f	${DL_DIR}/${P}.tar.gz”)
				bb.plain(“Unpacked	source	tarball.”)
}

addtask	unpack	before	do_build	after	do_fetch

python	do_configure()	{
				bb.plain(“Configuring	source	package	…”)
				os.system(“cd	${WORKDIR}/${P}	&&	./configure”)
				bb.plain(“Configured	source	package.”)
}

addtask	configure	before	do_build	after	do_unpack

python	do_compile()	{
				bb.plain(“Compiling	package…”)
				os.system(“cd	${WORKDIR}/${P}	&&	make”)
				bb.plain(“Compiled	package.”)
}

addtask	compile	before	do_build	after	do_configure

do_clean[nostamp]	=	“1”
do_clean()	{
				rm	-rf	${WORKDIR}/${P}
				rm	-f	${TMPDIR}/stamps/*
}

addtask	clean

This	recipe	utilizes	many	of	the	major	concepts	of	BitBake	metadata	syntax:	variable
setting,	variable	expansion,	Python	variable	expansion,	variable	attributes,	accessing
BitBake	variables	from	Python	code,	Python	tasks,	shell	tasks,	and	more.

To	build	the	nano	text	editor,	simply	execute
$	bitbake	nano

from	the	top-level	directory	of	the	build	environment.	If	everything	works,	you	should	see

output	similar	to	Listing	4-22.

Listing	4-22	Building	the	Nano	Text	Editor
Click	here	to	view	code	image

$	bitbake	nano
NOTE:	Not	using	a	cache.	Set	CACHE	=	<directory>	to	enable.
Parsing	recipes:	100%	|####################################|	Time:	00:00:00
Parsing	of	1	.bb	files	complete	(0	cached,	1	parsed).	1	targets,
		0	skipped,	0	masked,	0	errors.
NOTE:	Resolving	any	missing	task	queue	dependencies
NOTE:	Preparing	runqueue
NOTE:	Executing	RunQueue	Tasks
Downloading	source	tarball	from
		http://www.nano-editor.org/dist/v2.2/nano-2.2.6.tar.gz	…
Download	successful.
Unpacking	source	tarball	…
Unpacked	source	tarball.
Configuring	source	package	…
Configured	source	package.
Compiling	package…
Compiled	package.
NOTE:	Tasks	Summary:	Attempted	5	tasks	of	which	0	didn’t	need	to	be	rerun	and
all	succeeded.

The	nano	executable	is	located	in	tmp/work/nano-2.2.6-r0/nano-
2.2.6/src	from	where	you	can	run	it.

You	can	clean	your	build	environment	with
$	bitbake	nano	-c	clean

Of	course,	this	is	a	very	simple	example.	A	build	system,	such	as	the	OpenEmbedded
build	system,	that	builds	an	entire	Linux	OS	stack	must	provide	much	more	functionality
and	includes	hundreds	of	recipes	and	many	classes.	Additionally,	the	OpenEmbedded
build	system	is	capable	of	building	for	different	architectures	and	many	different	machine
types	for	which	it	also	builds	the	necessary	cross-toolchains.

4.7	Dependency	Handling
Rarely	does	a	build	system	build	just	a	single	software	package.	If	multiple	software
packages	are	built,	dependencies	commonly	exist	between	some	of	those	packages,
meaning	that	the	build	system	must	be	able	to	handle	such	dependencies.	The	build	system
must	be	able	to	detect	all	changes	made	to	a	package,	re-execute	any	tasks	that	were
invalidated	by	the	changes,	and	then	also	re-execute	any	tasks	from	software	packages	that
depend	on	the	output	of	one	or	more	tasks	of	the	changed	package.

Build	systems	typically	distinguish	between	two	types	of	dependencies:

	Build	Dependencies:	Components	that	are	required	for	a	software	package	to	be
successfully	built.	These	can	be	header	files,	static	libraries,	or	other	components.

	Runtime	Dependencies:	Components	that	are	required	for	a	software	package	to
correctly	operate.	These	can	be	libraries,	configuration	files,	or	other	components.

To	express	dependencies,	the	build	system	must	implement	a	way	for	software	packages

to	announce	their	name	or	functionality	as	well	as	a	way	for	other	software	packages	to
reference	that	name	or	functionality	as	a	dependency.

4.7.1	Provisioning
BitBake	recipes	for	software	packages	use	the	PROVIDES	variable	to	announce	their
name	and	functionality	that	other	recipes	then	can	use	to	express	their	dependency	on	that
package.	BitBake	offers	three	different	variants	of	provisioning,	which	in	this	book	are
referred	to	as	implicit	provisioning,	explicit	provisioning,	and	symbolic	provisioning.

Implicit	Provisioning

BitBake	derives	the	values	for	package	name,	package	version,	and	package	revision	from
the	filename	of	a	recipe.	It	uses	these	values	for	provisioning	unless	they	are	explicitly
overridden	by	the	recipe’s	content,	as	explained	in	the	next	section.

BitBake	recipe	filenames	follow	the	convention
Click	here	to	view	code	image

<package	name>_<package	version>_<package	revision>.bb

The	convention	concatenates	package	name,	package	version,	and	package	revision	with
underscores;	for	example,

nano_2.2.6_r0.bb

BitBake	parses	the	filename	and	assigns	the	variables	PN,	PV,	and	PR	accordingly:
PN	=	“nano”
PV	=	“2.2.6”
PR	=	“r0”

If	a	recipe	name	does	not	provide	the	package	revision,	PR	defaults	to	r0,	and	if	it	does
not	provide	the	package	version,	PV	defaults	to	1.0.	You	cannot,	however,	specify	the
package	revision	without	specifying	the	package	version	when	using	implicit	provisioning
through	the	recipe	name.	If	you	want	to	provide	the	package	revision	without	specifying
the	package	version,	you	have	to	use	explicit	provisioning.	However,	it	typically	does	not
make	much	sense	to	do	so,	since	the	package	revision	is	meaningful	only	in	the	context	of
the	package	version.

Through	the	assignment
PROVIDES_prepend	=	“${PN}	“

a	package	always	announces	its	package	name.

Explicit	Provisioning

The	three	variables	PN,	PV,	and	PR	can	explicitly	set	by	the	recipe	itself	by	assigning
values	to	them.	Such	explicit	provisioning	overrides	any	settings	derived	from	the
filename.	BitBake	sets	the	PROVIDES	variable	accordingly.

Symbolic	Provisioning

Recipes	can	also	override	or	add	to	the	PROVIDES	variable	that	can	be	used	to	specify	a
symbolic	name	for	that	package.	Dependent	packages	can	then	reference	the	symbolic
name.	This	is	useful	if	multiple	packages	or	multiple	versions	of	the	same	package	provide
the	same	functionality:

PROVIDES	=+	“virtual/editor”

This	statement	used	in	the	recipe	for	the	nano	text	editor	would	add	the	symbolic	name
virtual/editor	to	the	list	of	names.	It	is	always	recommended	to	add	a	symbolic
name	to	PROVIDES	rather	than	overriding	the	variable	altogether.	What	the	symbolic
name	actually	is	does	not	matter,	but	to	avoid	inadvertent	collision	of	a	symbolic	name
with	the	name	of	an	actual	other	recipe,	developers	have	adopted	the	convention	to	use	the
prefix	virtual/	for	symbolic	names.2

2.	Because	of	the	forward	slash	in	the	symbolic	name,	it	is	obvious	that	on	Linux	build	hosts,	a	symbolic	name	can
never	collide	with	the	name	of	an	actual	recipe	because	on	UNIX	systems,	the	forward	slash	is	used	to	delimit	path
segments.

Clearly,	if	multiple	packages	are	using	the	same	symbolic	name,	the	build	system	must
have	a	way	to	determine	which	recipe	to	use.	We	address	this	issue	in	Section	4.7.3.

4.7.2	Declaring	Dependencies
Recipes	declare	build	dependencies	and	runtime	dependencies	by	adding	the	names	of
packages	they	depend	on	to	the	DEPENDS	and	RDEPENDS	variables,	respectively:
Click	here	to	view	code	image

DEPENDS	=	“libxml2-native	gettext-native	virtual/libiconv	ncurses”
RDEPENDS	=	“base-files	run-postinsts”

Both	variables	contain	a	space-delimited	list	of	actual	or	symbolic	names	of	the
packages	on	which	they	depend.	Of	course,	those	packages	must	provide	their	names
through	the	PROVIDES	variable,	as	outlined	in	the	previous	section.

Although	dependencies	are	declared	on	the	recipe	level,	it	would	be	rather	inefficient	to
enforce	them	on	the	recipe	level.	For	example,	enforcing	build	dependencies	on	the	recipe
level	would	mean	that	all	tasks	of	a	recipe	building	a	package	must	have	completed
successfully	before	the	first	task	of	a	recipe	that	depends	on	that	package	can	start.	That
would	be	less	than	optimal	for	a	parallel	build	process	because	tasks	such	as	fetching	the
source	code,	unpacking	it,	patching	it,	and	so	forth,	are	not	dependent	on	another	package
having	completed	its	build	successfully.	However,	tasks	that	configure	and	compile	a
package	are	dependent	on	the	successful	completion	of	the	build	process	of	a	package.
Therefore,	BitBake	enforces	dependencies	on	the	task	level.	Enforcement	is	achieved
using	the	metadata	attributes	deptask	and	rdeptask.	Each	task	has	a	deptask
attribute	that	contains	a	space-delimited	list	of	tasks	that	must	have	completed	from	each
of	the	packages	listed	in	DEPENDS:
Click	here	to	view	code	image

do_configure[deptask]	=	“do_populate_staging”

For	the	code	example,	the	do_populate_staging	task	of	each	recipe	contained	in

DEPENDS	must	have	completed	before	this	recipe’s	do_configure_task	can	run.

The	rdeptask	attribute	fulfills	the	same	function	for	runtime	dependencies:
Click	here	to	view	code	image

do_package_write[rdeptask]	=	“do_package”

In	this	example,	the	do_package_write	task	of	a	recipe	cannot	run	before	all	of	the
packages	it	depends	on	during	runtime	have	completed	their	packaging	step.

4.7.3	Multiple	Providers
Through	symbolic	provisioning,	multiple	packages	potentially	can	fulfill	another
package’s	build	and/or	runtime	dependencies.	For	example,	there	could	be	two	packages
providing	text	editor	functionality	for	an	e-mail	program.	The	e-mail	program	itself	does
not	care	which	one	of	the	two	text	editor	packages	provides	the	functionality	as	long	as
one	of	them	is	available:
Click	here	to	view	code	image

editor1.bb:				PROVIDES	=	“virtual/editor”
editor2.bb:				PROVIDES	=	“virtual/editor”
mailer.bb:					RDEPENDS	=	“virtual/editor”

Both	editor	packages	provide	the	virtual/editor	functionality	that	the	mailer
package	requires.	How	does	BitBake	choose	which	one	of	the	two	editor	packages	to
build?	Through	the	PREFERRED_PROVIDER	variable,	you	can	select	which	of	the
packages	that	provide	virtual/editor	BitBake	builds:
Click	here	to	view	code	image

PREFERRED_PROVIDER_virtual/editor	=	“editor2”

Most	commonly,	this	variable	is	placed	into	a	configuration	file	such	as	your
distribution	policy	configuration	file.

4.8	Version	Selection
Many	metadata	layers	include	multiple	recipes	to	build	different	versions	of	the	same
software	package.	For	example,	the	OE	Core	metadata	layer	provides	multiple	recipes	to
build	different	versions	of	the	Linux	kernel.

By	default,	BitBake	always	chooses	the	recipe	that	builds	the	latest	version	of	a
package,	as	indicated	by	the	PV	variable.	However,	you	can	override	the	default	behavior
by	specifying	the	PREFERRED_VERSION	variable:
Click	here	to	view	code	image

PREFERRED_VERSION_editor	=	“1.1”

You	must	set	this	variable	conditional	on	the	actual	package	name.	Sometimes	the
version	number	is	appended	with	additional	information,	such	as	the	Git	tag	or	a	minor
version	number.	In	this	case,	you	tell	BitBake	by	adding	a	percent	sign	(%)	to	the	version
string	that	the	additional	information	is	irrelevant:
Click	here	to	view	code	image

PREFERRED_VERSION_linux-yocto	=	“3.10%”

Recipes	may	set	the	DEFAULT_PREFERENCE	variable	to	indicate	a	lower	or	higher
priority	than	its	version	number:
Click	here	to	view	code	image

editor_1.1.bb:	DEFAULT_PREFERENCE	=	“6”
editor_1.2.bb:	DEFAULT_PREFERENCE	=	“0”

By	default,	BitBake	would	choose	the	editor-1.2.bb	recipe	over	the	editor-1.1
bb	recipe	because	it	is	the	later	version.	However,	by	using	DEFAULT_PREFERENCE,
the	priority	of	the	recipe	building	the	older	version	is	elevated.	The	default	value	for
DEFAULT_PREFERENCE	is	5.

It	is	recommended	that	you	use	DEFAULT_PREFERENCE	only	for	experimental
recipes	that	build	newer	versions	to	lower	their	priority:
Click	here	to	view	code	image

editor_2.0.bb:	DEFAULT_PREFERENCE	=	“-1”

Using	DEFAULT_PREFERENCE	other	than	for	lowering	the	priority	for	experimental
recipes	can	easily	lead	to	undesirable	results	and	confusion	if	you	are	not	aware	that	a
recipe	is	using	it.

4.9	Variants
Recipes	commonly	build	one	variant	of	a	software	package	that	is	intended	for	the	target
system.	However,	for	some	packages,	variants	are	needed	for	different	applications.	A
typical	example	is	a	compiler	that	is	needed	in	a	target	variant	and	in	a	native	or	host
variant.	To	enable	building	multiple	variants	of	a	package	from	the	same	recipe,	BitBake
provides	the	BBCLASSEXTEND	variable:

BBCLASSEXTEND	+=	“native”

If	this	directive	is	used	in	a	recipe,	it	instructs	BitBake	to	build	a	native	variant	of	the
software	package	for	the	build	host	in	addition	to	the	target	variant.	The	mechanism
behind	this	functionality	is	that	BitBake	executes	the	recipe	a	second	time	inheriting	the
native	class.	For	this	mechanism	to	work	correctly,	you	must	define	the	native	class
in	a	file	called	native.bbclass.

BBCLASSEXTEND	contains	a	list	of	classes	that	is	space-delimited,	allowing	you	to
execute	the	recipe	as	many	times	as	you	need	it	with	different	classes.

Variables	or	tasks	contained	in	a	recipe	may	need	to	contain	different	values	or	perform
different	processing	steps	based	on	what	variant	is	currently	built.	That	can	be	achieved	by
conditionally	overriding	variables	or	tasks.	Using
Click	here	to	view	code	image

VARIABLE_class-target	=	“target	value”
VARIABLE_class-native	=	“native	value”

assigns	VARIABLE	different	values	dependent	on	what	variant	BitBake	is	building.	All
variables	and	tasks	that	do	not	use	the	variant	overrides	are	shared	by	all	variants.

The	variant	target	is	implicit.	There	is	also	no	class	target	defined.	All	other

classes	used	in	BBCLASSEXTEND	must	be	defined	by	their	respective	.bbclass	files.

4.10	Default	Metadata
BitBake	defines,	uses,	and	relies	on	several	default	metadata	objects.	You	find	them
referenced	in	many	recipes	and	classes.	In	the	following	sections,	we	discuss	this	core	list
of	variables	and	tasks.

Of	course,	OpenEmbedded,	Poky,	and	other	metadata	layers	add	more	metadata	as	they
extend	BitBake’s	functionality.	We	discuss	many	of	those	extensions	and	their	metadata
when	we	introduce	them	in	the	context	of	building	a	custom	Linux	distribution	in	Chapter
7,	developing	recipes	for	software	packages	in	Chapter	8,	configuring	and	compiling	the
Linux	kernel	in	Chapter	9,	and	developing	board	support	packages	in	Chapter	10.

4.10.1	Variables
BitBake	references	and	uses	several	variables.	It	expects	those	variables	to	be	set,	or	it
raises	an	error	and	terminates	execution.	BitBake	derives	some	of	these	variables
internally	from	its	current	context	and	sets	them	accordingly.	Others	are	set	to	default
values	by	the	bitbake.conf	file.	For	a	third	category,	you	have	to	provide	the	settings
explicitly	for	your	project.

Internally	Derived	Variables

BitBake	derives	the	values	for	the	following	variables	from	its	current	contexts	and	sets
them	accordingly:

	FILE:	Full	path	to	the	file	that	BitBake	is	currently	processing.	The	file	can	be	a
configuration	file,	a	recipe,	a	class,	and	so	on.

	LAYERDIR:	BitBake	sets	this	variable	to	the	full	path	to	the	directory	of	the	current
layer	when	it	processes	the	files	of	that	layer.

	TOPDIR:	BitBake	sets	this	variable	to	the	full	path	to	the	directory	from	where	you
have	executed	BitBake.	BitBake	expects	you	to	either	run	it	from	the	top-level
directory	of	your	build	environment	or	explicitly	set	this	variable	to	the	top-level
directory	of	your	build	environment,	as	shown	earlier.

Project-Specific	Variables

These	variables	are	specific	to	your	BitBake	project.	You	need	to	set	them	explicitly	for
your	project.

	BBFILES:	Space-delimited	list	of	paths	for	recipe	files.	The	layer.conf
configuration	file	for	a	layer	extends	this	variable	to	add	its	own	recipes.

	BBLAYERS:	BitBake	sets	this	variable	to	the	full	path	to	the	directory	of	the	current
layer	when	it	processes	the	files	of	that	layer.

	BBPATH:	BitBake	uses	this	variable	to	locate	classes	(.bbclass	files)	in	a
subdirectory	named	classes	and	configuration	files	(.conf	files)	in	a
subdirectory	called	conf	and	subdirectories	thereof.	The	variable	contains	a	list	of

colon-delimited	directory	paths.	Layers	typically	add	their	top-level	directory	to	this
variable:	BBPATH	.=	":${LAYERDIR}".

Standard	Runtime	Variables

The	standard	runtime	variables	are	referenced	by	many	of	the	BitBake	modules.	Hence,
they	must	contain	valid	values	for	BitBake	to	operate	correctly.	These	variables	are
typically	initialized	by	the	conf/bitbake.conf	file.	The	BitBake	source	package
provides	a	conf/bitbake.conf	file	containing	default	settings.	If	you	start	a	BitBake
project	from	scratch,	as	we	did	for	the	HelloWorld	example,	you	can	use	this	file	as	a
starting	point.

The	OE	Core	metadata	layer,	which	forms	the	foundation	of	the	Poky	build	system,
includes	a	conf/bitbake.conf	file	that	initializes	a	much	larger	list	of	variables	to
meet	the	requirements	of	the	many	classes	included	with	that	layer.	As	we	explore	more	of
Poky’s	functionality	in	the	coming	chapters,	we	introduce	these	variables	within	their
appropriate	context.

	B:	Full	path	of	the	directory	in	which	BitBake	builds	a	source	package.	This	is
typically	the	same	directory	BitBake	extracts	the	package’s	source	to:	B	=	${S}.
For	out-of-tree	builds,	B	can	be	set	to	point	to	a	different	build	directory.

	BUILD_ARCH:	CPU	architecture	of	the	build	host.	In	most	cases,	the	value	is
automatically	derived	using	BUILD-ARCH	=	${@os.uname()[4])},	which
returns	the	system’s	architecture	on	Linux	systems.

	CACHE:	Full	path	of	the	directory	for	the	metadata	cache,	which	typically	resides
inside	the	build	environment:	CACHE	=	${TOPDIR}/cache.	When	BitBake	is
first	run	in	a	build	environment,	it	parses	all	metadata	files	and	recipes	and	creates	a
cache	from	which	it	reads	during	subsequent	runs.	This	improves	execution	speed.	A
metadata	change	invalidates	the	cache	and	causes	BitBake	to	re-create	it.

	CVSDIR:	Full	path	to	the	directory	to	which	BitBake	checks	out	CVS	repositories.
The	default	is	for	this	directory	to	be	a	subdirectory	of	the	download	directory:
CVSDIR	=	${DL_DIR}/cvs.

	D:	Full	path	to	the	directory	to	which	a	task	such	as	an	installation	task	or	an	image
creation	task	places	its	output.	For	example,	an	installation	task	using	make
install	references	this	variable	for	the	installation	path.

	DEPENDS:	The	variable	describes	package	dependencies	as	a	space-delimited	list	of
package	names.

	DEPLOY_DIR:	Full	path	to	the	base	directory	where	BitBake	places	all	the	files	for
deployment,	such	as	target	images,	package	feeds,	and	license	manifests.	By	default,
this	directory	resides	inside	the	build	environment:	DEPLOY_DIR	=
${TMPDIR}/deploy.

	DEPLOY_DIR_IMAGE:	Full	path	to	the	directory	to	which	BitBake	copies	target
binary	images.	It	typically	points	to	a	subdirectory	of	DEPLOY_DIR:

DEPLOY_DIR_IMAGE	=	${DEPLOY_DIR}/images.

	DL_DIR:	Full	path	to	the	download	directory.	The	default	setting	places	this
directory	inside	the	build	environment:	DL_DIR	=	${TMPDIR}/downloads.
To	avoid	downloading	the	same	source	files	multiple	times	and	taking	up	time	and
disk	space	when	working	with	more	than	one	build	environment,	it	is	recommended
to	set	the	variable	to	a	path	outside	a	build	environment.

	FILE_DIRNAME:	Full	path	to	the	directory	that	contains	the	file	that	BitBake	is
currently	processing.	The	value	is	automatically	derived	using	FILE_DIRNAME	=
${@os.path.dirname(bb.data.getVar('FILE'))}.

	FILESDIR:	Full	path	to	a	directory	where	BitBake	looks	for	local	files.	BitBake
uses	this	variable	only	if	it	cannot	find	the	file	in	any	of	the	directories	listed	in
FILESPATH.	The	most	common	use	case	for	this	variable	is	in	append	files.

	FILESPATH:	This	variable	contains	a	colon-separated	list	of	full	directory	paths
that	are	searched	by	BitBake’s	local	file	fetcher	for	matching	local	files.	The	default
setting	is	FILESPATH	=
"${FILE_DIRNAME}/${PF}:${FILE_DIRNAME}/${P}:${FILE_DIRNAME}/${PN}:${FILE_DIRNAME}/files:${FILE_DIRNAME}"

	GITDIR:	Full	path	to	the	directory	to	which	BitBake	checks	out	Git	repositories.
The	default	is	for	this	directory	to	be	a	subdirectory	of	the	download	directory:
GITDIR	=	${DL_DIR}/git.

	MKTEMPCMD:	Command	that	BitBake	uses	to	create	temporary	files:
MKTMPCOMMAND	=	"mktemp	-q	${TMPBASE}".

	MKTEMPDIRCMD:	Command	that	BitBake	uses	to	create	temporary	directories:
MKTMPCOMMAND	=	"mktemp	-d	-q	${TMPBASE}".

	OVERRIDES:	Colon-delimited	priority	list	of	conditional	overrides.	BitBake
processes	the	list	from	right	to	left,	so	that	the	ones	listed	later	take	precedence.

	P:	Package	name	and	version	concatenated	with	a	dash:	P	=	"${PN}-${PV}".

	PERSISTENT_DIR:	Full	path	to	the	directory	where	BitBake	stores	files
persistently.	The	default	setting	is	PERSISTENT_DIR	=
"${TOPDIR}/cache".	The	CACHE	and	the	PERSISTENT_DIR	variables	are
used	interchangeably.	Either	one	of	them	must	be	set.	If	PERSISTENT_DIR	is	not
set,	BitBake	falls	back	to	CACHE.

	PF:	Package	name,	version,	and	revision	concatenated	with	dashes:	PF	=
"${PN}-${PV}-${PR}".

	PN:	Package	name	derived	from	the	recipe	filename.

	PR:	Package	revision	derived	from	the	recipe	name	or	explicitly	set.

	PROVIDES:	Space-delimited	list	of	names	declaring	what	a	package	provides.
Other	recipes	can	use	these	names	to	declare	their	dependencies	on	this	package.

	PV:	Package	version	derived	from	the	recipe	filename	or	explicitly	set.

	S:	Full	path	to	the	directory	where	BitBake	places	the	unpacked	sources.	By	default,
this	is	a	subdirectory	of	the	working	directory	for	the	package:	S	=
"${WORKDIR}/${P}".

	SRC_URI:	Download	URI	for	source	packages.

	SRCREV:	Source	revision	for	use	with	downloads	from	SCM.

	SVNDIR:	Full	path	to	the	directory	to	which	BitBake	checks	out	Subversion
repositories.	The	default	is	for	this	directory	to	be	a	subdirectory	of	the	download
directory:	GITDIR	=	${DL_DIR}/svn.

	T:	Full	path	to	a	directory	where	BitBake	stores	temporary	files,	such	as	task	code
and	task	logs,	when	processing	a	package	recipe.	By	default,	this	directory	resides
inside	the	package’s	work	directory:	T	=	"${WORKDIR}/tmp".

	TARGET_ARCH:	CPU	architecture	for	which	BitBake	is	building.

	TMPBASE:	Full	path	of	a	directory	that	BitBake	uses	to	create	temporary	files	and
directories	with	the	MKTMPCMD	and	MKTEMPDIRCMD	commands.	BitBake
modules,	classes,	and	tasks	set	this	variable	according	to	their	requirements.

	TMPDIR:	Full	path	to	the	top-level	directory	where	BitBake	places	all	the	build
output,	such	as	package	builds,	root	filesystem	stages,	image,	and	package	feeds.	It
typically	resides	inside	the	build	environment:	TMPDIR	=	"${TOPDIR}/tmp".
The	choice	of	name	for	this	variable	and	its	default	setting	is	a	little	unfortunate.
While	the	files	and	directories	created	within	TMPDIR	are	temporary	in	a	sense	that
BitBake	can	always	re-create	them,	the	directory	actually	contains	all	the	build
output	and	artifacts.	That	makes	the	directory	actually	more	important	than	its	name
suggests.

	WORKDIR:	Full	path	to	the	directory	where	BitBake	builds	a	package	and	also	stores
all	log	information	related	to	the	package’s	build	progress.	The	default	setting	is
WORKDIR	=	"${TMPDIR}/work/${PF}".

As	you	can	see,	many	of	the	variables	reference	other	variables,	particularly	the	paths
for	files	and	directories.	This	creates	a	very	flexible	architecture	that	lets	you	easily
customize	your	build	environments	by	simply	changing	a	few	variables	in	a	single
configuration	file.

4.10.2	Tasks
The	BitBake	code	also	includes	a	default	implementation	of	the	base	class	provided	by
the	base.bbclass.	You	can	use	this	class	as	a	starting	point	for	your	own	BitBake-
based	build	system.	The	OE	Core	metadata	layer,	of	course,	provides	an	extended	base
class.

BitBake’s	default	base.bbclass	provides	the	following	tasks:

	build:	This	is	the	default	task	that	BitBake	uses	when	executing	a	recipe	unless
another	task	is	set	by	the	variable	BB_DEFAULT_CLASS.	The	default	base	class

does	not	actually	implement	anything	useful	to	execute.	You	need	to	either	override
it	in	your	recipes	or	use	it	as	an	anchor	for	other	tasks,	as	we	did	in	our	HelloWorld
example.

	listtasks:	Executing	this	task	with	any	target	shows	all	the	tasks	that	are
applicable	to	the	target.	That	includes	the	tasks	that	the	target’s	recipe	defines	as
well	as	any	tasks	the	recipe	inherits	from	classes.	Note	that	the	tasks	must	be	listed
in	the	order	of	their	task	hashes	and	not	alphabetically	or	in	the	order	of	their
execution.

4.11	Summary
This	chapter	presented	an	overview	of	BitBake,	the	build	engine	behind	OpenEmbedded
and	Poky.

	BitBake	is	jointly	developed	by	OpenEmbedded	and	the	Yocto	Project	as	a	core
component	of	the	OpenEmbedded	build	system,	shared	by	both	projects.	Yocto
Project	releases	of	the	Poky	reference	distribution	include	a	version	of	BitBake	that
matches	Poky’s	metadata	for	the	particular	release.

	BitBake	requires	an	execution	or	build	environment	with	certain	metadata	variables
to	be	set	correctly.	Poky	includes	shell	scripts	to	correctly	set	up	and	initialize	build
environments.

	BitBake	metadata	distinguishes	between	variables	and	executable	metadata	or
functions.	Metadata	functions	can	be	implemented	as	shell	or	Python	code.	Tasks	are
specially	declared	metadata	functions	that	are	executed	by	BitBake	as	part	of	the
build	process	of	a	target	or	that	can	be	explicitly	invoked	from	the	BitBake
command	line.

	Metadata	is	organized	into	configuration	files,	recipes,	classes,	append	files,	and
include	files.

	BitBake’s	metadata	syntax	provides	a	variety	of	expressions	to	manipulate	variable
contents.	Variables	may	contain	single	values	or	lists	of	values	separated	by	a
delimiter.

	Conditional	variable	assignment	and	variable	appending	and	prepending	allow
overriding	variables	based	on	the	context.	The	OVERRIDES	variable	contains	the
priority	list	of	conditions.

	Metadata	functions	implemented	as	shell	code	can	access	metadata	variables
directly,	whereas	Python	functions	need	to	access	them	via	the	BitBake	data
dictionary.

	Return	values	from	Python	metadata	functions	can	directly	be	assigned	to	metadata
variables.

	BitBake’s	dependency	handling	allows	the	declaration	of	dependencies	on	the
package	level.	To	optimize	parallel	execution,	BitBake	enforces	the	dependencies	on
the	task	level.

	Symbolic	names	for	packages	allow	packages	to	declare	dependencies	based	on	the

provided	functionality	rather	than	the	name	of	the	implementing	package.	The
PREFERRED_PROVIDER	variable	allows	the	selection	of	the	implementing
package.

	Packages	may	provide	multiple	recipes	to	build	different	versions	of	the	package.
BitBake	always	builds	the	latest	package	with	the	highest	version	number	unless	a
different	version	is	specified	by	the	PREFERRED_VERSION	variable.

	Variants	or	class	extensions	provide	a	mechanism	for	building	the	same	package
multiple	times	for	different	applications,	such	target	or	build	host,	without	rewriting
the	entire	recipe.

4.12	References
BitBake’s	source	package	includes	documentation	in	DocBook	format	that	can	be
formatted	for	HTML	or	PDF	output.	Online	documentation	is	available	at
www.yoctoproject.org/docs/2.0/bitbake-user-manual/bitbake-user-manual.html.	The
ultimate	BitBake	documentation	is,	of	course,	its	source	code.

http://www.yoctoproject.org/docs/2.0/bitbake-user-manual/bitbake-user-manual.html

5.	Troubleshooting

In	This	Chapter

5.1	Logging

5.2	Task	Execution

5.3	Analyzing	Metadata

5.4	Development	Shell

5.5	Dependency	Graphs

5.6	Debugging	Layers

5.7	Summary

As	a	software	developer,	you	are	well	aware	that	it	is	never	a	question	of	if	but	when	there
is	an	issue	with	building	software.	Troubleshooting	failures	of	a	complex	build	system	can
be	a	daunting	task.	Failures	can	be	rooted	in	many	different	areas	of	the	build	system:	the
code	in	recipes	and	classes,	configuration	file	settings,	cross-development,	the	software
package	to	be	built,	packaging,	and	more.	It	always	comes	down	to

	Locating	and	identifying	the	cause	of	the	failure,	and

	Finding	and	applying	a	solution

Having	the	right	tools	at	hand	and	knowing	how	to	use	them	effectively	saves	a	lot	of
time	and	effort	for	correctly	locating	and	identifying	the	root	cause	of	a	problem.	The
OpenEmbedded	build	system	provides	a	set	of	tools	that	assist	you	in	finding	the	problem
that	causes	your	build	failure.	Finding	a	solution	for	the	problem,	however,	can	be	even
more	challenging.	Due	to	the	potentially	large	variety	of	the	problems	and	their	origins,
there	is	no	single	and	simple	answer	to	how	to	solve	a	build	problem.	Problem	solving	is	a
lot	about	experience	in	recognizing	patterns	in	issues	and	modifying	and	applying
solutions	found	for	similar	issues.	We	don’t	discourage	you	from	problem	solving,	but	we
encourage	you	to	set	realistic	expectations.	Depending	on	your	experience	in	software
development,	you	find	solutions	to	some	problems	rather	easily,	while	others	present	a
greater	challenge.	Nevertheless,	chances	are	that	you	are	not	the	only	one	experiencing	a
particular	problem.	The	Internet	and	its	search	engines	make	it	much	easier	for	software
developers	to	find	solutions	for	almost	anything.

The	following	sections	explain	the	various	debugging	tools	provided	by	the
OpenEmbedded	build	system	and	how	to	use	them.

5.1	Logging
BitBake	logs	all	events	occurring	during	the	build	process.	The	events	logged	by	BitBake
are

	Debug	statements	inserted	into	executable	metadata

	Output	from	any	command	executed	by	tasks	and	other	code

	Error	messages	emitted	by	any	command	executed	by	tasks	and	other	code

All	log	messages	are	routed	to	various	log	files	from	which	they	can	be	retrieved.
BitBake	creates	log	files	for	every	task	that	it	executes	as	well	as	for	its	own	main	build
process.	All	output	sent	to	stdout	or	stderr	by	any	command	executed	by	BitBake
tasks	and	other	code	is	redirected	to	the	log	files.	During	normal	operation	BitBake	does
not	show	any	logging	output	while	running	unless	there	is	a	warning	or	error	condition.

5.1.1	Log	Files
BitBake	maintains	separate	log	files	for	all	of	its	processes.	That	includes	its	cooker
process,	which	is	the	main	build	process,	as	well	as	for	every	task	of	every	recipe.	The
cooker	process	spawns	a	separate	process	for	each	task	it	runs.

General	Log	Files

BitBake	stores	all	general	log	files,	such	as	the	cooker’s	look	file,	in	the	directory	pointed
to	by	the	LOG_DIR	variable.	By	default,	this	directory	is	a	subdirectory	called	log	inside
the	directory	for	the	temporary	build	files:

LOG_DIR	=	“${TMPDIR}/log”

Inside	that	directory,	you	find	a	subdirectory	for	each	BitBake	process,	such	as
cooker.	The	log	files	are	further	subdivided	by	the	target	machine.	For	example,	if	you
are	building	for	the	qemux86	machine,	the	cooker	subdirectory	contains	a	qemux86
subdirectory	that	contains	the	actual	log	files.	Although	this	setup	requires	some	effort
navigating	through	a	tree	of	directories,	it	more	easily	allows	you	to	find	the	relevant	log
file.

BitBake	names	the	log	files	using	the	timestamp	at	the	time	the	process	was	started,
effectively	maintaining	a	history	of	log	files.	Having	a	history	of	log	files	and	comparing
files	from	subsequent	builds	to	each	other	can	help	you	track	down	build	failures
effectively.	Rather	than	using	local	time,	BitBake	always	uses	Coordinated	Universal
Time	(UTC)	for	its	timestamps,	making	them	easily	comparable	when	utilizing	remote
build	servers	in	different	time	zones.

The	cooker	log	file	contains	all	the	logging	output	that	BitBake	also	writes	to	the
console	when	running.	Listing	5-1	shows	a	short	cooker	log	file	for	just	an	image	from
prebuilt	packages.

Listing	5-1	Cooker	Log	File
Click	here	to	view	code	image

NOTE:	Resolving	any	missing	task	queue	dependencies

Build	Configuration:
BB_VERSION								=	“1.21.1”
BUILD_SYS									=	“x86_64-linux”
NATIVELSBSTRING			=	“Fedora-18”
TARGET_SYS								=	“i586-poky-linux”
MACHINE											=	“qemux86”

DISTRO												=	“poky”
DISTRO_VERSION				=	“1.5+snapshot-20140210”
TUNE_FEATURES					=	“m32	i586”
TARGET_FPU								=	””
meta
meta-yocto
meta-yocto-bsp				=	“master:095bb006c3dbbfbdfa05f13d8d7b50e2a5ab2af0”

NOTE:	Preparing	runqueue
NOTE:	Executing	SetScene	Tasks
NOTE:	Executing	RunQueue	Tasks
NOTE:	Running	noexec	task	2051	of	2914	(ID:	4,	/develop/yocto/yocto-
git/poky/meta/
recipes-core/images/core-image-minimal.bb,	do_fetch)
NOTE:	Running	noexec	task	2052	of	2914	(ID:	0,	/develop/yocto/yocto-
git/poky/meta/
recipes-core/images/core-image-minimal.bb,	do_unpack)
NOTE:	Running	noexec	task	2053	of	2914	(ID:	1,	/develop/yocto/yocto-
git/poky/meta/
recipes-core/images/core-image-minimal.bb,	do_patch)
NOTE:	Running	noexec	task	2910	of	2914	(ID:	9,	/develop/yocto/yocto-
git/poky/meta/
recipes-core/images/core-image-minimal.bb,	do_package_write)
NOTE:	Running	task	2911	of	2914	(ID:	8,	develop/yocto/yocto-
git/poky/meta/recipes-
core/images/core-image-minimal.bb,	do_populate_lic)
NOTE:	Running	task	2912	of	2914	(ID:	7,	develop/yocto/yocto-
git/poky/meta/recipes-
core/images/core-image-minimal.bb,	do_rootfs)
NOTE:	recipe	core-image-minimal-1.0-r0:	task	do_populate_lic:	Started
NOTE:	recipe	core-image-minimal-1.0-r0:	task	do_populate_lic:	Succeeded
NOTE:	recipe	core-image-minimal-1.0-r0:	task	do_rootfs:	Started
NOTE:	recipe	core-image-minimal-1.0-r0:	task	do_rootfs:	Succeeded
NOTE:	Running	noexec	task	2914	of	2914	(ID:	12,	/develop/yocto/yocto-
git/poky/
meta/recipes-core/images/core-image-minimal.bb,	do_build)
NOTE:	Tasks	Summary:	Attempted	2914	tasks	of	which	2907	didn’t	need	to	be
rerun	and	all	succeeded.

One	of	the	important	pieces	of	information	contained	in	the	cooker	log	file	is	the	build
configuration,	which	tells	you	what	settings	this	build	used.	That	information	is	very
valuable	when	debugging	issues	of	the	“it	worked	yesterday,	why	does	it	not	work	today?”
kind.	Frequently,	a	change	in	configuration	can	cause	a	build	to	fail,	and	comparing
cooker	log	files	from	a	successful	build	to	the	one	of	the	failed	build	may	help	track	down
the	issue.	The	following	variables	make	up	the	build	configuration	listed	at	the	beginning
of	a	cooker	log	file:

	BB_VERSION:	The	BitBake	version	number.	BitBake	evolves	together	with	the
metadata	layers.	Using	newer	versions	of	metadata	layers,	such	as	OpenEmbedded
Core	with	an	older	version	of	BitBake,	may	cause	issues.	That	is	one	of	the	reasons
Poky	packages	the	core	metadata	layers	with	BitBake.	BitBake	is,	however,
backwards	compatible,	allowing	you	to	use	a	newer	version	with	older	metadata
layers.

	BUILD_SYS:	Type	of	the	build	system.	The	variable	is	defined	in	bitbake.conf
as	BUILD_SYS	=	"${BUILD_ARCH}${BUILD_VENDOR}-${BUILD_OS}".
BUILD_ARCH	contains	the	output	of	uname	-m,	BUILD_OS	contains	the	output

of	uname	-s,	and	BUILD_VENDOR	is	a	custom	string	that	is	commonly	empty.

	NATIVELSBSTRING:	Distributor	ID	and	release	number	concatenated	with	a	dash
as	obtained	by	the	lsb_release	command.

	TARGET_SYS:	Type	of	the	target	system.	This	variable	is	defined	in
bitbake.conf	as	TARGET_SYS	=
"${TARGET_ARCH}${TARGET_VENDOR}${@['-'	+
d.getVar('TARGET_OS',	True),	''][d.getVar('TARGET_OS',
True)	==	(''	or	'custom')]}".

	MACHINE:	The	target	machine	BitBake	is	building	for.

	DISTRO:	The	name	of	the	target	distribution.

	DISTRO_VERSION:	The	version	of	the	target	distribution.

	TUNE_FEATURES:	Tuning	parameters	for	the	target	CPU	architecture.

	TARGET_FPU:	Identification	for	the	floating-point	unit	of	the	target	architecture.

	meta[-xxxx]:	Branch	and	commit	ID	for	the	metadata	layers	if	they	were
checked	out	from	a	Git	repository.

For	the	example	of	Listing	5-1,	the	author	has	used	Poky	checked	out	from	the	Yocto
Project’s	Git	repository	on	a	Fedora	18	build	host	using	64-bit	architecture	on	x86.	The
target	system	is	a	32-bit	Linux	system	built	for	QEMU	using	the	Poky	distribution	policy.

Task	Log	Files

BitBake	creates	a	log	file	for	every	task	it	runs	for	every	recipe.	By	default,	BitBake	stores
task	log	files	in	the	directory	pointed	to	by	the	T	variable.	By	default,	this	directory	is	a
subdirectory	of	the	work	directory	of	the	recipe:

T	=	“${WORKDIR}/temp”

That	is	the	case	for	all	tasks	but	the	clean	tasks	that	clean	a	working	directory.	Since
running	clean	tasks	eventually	also	deletes	the	work	directory	and	its	subdirectories,	the	T
variable	is	conditionally	set	to
Click	here	to	view	code	image

T_task-clean	=	“${LOGDIR}/cleanlogs/${PN}”

for	clean	tasks.	The	log	files	are	sorted	into	subdirectories	named	according	to	the	package
name	of	the	recipe	they	are	executed	for.

Log	files	for	tasks	are	named	log.do_<taskname>.<pid>,	where	pid	is	the
process	ID	of	the	task	when	it	was	run	by	BitBake.	The	process	ID	is	used	to	distinguish
task	logs	of	multiple	executions	of	the	same	task.	That	makes	it	straightforward	to
compare	before	and	after	scenarios	and	compare	successful	task	execution	to	failed
execution.	Larger	process	numbers	typically	mean	more	current	runs.	A	symbolic	link
named	log.do_<taskname>	points	to	the	log	file	containing	the	log	output	of	the
most	current	run.

Unless	there	is	incorrect	syntax	in	a	metadata	file,	virtually	all	build	failures	are	related

to	the	execution	of	a	task	of	a	recipe.	BitBake	offers	a	great	deal	of	help	when	locating	the
log	file	for	the	failed	task	by	printing	its	full	path	to	the	console	together	with	the	error
message.	Listing	5-2	shows	a	failing	task	for	a	recipe	that	builds	the	nano	text	editor.
Listing	5-2	Task	Failure
Click	here	to	view	code	image

NOTE:	Resolving	any	missing	task	queue	dependencies

Build	Configuration:
BB_VERSION								=	“1.21.1”
BUILD_SYS									=	“x86_64-linux”
NATIVELSBSTRING			=	“Fedora-18”
TARGET_SYS								=	“i586-poky-linux”
MACHINE											=	“qemux86”
DISTRO												=	“poky”
DISTRO_VERSION				=	“1.5+snapshot-20140211”
TUNE_FEATURES					=	“m32	i586”
TARGET_FPU								=	””
meta-mylayer						=	“<unknown>:<unknown>”
meta
meta-yocto
meta-yocto-bsp				=	“master:095bb006c3dbbfbdfa05f13d8d7b50e2a5ab2af0”

NOTE:	Preparing	runqueue
NOTE:	Executing	SetScene	Tasks
NOTE:	Executing	RunQueue	Tasks
ERROR:	This	autoconf	log	indicates	errors,	it	looked	at	host	include	and/or
library	paths	while	determining	system	capabilities.
Rerun	configure	task	after	fixing	this.	The	path	was
‘/develop/yocto/yocto-git/x86/tmp/work/i586-poky-linux/nano/2.3.1-r0/nano-
2.3.1’
ERROR:	Function	failed:	do_qa_configure
ERROR:	Logfile	of	failure	stored	in:
…/tmp/work/i586-poky-linux/nano/2.3.1-r0/temp/log.do_configure.17865
ERROR:	Task	5	(…/meta-mylayer/recipes-apps/nano/nano_2.3.1.bb,
do_configure)	failed	with	exit	code	‘1’
NOTE:	Tasks	Summary:	Attempted	550	tasks	of	which	545	didn’t	need	to	be	rerun
and
1	failed.
No	currently	running	tasks	(550	of	558)

Summary:	1	task	failed:
		…/meta-mylayer/recipes-apps/nano/nano_2.3.1.bb,	do_configure
Summary:	There	were	3	ERROR	messages	shown,	returning	a	non-zero	exit	code.

Lines	starting	with	ERROR	contain	the	relevant	information	on	the	build	failure,	such	as
a	hint	to	the	root	cause	of	the	problem,	the	task	that	failed,	and	the	complete	path	to	the
log	file.	You	can	simply	use	the	path	to	the	log	file	to	view	it	in	your	preferred	editor	for
additional	information	on	why	the	task	failed.	Even	if	you	clear	the	console	or	close	its
window,	you	can	always	retrieve	this	output	later	from	the	cooker	log	file.

5.1.2	Using	Logging	Statements
One	of	the	more	commonly	used,	if	not	the	most	commonly	used,	methods	for	debugging
in	programming	is	inserting	debug	messages	into	the	code	that	allow	following	the
execution	path	and	examining	data	by	printing	variable	content.

BitBake	provides	several	levels	to	indicate	the	severity	of	messages:

	Plain:	Logs	the	message	exactly	as	passed	without	any	additional	information.

	Debug:	Logs	the	message	prefixed	with	DEBUG:.	The	logging	function	also	expects
a	numeric	parameter	between	1	and	3	indicating	the	debug	level.	However,	only	for
Python	functions	is	the	debug	level	actually	evaluated.	For	shell	functions,	all
messages	are	logged	regardless	of	the	debug	level.

	Note:	Logs	the	message	prefixed	with	NOTE:.	It	is	used	to	inform	the	user	about	a
condition	or	information	to	be	aware	of.

	Warn:	Logs	the	message	prefixed	with	WARNING:.	Warnings	indicate	problems
that	eventually	should	be	taken	care	of	by	the	user;	however,	they	do	not	cause	a
build	failure.

	Error:	Logs	the	message	prefixed	with	ERROR:.	Errors	indicate	problems	that	need
to	be	resolved	to	successfully	complete	the	build.	However,	the	build	can	continue
until	there	are	no	tasks	left	to	build.

	Fatal:	Logs	the	message	prefixed	with	FATAL:.	Fatal	conditions	cause	BitBake	to
halt	the	build	process	right	after	the	message	has	been	logged.

All	messages	are	written	into	the	respective	log	file	dependent	on	the	context.	Note,
warn,	error,	and	fatal	messages	are	also	outputted	to	the	console.	Debug	messages	are
written	to	the	console	only	if	BitBake’s	debug	level	is	equal	to	or	higher	than	the	level	of
the	message.	BitBake	debug	levels	are	set	by	adding	the	-D	parameter	to	the	BitBake
command	line.

bitbake	-D	<target>
bitbake	-DD	<target>
bitbake	-DDD	<target>

select	debug	level	1,	2,	or	3,	respectively.	Plain	messages	are	never	written	to	the	console.

Log	messages	can	be	inserted	into	any	function	defined	in	files	that	support	executable
metadata:	that	is,	recipes,	append	files,	and	classes.	For	both	Python	and	shell	executable
metadata,	logging	functions	that	match	the	log	levels	are	provided	(see	Table	5-1).

Table	5-1	Log	Functions

The	Python	functions	are	implemented	as	part	of	the	BitBake	library.	You	can	find	the

implementation	in	the	file	bitbake/lib/bb/__init__.py.	BitBake’s	Python
logging	utilizes	and	extends	the	Python	logging	classes.	The	file
bitbake/lib/bb/msg.py	provides	formatting	and	filtering	classes	for	the	log
messages.	In	particular,	the	class	BBLogFormatter	provides	colorizing	for	the	different
message	levels.	If	colorizing	is	enabled,	warning	messages	appear	in	yellow,	and	error	and
fatal	messages	are	printed	in	red.

The	shell	functions	are	implemented	by	the	logging.bbclass,	which	is	provided	by
the	OE	Core	metadata	layer.

The	pseudocode	in	Listings	5-3	and	5-4	illustrate	the	use	of	the	logging	functions	for
Python	and	shell	executable	metadata.

Listing	5-3	Python	Logging	Example
Click	here	to	view	code	image

python	do_something()	{
				bb.debug(2,	“Starting	to	do	something…”)
				if	special_condition:
								bb.note(“Met	special	condition.”)
				bb.debug(2,	“Processing	input”)
				if	warning_condition:
								bb.warn(“Upper	limit	out	of	bounds,	adjusting	to	maximum.”)
				if	error_condition:
								bb.error(“Recoverable	error,	proceeding,	but	needs	to	be	fixed.”)
				if	fatal_condition:
								bb.fatal(“Division	by	0,	unable	to	proceed,	exiting.”)
				bb.plain(“The	result	of	doing	something	is	‘mostly	nothing’.”)
				bb.debug(2,	“Done	with	doing	something.”)

Listing	5-4	Shell	Logging	Example
Click	here	to	view	code	image

do_something()	{
				bbdebug	2	“Starting	to	do	something…”
				if	[special_condition];	then
								bbnote	“Met	special	condition.”
				fi
				bbdebug	2	“Processing	input”
				if	[warning_condition];	then
								bbwarn	“Upper	limit	out	of	bounds,	adjusting	to	maximum.”
				fi
				if	[error_condition];	then
								bberror	“Recoverable	error,	proceeding,	but	needs	to	be	fixed.”
				fi
				if	[fatal_condition];	then
								bbfatal	“Division	by	0,	unable	to	proceed,	exiting.”
				fi
				bbplain	“The	result	of	doing	something	is	‘mostly	nothing’.”
				bb.debug	2	“Done	with	doing	something.”

It	is	desirable	and	encouraged	that	you	use	logging	messages	in	your	own	classes	and
recipes	where	useful.	Messages	that	indicate	the	processing	progress	should	use	the	debug
level.	Messages	that	indicate	warnings	and	errors	should	use	the	appropriate	levels.
Typically,	you	should	not	use	the	fatal	level	but	instead	use	the	error	level,	which	gives

BitBake	the	chance	to	complete	the	processing	of	other	tasks	running	in	parallel,	clean	up,
and	leave	the	build	environment	in	a	consistent	state.	Using	fatal	causes	BitBake	to	cease
execution	immediately,	which	potentially	could	leave	a	build	environment	in	a	state	from
which	BitBake	may	not	be	able	to	recover	automatically	on	subsequent	execution.

5.2	Task	Execution
For	any	given	recipe,	BitBake	executes	a	series	of	tasks	in	a	particular	sequence	as	defined
by	the	dependencies.	Using	the	command	listtasks	for	a	recipe	gives	you	a	list	of	all
the	tasks	that	are	defined	for	that	recipe	(see	Listing	5-5).

Listing	5-5	Listing	Tasks	for	a	Recipe
Click	here	to	view	code	image

user@buildhost:~$	bitbake	busybox	-c	listtasks

[…	omitted	for	brevity	…]

NOTE:	Preparing	runqueue
NOTE:	Executing	RunQueue	Tasks
do_build																							Default	task	for	a	recipe	-	depends	on	all
																															other	normal	tasks	required	to	‘build’	a
																															recipe
do_checkuri																				Validates	the	SRC_URI	value
do_checkuriall																	Validates	the	SRC_URI	value	for	all	recipes
																															required	to	build	a	target
do_clean																							Removes	all	output	files	for	a	target
do_cleanall																				Removes	all	output	files,	shared	state
																															cache,	and	downloaded	source	files	for	a
																															target
do_cleansstate																	Removes	all	output	files	and	shared	state
																															cache	for	a	target
do_compile																					Compiles	the	source	in	the	compilation
																															directory
do_compile_ptest_base										Compiles	the	runtime	test	suite	included	in
																															the	software	being	built
do_configure																			Configures	the	source	by	enabling	and
																															disabling	any	build-time	and	configuration
																															options	for	the	software	being	built
do_configure_ptest_base								Configures	the	runtime	test	suite	included
																															in	the	software	being	built
do_devshell																				Starts	a	shell	with	the	environment	set	up
																															for	development/debugging

[…	omitted	for	brevity	…]

The	output	is	a	list	of	all	tasks	in	alphabetical	order	with	short	descriptions	of	what	each
task	does.	However,	it	does	not	provide	you	with	information	about	which	tasks	are	run
during	a	regular	build	process	and	in	which	order	they	are	run.

As	we	saw	in	Chapter	3,	“OpenEmbedded	Build	System,”	the	build	process	for	any
software	package	pretty	much	follows	these	standard	steps:

1.	Fetch:	Retrieve	the	package	source	code	archives	for	download	sites,	or	clone
source	repositories	as	well	as	all	applicable	patches	and	other	local	files.

2.	Unpack:	Extract	source	code,	patches,	and	other	files	from	their	archives.

3.	Patch:	Apply	the	patches.

4.	Configure:	Prepare	the	sources	for	building	within	the	target	environment.

5.	Build:	Compile	the	sources,	archive	the	objects	into	libraries,	and/or	link	the	objects
into	executable	programs.

6.	Install:	Copy	binaries	and	auxiliary	files	to	their	target	directories	of	an	emulated
system	environment.

7.	Package:	Create	the	installation	packages,	including	any	manifests,	according	to	the
chosen	package	management	systems.

You	can	follow	the	build	chain	by	analyzing	the	task	dependencies	created	by	the
classes	in	the	OE	Core	metadata	layer	by	searching	for	the	keyword	addtask	through
the	class	files:

$	grep	addtask	*.bbclass

Using	the	output,	you	can	determine	the	task	dependencies	(see	Listing	5-6).

Listing	5-6	Task	Dependencies
Click	here	to	view	code	image

base.bbclass:										addtask	fetch
base.bbclass:										addtask	unpack	after	do_fetch
patch.bbclass:									addtask	patch	after	do_unpack
base.bbclass:										addtask	configure	after	do_patch
license.bbclass:							addtask	populate_lic	after	do_patch	before	do_build
base.bbclass:										addtask	compile	after	do_configure
base.bbclass:										addtask	install	after	do_compile
staging.bbclass:							addtask	populate_sysroot	after	do_install
package.bbclass:							addtask	package	before	do_build	after	do_install
package_deb.bbclass:			addtask	package_write_deb	before	do_package_write
																							after	do_packagedata	do_package
package_ipk.bbclass:			addtask	package_write_ipk	before	do_package_write
																							after	do_packagedata	do_package
package_rpm.bbclass:			addtask	package_write_rpm	before	do_package_write
																							after	do_packagedata	do_package
package.bbclass:							addtask	package_write	before	do_build
																							after	do_package
base.bbclass:										addtask	build	after	do_populate_sysroot

For	Listing	5-6,	we	used	the	tasks	that	apply	to	the	typical	user	space	software	package.
Special	packages	such	as	the	kernel	use	a	different	process.	We	also	ordered	the	list	by	the
execution	sequence	and	omitted	tasks	that	are	not	relevant	for	the	typical	package	build
process.

5.2.1	Executing	Specific	Tasks
Executing	tasks	individually	for	a	given	recipe	and	making	adjustments	in	between
consecutive	executions	can	be	very	helpful	when	debugging	build	failures.

Using
$	bitbake	<target>	-c	<task>

executes	<task>	for	the	given	<target>	recipe.	A	common	scenario	is	that	you	build	a
package	for	the	first	time,	discover	an	error	when	compiling	the	package,	make
adjustments	to	the	source	code	or	modify	settings,	and	then	run	the	compile	task	again
to	verify	whether	your	changes	have	resolved	the	problem:
Click	here	to	view	code	image

$	bitbake	busybox
[…]
[make	some	changes	to	the	source	code]
$	bitbake	busybox	-c	compile

Rerunning	tasks	individually	allows	you	to	make	changes	at	any	stage	of	the	build
process	and	then	execute	only	the	task	that	is	affected	by	the	changes.	Because	BitBake
creates	log	files	for	each	execution	of	the	task,	distinguished	by	the	process	ID,	you	easily
can	analyze	the	effects	of	your	modifications.

Once	your	changes	have	the	desired	outcome,	you	need	to	integrate	them	with	the
regular	build	process.	Since	modifications	made	inside	the	build	directory	of	a	package	are
not	permanent	and	are	wiped	out	when	cleaning	the	build	directory,	you	have	to	add	them
to	the	build	process	by	modifying	the	recipe,	creating	an	append	file,	including	additional
patches,	and	so	forth.

5.2.2	Task	Script	Files
For	each	execution	of	a	task,	BitBake	creates	a	script	file	that	contains	the	commands	it
executes	when	running	the	task.	The	task	script	files	are	located	in	the	same	directory	as
the	task	log	files:

T	=	“${WORKDIR}/temp”

Task	script	files	are	named
run.do_<taskname>.<pid>

The	<pid>	extension	is	used	to	distinguish	script	files	for	the	same	task	from	multiple
executions.	The	file	run.do_<taskname>	without	a	process	ID	extension	is	a
symbolic	link	that	points	to	the	script	file	that	BitBake	executed	for	the	most	recent	run	of
the	task.

Script	files	for	Python	tasks	are	executed	from	within	the	BitBake	environment	from
which	they	inherit	and	access	the	BitBake	data	dictionary.	Script	files	for	shell	tasks
contain	the	entire	environment	and	are	executed	by	spawning	a	process.	In	many	cases,
they	can	be	run	directly	from	the	command	line.

The	file	log.task_order	contains	a	list	of	the	tasks	and	their	corresponding	script
files	together	with	the	process	IDs	for	the	most	recent	execution.

5.3	Analyzing	Metadata
The	entire	BitBake	build	process	is	driven	by	metadata.	Executable	metadata	provide	the
process	steps,	which	are	configured	through	values	of	the	different	variables.	Many	of
these	variables	are	dependent	on	the	execution	context	of	the	particular	recipe.	For
example,	variables	such	as	SRC_URI	are	defined	by	every	recipe.	Many	variables	also
reference	other	variables,	which	are	expanded	within	the	execution	context.	Conditional
variable	setting	and	appending	are	powerful	concepts	to	dynamically	adjust	the	execution
context	but	also	add	complexity	when	debugging	build	failures.

From	simple	typos	in	variable	names	and	settings	to	incorrect	variable	expansion	and
conditional	assignments,	there	are	many	opportunities	for	the	build	process	to	fail	or	to
produce	incorrect	output.	Hence,	it	is	important	to	be	able	to	analyze	variable	settings	the
build	system	uses	within	different	contexts.	The	command

$	bitbake	-e

prints	the	entire	data	dictionary	for	the	global	BitBake	environment	to	the	console.	This	is
useful	to	examine	the	default	settings	before	they	get	potentially	overridden	by	the
particular	recipe	context.	Using	the	command	with	a	target	shows	the	data	dictionary
entries	for	that	particular	target:

$	bitbake	-e	<target>

A	drawback	of	this	command	is	that	it	lists	variables	as	well	as	functions,	since
functions	are	nothing	else	but	executable	metadata.	BitBake	stores	variables	and	functions
in	the	same	data	dictionary.	Listing	the	code	of	every	function	makes	the	output	rather
cumbersome	to	analyze.	Unfortunately,	neither	BitBake	nor	OE	Core	provides
functionality	to	list	only	the	variables.	However,	that	can	easily	be	added	by	including	the
code	in	Listing	5-7	into	a	class	file.

Listing	5-7	showvars	Task
Click	here	to	view	code	image

addtask	showvars
do_showvars[nostamp]	=	“1”
python	do_showvars()	{
								#	emit	only	the	metadata	that	are	variables	and	not	functions
								isfunc	=	lambda	key:	bool(d.getVarFlag(key,	‘func’))
								vars	=	sorted((key	for	key	in	bb.data.keys(d)	\
															if	not	key.startswith(‘__’)))
								for	var	in	vars:
												if	not	isfunc(var):
																try:
																				val	=	d.getVar(var,	True)
																except	Exception	as	exc:
																				bb.plain(‘Expansion	of	%s	threw	%s:	%s’	%	\
																														(var,	exc.__class__.__name__,	str(exc)))
																bb.plain(‘%s=”%s”’	%	(var,	val))
}

When	used	with
Click	here	to	view	code	image

$	bitbake	<target>	-c	showvars

the	task	lists	all	the	variables	but	not	the	functions	of	the	target’s	execution	environment	in
alphabetical	order.

5.4	Development	Shell
Build	failures	that	originate	from	compiling	and	linking	of	sources	to	objects,	libraries,
and	executables	are	challenging	to	debug	when	cross-building.	You	cannot	just	change	to
the	source	directory,	type	make,	examine	the	error	messages,	and	correct	the	issue.	Build
environments	for	software	packages	are	typically	configured	for	native	builds	on	the	host
system.	A	cross-build	environment	requires	a	different	and	often	rather	complicated	setup
for	tools,	header	files,	libraries,	and	more	to	correctly	operate.

The	Poky	reference	distribution	creates	cross-build	environments	for	its	own	BitBake
build	process.	Through	the	command	devshell,	it	can	also	provide	cross-build
environments	in	a	shell	to	the	developer.	The	command
Click	here	to	view	code	image

$	bitbake	<target>	-c	devshell

launches	a	terminal	with	a	cross-build	environment	for	target.	The	setup	of	the	cross-
build	environment	exactly	matches	the	one	that	Poky	is	using	for	its	own	builds.	Within
that	shell	you	can	use	the	development	tools	as	you	would	for	a	native	build	on	your	build
host.	The	environment	references	the	correct	cross-compilers	as	well	as	any	header	files,
libraries,	and	other	files	required	to	build	the	software	package.

If	any	of	the	dependencies	of	the	software	package	you	are	targeting	with	the
devshell	command	have	not	been	built,	Poky	builds	them	beforehand.

If	you	are	using	BitBake	from	a	graphical	user	interface	with	window	manager,	it
automatically	tries	to	determine	the	terminal	program	to	use	and	open	it	in	a	new	window.
The	variable	OE_TERMINAL	controls	what	terminal	program	to	use.	It	is	typically	set	to
auto.	You	can	set	it	to	one	of	the	supported	terminal	programs	in	the
conf/local.conf	file	of	your	build	environment.	The	terminal	program	must	be
installed	on	your	development	host.	You	can	disable	the	use	of	the	devshell	altogether
by	setting	OE_TERMINAL	=	"none".

5.5	Dependency	Graphs
In	Chapter	4,	“BitBake	Build	Engine,”	we	saw	how	packages	can	declare	direct	build-time
and	runtime	dependencies	on	other	packages	using	the	DEPENDS	and	RDEPENDS
variables	in	their	recipes.	You	can	easily	realize	how	this	practice	can	lead	to	long	and
complex	chains	of	dependencies.

BitBake,	of	course,	must	be	able	to	resolve	these	dependency	chains	to	build	the
packages	in	the	correct	order.	Using	its	dependency	resolver,	BitBake	can	also	create
dependency	graphs	for	analysis	and	debugging.

BitBake	creates	dependency	graphs	using	the	DOT	plain	text	graph	description
language.	DOT	provides	a	simple	way	of	describing	undirected	and	directed	graphs	with
nodes	and	edges	in	a	language	that	can	be	read	by	humans	and	computer	programs	alike.

Programs	from	the	Graphviz1	package	as	well	as	many	others	can	read	DOT	files	and
render	them	into	graphical	representations.

1.	www.graphviz.org

To	create	dependency	graphs	for	a	target,	invoke	BitBake	with	the	-g	or	--graphviz
options.	Using

$	bitbake	-g	<target>

creates	the	following	dependency	files	for	target:

	pn-buildlist:	This	file	is	not	a	DOT	file	but	contains	the	list	of	packages	in
reverse	build	order	starting	with	the	target.

	pn-depends.dot:	Contains	the	package	dependencies	in	a	directed	graph
declaring	the	nodes	first	and	then	the	edges.

	package-depends.dot:	Essentially	the	same	as	pn-depends.dot	but
declares	the	edges	for	a	node	right	after	the	node.	This	file	may	be	easier	to	read	by
humans	because	it	groups	the	edges	ending	on	a	node	with	the	node.

	task-depends.dot:	Declares	the	dependencies	on	the	task	level.

BitBake	also	provides	a	built-in	user	interface	for	package	dependencies,	the
dependency	explorer.	You	can	launch	the	dependency	explorer	with
Click	here	to	view	code	image

$	bitbake	-g	-u	depexp	<target>

The	dependency	explorer	lets	you	analyze	build-time	and	runtime	dependencies	as	well
as	reverse	dependencies	(the	packages	that	depend	on	that	package)	in	a	graphical	user
interface,	as	shown	in	Figure	5-1.

http://www.graphviz.org

Figure	5-1	Dependency	explorer

If	the	Graphviz	package	is	installed	on	your	development	system,	you	can	use	it	to
create	visual	renditions	of	the	dependency	graphs:
Click	here	to	view	code	image

$	dot	-Tpng	pn-depends.dot	-o	pn-depends.png

creates	a	PNG	image	from	the	DOT	file.

5.6	Debugging	Layers
BitBake’s	layer	architecture	provides	an	elegant	way	of	organizing	recipes.	However,	it
also	introduces	complexity,	particularly	when	multiple	layers	provide	the	same	recipe
and/or	modify	the	same	recipe	with	append	files.

The	bitbake-layers	tool	provides	several	functions	that	help	with	analyzing	and
debugging	layers	used	by	a	build	environment.	Invoking

$	bitbake-layers	help

provides	a	list	of	commands	that	can	be	used	with	the	tool:

	help:	Without	any	argument	or	by	specifying	help	as	argument,	the	tool	shows	a
list	of	the	available	commands.	If	you	provide	a	command,	it	shows	additional	help

for	that	command.

	show-layers:	Displays	a	list	of	the	layers	used	by	the	build	environment	together
with	their	path	and	priority.

Click	here	to	view	code	image
$	bitbake-layers	show-layers
layer																	path																																				priority
==
meta																		/path/to/poky/meta																									5
meta-yocto												/path/to/poky/meta-yocto																			5
meta-yocto-bsp								/path/to/poky/meta-yocto-bsp															5
meta-mylayer										/path/to/meta-mylayer																						1

	show-recipes:	Displays	a	list	of	recipes	in	alphabetical	order	including	the	layer
providing	it.

Click	here	to	view	code	image
$	bitbake-layers	show-recipes
Parsing	recipes..done.
===	Available	recipes:	===
acl:
		meta																	2.2.52
acpid:
		meta																	1.0.10
adt-installer:
		meta																	0.2.0
alsa-lib:
		meta																	1.0.27.2
alsa-state:
		meta																	0.2.0
alsa-tools:
		meta																	1.0.27
[…]

	show-overlayed:	Displays	a	list	of	overlaid	recipes.	A	recipe	is	overlaid	if
another	recipe	with	the	same	name	exists	in	a	different	layer.

Click	here	to	view	code	image
$	bitbake-layers	show-overlayed
Parsing	recipes..done.
===	Overlayed	recipes	===
mtd-utils:
		meta													1.5.0
		meta-mylayer					1.4.9

When	building	an	overlaid	recipe,	BitBake	issues	a	warning	and	builds	the	recipe
from	the	layer	with	the	highest	priority.

	show-appends:	Displays	a	list	of	recipes	with	the	files	appending	them.	The
appending	files	are	shown	in	the	order	they	are	applied.

Click	here	to	view	code	image
$	bitbake-layers	show-appends
Parsing	recipes..done.
===	Appended	recipes	===
alsa-state.bb:
		/…/meta-yocto-bsp/recipes-bsp/alsa-state/alsa-state.bbappend
psplash_git.bb:
		/…/meta-yocto/recipes-core/psplash/psplash_git.bbappend

[…]

	show-cross-depends:	Displays	a	list	of	all	recipes	that	are	dependent	on
metadata	in	other	layers.

Click	here	to	view	code	image
$	bitbake-layers	show-cross-depends
Parsing	recipes..done.
meta-yocto/recipes-core/tiny-init/tiny-init.bb	RDEPENDS
											meta/recipes-core/busybox/busybox_1.22.1.bb
meta-yocto/recipes-core/tiny-init/tiny-init.bb	inherits
											meta/classes/base.bbclass
meta-yocto/recipes-core/tiny-init/tiny-init.bb	inherits
											meta/classes/patch.bbclass
meta-yocto/recipes-core/tiny-init/tiny-init.bb	inherits
											meta/classes/terminal.bbclass

	flatten	<directory>:	Flattens	the	layer	hierarchy	by	resolving	recipe
overlays	and	appends	and	writing	the	output	into	a	single-layer	directory	provided
by	the	parameter	directory.	Several	rules	apply:

	If	the	layers	contain	overlaid	recipes,	the	recipe	from	the	layer	with	the	highest
priority	is	used.	If	the	layers	have	the	same	priority,	then	the	order	of	the	layers	in
the	BBLAYERS	variable	of	the	conf/bblayers.conf	file	of	the	build
environment	determine	which	recipe	is	used.

	If	multiple	layers	contain	non-recipe	files	(such	as	images,	patches,	or	similar)
with	the	same	name	in	the	same	subdirectory,	they	are	overwritten	by	the	one
from	the	layer	with	the	highest	priority.

	The	conf/layer.conf	file	from	the	first	layer	listed	in	the	BBLAYERS
variable	in	conf/bblayers.conf	of	the	build	environment	is	used.

	The	contents	of	the	append	files	are	simply	added	to	the	respective	recipe
according	to	the	layer	priority	or	their	order	in	the	BBLAYERS	variable	if	layers
appending	the	same	recipe	have	the	same	priority.

5.7	Summary
This	chapter	introduced	a	variety	of	tools	provided	by	the	OpenEmbedded	build	system	to
assist	with	troubleshooting	build	failures.	Isolating	the	root	cause	of	a	problem	is	only	the
first	step.	The	second	step	is	finding	a	solution,	which	can	be	even	more	challenging.
However,	in	many	cases,	other	developers	may	have	encountered	the	same	or	a	similar
problem,	and	searching	the	Internet	frequently	produces	one	or	more	discussions	about	the
problem	and	potential	solutions.

	Log	files	are	a	good	starting	point	to	identify	the	area	of	failure.	Task	log	files
contain	the	entire	output	of	the	commands	a	task	executes.

	Inserting	your	own	log	messages	into	recipes	and	classes	can	help	in	pinpointing
build	failures.

	Executing	specific	tasks	multiple	times	allows	for	comparing	results.	Task	log	files
are	not	overwritten	by	consecutive	runs.

	Printing	metadata	shows	variables	within	their	task	contexts,	including	variable
expansions	and	conditional	assignments.

	The	development	shell	allows	execution	of	make	targets	within	the	same	cross-
build	environment	that	BitBake	uses.

	Dependency	graphs	support	tracing	build	failures	due	to	unresolved	dependencies
between	software	packages.

	The	bitbake-layers	utility	provides	a	set	of	functions	assisting	with	debugging	build
environments	using	multiple	layers.

6.	Linux	System	Architecture

In	This	Chapter

6.1	Linux	or	GNU/Linux?

6.2	Anatomy	of	a	Linux	System

6.3	Bootloader

6.4	Kernel

6.5	User	Space

6.6	Summary

6.7	References

In	the	previous	chapters,	we	introduced	the	core	concepts	and	components	of	the	Yocto
Project	and	the	OpenEmbedded	build	system.	Before	we	explore	in	detail	how	we	can
build	our	own	custom	Linux	distributions	with	the	Yocto	Project,	it	is	time	to	take	a	step
back	and	look	at	what	makes	up	a	Linux	system.

Understanding	the	architecture	of	a	Linux	system	provides	the	context	for	the	methods
employed	by	OpenEmbedded	Core	(OE	Core)	to	create	the	various	system	components,
such	as	root	filesystem	images,	kernel	images,	and	bootloaders.

We	start	with	a	look	at	the	anatomy	of	a	Linux	system	and	then	break	it	down	into	its
components.

6.1	Linux	or	GNU/Linux?
You	may	have	noticed	that	in	some	contexts,	a	Linux	OS	is	referred	to	as	Linux	and	in
others	to	as	GNU/Linux.	The	reason	behind	this	distinction	is	that	the	name	Linux,	strictly
speaking,	refers	only	to	the	Linux	kernel	as	the	foundation	or	core	of	an	operating	system.

For	an	operating	system	to	be	useful,	many	more	applications	and	libraries	are	required
—development	tools,	compilers,	editors,	shells,	utilities,	and	more—that	are	not	part	of
the	kernel.	A	large	variety	of	those	applications	are	provided	by	the	GNU	Project	started
by	Richard	Stallman	in	1984.	Probably	the	best-known	tools	from	the	GNU	Project	are	the
GCC	compiler,	the	GLIBC	library	and	the	EMACS	editor.	Less	known	about	the	GNU
Project	is	that	it	also	includes	an	operating	system	kernel	called	Hurd.1

1.	https://www.gnu.org/software/hurd/hurd.html

Because	virtually	all	Linux	OSes	used	for	desktop	and	server	applications	include	many
of	the	GNU	Project	software	packages,	many	consider	the	name	GNU/Linux	a	more
appropriate	name	for	the	operating	system,	while	Linux	is	appropriate	when	referring	just
to	the	kernel.

Embedded	Linux	OSes	typically	do	not	include	a	large	variety	of	tools	and	applications,
since	they	are	dedicated	to	specific	use	cases.	Commonly,	in	addition	to	the	specific

https://www.gnu.org/software/hurd/hurd.html

applications	necessary	for	the	embedded	device,	you	find	a	limited	set	of	standard	tools
such	as	a	shell,	an	editor,	and	a	few	utilities.	Frequently,	that	set	of	applications	is
provided	in	a	single	toolbox	such	as	BusyBox.

6.2	Anatomy	of	a	Linux	System
Figure	6-1	depicts	a	high-altitude	overview	of	the	Linux	system	architecture.	The
bootloader	is	not	strictly	part	of	the	Linux	system,	but	it	is	necessary	to	start	the	system
and	therefore	relevant	in	the	context	of	building	a	fully	functional	system	with	the	Yocto
Project.

Figure	6-1	Linux	OS	architecture

A	Linux	OS	can	be	divided	into	two	levels,	the	kernel	space	and	the	user	or	application
space.	This	distinction	is	not	just	conceptual	but	originates	from	the	fact	that	code	from
the	kernel	space	is	executed	in	a	different	processor	operating	mode	than	code	from	the
user	space.

All	kernel	code	is	executed	in	unrestricted	or	privileged	mode.2	In	this	mode,	any
instruction	of	the	instruction	set	of	the	architecture	can	be	executed.	Application	code,	by
contrast,	is	executed	in	restricted	or	user	mode.	In	this	mode,	instructions	that	directly
access	hardware—input/output	(I/O)	instructions—or	otherwise	can	alter	the	state	of	the
machine	are	not	permitted.	Access	to	certain	memory	regions	is	typically	also	restricted.

2.	As	it	is	with	almost	anything,	there	are	exceptions	to	the	rule.	The	uClinux	project	(http://www.uclinux.org)	builds
a	Linux	system	that	targets	microcontrollers	without	memory	management	systems.

Changing	from	user	mode	to	kernel	mode	requires	the	CPU	to	switch	contexts,	which	is
achieved	by	special	instructions	that	are	dependent	on	the	architecture.	For	example,	on
legacy	x86	CPUs,	the	int	80h	software	interrupt	or	trap	fulfilled	that	purpose.	Newer
x86_64	CPUs	provide	the	syscall	instruction,	which	is	used	instead	of	the	int	80h
trap.

6.3	Bootloader
Although	the	bootloader	plays	only	a	very	short	role	in	the	life	cycle	of	a	system	during
startup,	it	is	a	very	important	system	component.	To	some	extent,	configuring	a	bootloader
is	a	common	task	for	any	Linux	system	running	on	standard	PC-style	hardware.	For
embedded	systems,	setting	up	a	bootloader	becomes	a	very	special	task,	since	hardware
for	embedded	systems	not	only	differs	significantly	from	the	standard	PC	architecture	but
also	comes	in	many	different	variants.	That	is	true	not	only	for	the	different	CPU
architectures	but	also	for	the	actual	CPU	or	system-on-chips	(SoC)	as	well	as	for	the	many
peripherals	that,	combined	with	the	CPU	or	SoC,	make	up	the	hardware	platform.

Frequently,	bootloaders	are	divided	into	two	categories:	loaders	and	monitors.	In	the
former	case,	the	bootloader	provides	only	the	mere	functionality	to	initialize	the	hardware
and	load	the	operating	system.	In	the	latter	case,	the	bootloader	also	includes	a	command-
line	interface	through	which	a	user	can	interact	with	the	bootloader,	which	can	be	used	for
configuration,	reprogramming,	initialization,	and	testing	of	hardware	and	other	tasks.	With
these	functions,	monitors	offer	a	great	deal	of	flexibility	to	the	engineer	during	system
development	but	also	pose	some	challenges	when	deploying	the	product.	End	users	should
not	be	able	to	inadvertently	enter	the	monitor	mode.

There	is	no	shortage	in	bootloaders	for	Linux.	Discussing	even	just	the	most	commonly
used	bootloaders	in	detail	can	fill	an	entire	book.	In	this	section,	we	focus	on	the	role	of
the	bootloader	and	introduce	the	most	prevalent	ones,	highlighting	those	that	are	supported
by	the	Yocto	Project.

6.3.1	Role	of	the	Bootloader
After	power	is	applied	to	a	processor	board,	the	majority	of	the	hardware	components
need	to	be	initialized	before	any	software	application	can	be	executed.	Each	processor
architecture	has	its	own	set	of	initialization	steps	that	need	to	be	performed	before	the
hardware	can	be	used.	The	bootloader	typically	just	initializes	the	hardware	necessary	for
the	operating	system	kernel	to	boot.	All	other	hardware	and	peripherals	are	initialized	by
the	operating	system	itself	at	a	later	stage	of	the	boot	process.	Once	the	operating	system
kernel	takes	control	of	the	hardware,	it	may	reinitialize	hardware	components	originally
set	up	by	the	bootloader.

http://www.uclinux.org

Most	processors	have	a	default	address	from	which	they	read	the	first	instruction	to	be
executed.	Other	processors	read	that	address	from	a	defined	location.	Hardware	designers
use	that	information	to	arrange	the	layout	and	address	range	of	the	bootrom	accordingly.
While	commonly	referred	to	as	bootrom,	this	device	often	is	electrically	erasable
programmable	read-only	memory	(EEPROM)	or,	nowadays,	flash	memory.

The	bootrom	contains	what	is	typically	referred	to	as	the	first-stage	bootloader.	This
bootloader	can	be	just	a	couple	of	lines	of	code	that	load	a	secondary	bootloader	from	a
secure	digital	(SD)	chip	or	a	more	complex	system	that	provides	functionality	to	initialize
peripheral	hardware	and	boot	the	system	from	other	devices	such	as	hard	drives	or
network	adapters.	An	example	of	the	latter	is	the	BIOS	found	in	standard	PCs.

The	most	important	step	during	the	early	initialization	of	the	hardware	performed	by	the
bootloader	is	the	initialization	of	memory	and	memory	controller.	Commonly,	CPUs	start
in	real	mode	with	a	direct	mapping	between	logical	and	physical	addresses.	In	real	mode,
the	CPU	does	not	use	a	memory	management	unit	(MMU),	which	provides	abstraction
and	mapping	between	virtual	and	physical	memory	as	well	as	memory	protection	and
relocation.	The	operating	system	kernel	typically	initializes	the	MMU	as	one	of	its	first
hardware	configuration	steps.	Depending	on	the	platform,	however,	it	might	be	necessary
for	the	bootloader	to	enable	and	configure	the	MMU.

After	the	hardware	is	initialized,	the	bootloader	locates	the	operating	system,	typically
the	kernel,	loads	it	into	memory,	passes	configuration	parameters,	and	hands	over	control
to	the	operating	system.	At	this	point,	the	bootloader	has	completed	its	responsibilities	and
terminates.	The	operating	system	later	reclaims	all	memory	space	used	by	the	bootloader.

6.3.2	Linux	Bootloaders
As	a	Linux	system	developer	you	have	many	choices	for	a	bootloader	for	your	project.
Bootloaders	differ	in	functionality,	processor,	and	operating	system	support.	Many	of	them
can	boot	not	only	Linux	but	also	other	operating	systems.	Another	distinction	is	from	what
media	they	can	boot	the	operating	system.	Besides	floppy	disk,	hard	drives,	and	USB
storage	devices,	many	of	them	can	also	boot	from	LAN	via	BOOTP	and	TFTP.

When	choosing	a	bootloader,	architecture	and	boot	media	support	come	first.	During
development,	monitor	functionality	can	significantly	speed	up	round-trip	engineering	and
optimizing	boot	parameters.	However,	when	development	has	finished	and	the	finalized
product	is	deployed,	monitor	functionality	may	become	a	liability,	as	users	may
inadvertently	(or	purposely)	enter	the	monitor	mode.	Some	of	the	bootloaders	offering
monitor	capabilities	can	be	reconfigured	to	allow	or	disallow	access	to	the	monitor
features	or	can	protect	the	monitor	mode	with	a	password.	The	safest	option,	however,	is
to	remove	monitor	capabilities	at	compile	time.

Table	6-1	provides	an	overview	of	some	of	the	bootloaders	commonly	used	with	Linux.
Not	all	of	the	bootloaders	presented	in	the	table	have	Yocto	Project	or	OpenEmbedded
recipes.	They	are	included	for	a	more	complete	picture	of	Linux	bootloaders.	Not	all
embedded	systems	are	created	equal,	and	eventually	you	may	find	yourself	writing	a
recipe	for	a	bootloader	that	better	fits	your	application	than	the	ones	that	are	supported	by
the	Yocto	Project	by	default.

Table	6-1	Linux	Bootloaders

Virtually	all	bootloaders	allow	the	selection	of	different	systems	from	a	menu	before	the
default	is	booted	after	a	configurable	timeout.	This	is	common	practice	for	laptop,
desktop,	and	server	computers,	giving	users	the	choice	to	boot	a	failsafe	or	limited	system
or	a	previously	working	configuration	after	the	system	has	been	modified.	For	embedded
systems,	this	functionality	can	be	utilized	to	fall	back	to	an	earlier	version	if,	for	instance,
a	system	upgrade	has	failed.

Before	we	discuss	the	bootloaders	in	more	detail,	a	note	about	architecture:	references
to	x86	almost	always	imply	the	PC	platform.	This	platform	is	mostly	standardized	in	terms
of	memory	layout,	buses,	and	peripherals.	It	also	includes	the	BIOS,	a	first-stage
bootloader	that	also	provides	configuration	information	to	secondary	bootloaders	and	the
operating	system.	This	makes	it	much	different	from	other	architectures,	such	as	ARM	and
PPC,	for	which	there	are	no	standardized	platforms.	Although	the	different	platforms	use
CPUs	with	the	same	architecture	memory	layout,	buses	and	peripherals	can	greatly	differ.
Those	platforms	typically	also	do	not	have	a	BIOS	or	any	other	standardized	means	to
obtain	the	system	configuration.	That	requires	the	bootloader	to	be	specifically	adapted	to
the	particular	platform.

LILO

The	LInux	LOader	(LILO)	was	once	the	standard	bootloader	for	virtually	all	Linux
distributions	for	x86	systems.	Originally	developed	by	Werner	Almesberger	from	1992	to
1998,	John	Coffman	took	over	maintenance	from	1999	to	2007,	and	Joachim	Wiedorn	has
been	maintaining	the	project	since	2010.	Although	GNU	GRUB	has	successively	replaced
LILO	as	the	default	bootloader	for	many	Linux	distributions	since	2013,	the	project	is	still
active.	LILO’s	main	advantage	over	many	other	bootloaders	is	that	it	is	filesystem
agnostic.	The	operating	system	can	exist	on	any	filesystem,	including	NTFS,	EXT4,
FAT32,	and	the	relatively	new	BTRFS,	and	LILO	can	launch	it	regardless.	LILO	can
directly	boot	Linux	kernel	images	from	floppy	disks	and	hard	drives.	LILO	is	very	well
documented	and	remains	a	viable	choice	for	many	applications	where	a	more	complex
bootloader	such	as	GRUB	is	not	required.

ELILO

The	EFI-based	LInux	LOader	(ELILO)	is	a	branch	of	LILO	made	by	Hewlett-Packard	to
support	EFI-based	hardware.	In	addition,	it	handles	network	booting	via	BOOTP,	DHCP,
and	TFTP	protocols.

GRUB

The	GNU	GRand	Unified	Bootloader	(GRUB)	was	originally	designed	and	implemented
by	Erich	Stefan	Boleyn.	It	started	replacing	LILO	as	the	mainstream	bootloader	for	Linux
distributions	from	2013	on.

GRUB	was	eventually	replaced	with	GRUB	2	and	is	now	known	as	GRUB	Legacy.
Today	the	term	GRUB	typically	refers	to	GRUB	2.

The	PUPA	research	project	created	the	foundation	for	GRUB	2	and	eventually	evolved
into	it.	GRUB	2	is	a	complete	rewrite	and	is	related	to	GRUB	Legacy	only	by	its	name.
GRUB	2	utilizes	the	network	drivers	from	the	Etherboot3	open	source	software	package
for	handling	network	booting	via	BOOTP,	DHCP,	and	TFTP	protocols.

3.	http://etherboot.org/wiki/index.php

SYSLINUX

The	Syslinux	Project	is	an	umbrella	project	covering	multiple	lightweight	bootloaders	for
different	purposes:

	SYSLINUX:	Bootloader	for	FAT	and	NTFS	filesystems	that	can	handle	hard	drives,
floppy	disks,	and	USB	drives.

	ISOLINUX:	Bootloader	for	bootable	El	Torito	CD-ROMs.

	EXTLINUX:	Bootloader	for	Linux	EXT2/EXT3/EXT4	and	BTRFS	filesystems.

	PXELINUX:	Bootloader	for	network	booting	via	BOOTP,	DHCP,	and	TFTP	using
the	Preboot	Execution	Environment	(PXE)	supported	by	the	majority	of	the
networking	hardware.

While	stable,	Syslinux	is	an	active	project	with	the	latest	releases	also	supporting

http://etherboot.org/wiki/index.php

booting	EFI-based	hardware.

U-Boot

U-Boot,	the	Universal	Bootloader,	also	known	as	Das	U-Boot,	can	be	considered	the
Swiss	army	knife	among	the	embedded	Linux	bootloaders.	Based	on	the	PPCBoot	and
ARMBoot	projects	and	originally	developed	by	Wolfgang	Denk	of	DENX	Software
Engineering,	U-Boot	is	one	of	the	most	feature-rich,	flexible,	and	actively	developed
bootloaders	currently	available.

Extensive	support	for	hardware	platforms	is	only	one	of	the	many	features	of	U-Boot.
At	the	time	of	this	writing,	U-Boot	supports	more	than	1,000	platforms,	of	which	more
than	600	are	PowerPC	based	and	more	than	300	are	ARM	based.	If	your	project	uses	any
of	these	architectures,	chances	are	that	your	hardware	platform	is	already	supported	by	U-
Boot.	And	even	if	it	is	not,	you	most	likely	will	find	a	close	match	from	which	you	can
derive	your	own	platform	support	code.

U-Boot	also	supports	device	trees	for	platform	configuration.	Device	trees,	also	referred
to	as	open	firmware	or	flattened	device	trees	(FDTs),	are	data	structures	in	byte	code
format	containing	platform-specific	parameters,	such	as	register	locations	and	sizes,
addresses,	interrupts,	and	more,	required	by	the	Linux	kernel	to	correctly	access	the
hardware	and	boot.	U-Boot	copies	the	device	tree	data	structures	to	a	memory	location.
The	idea	behind	device	trees	is	to	provide	platform	configuration	parameters	during
runtime,	allowing	the	Linux	kernel	to	be	compiled	for	multiple	platforms	without	specific
information	about	the	particular	platform.

U-Boot	is	very	well	documented.	The	main	documentation	is	The	DENX	U-Boot	and
Linux	Guide	(DULG).4	Besides	that	guide,	there	is	a	very	detailed	README	file	included
with	the	U-Boot	sources.

4.	www.denx.de/wiki/DULG/Manual

U-Boot	source	repositories	are	located	at	http://git.denx.de.

BURG

The	Brand-new	Universal	loadeR	from	GRUB	(BURG)	is	a	recent	bootloader	derived
from	GRUB.	The	intention	is	to	support	a	wider	variety	of	operating	systems	and	the
ability	to	have	different	themes	to	customize	the	appearance	of	the	bootloader	during
startup.	BURG	is	not	yet	widely	used,	as	it	has	not	been	adopted	by	the	mainstream	Linux
distributions.	Like	GRUB,	it	supports	only	x86	systems	but	provides	all	the	features	of
GRUB,	including	network	booting	via	BOOTP,	DHCP,	and	TFTP.

systemd-boot

systemd-boot	is	a	simple	bootloader	targeting	UEFI	systems.	It	executes	images	that	are
located	on	an	EFI	System	Partition	(ESP).	All	configuration	files	for	the	bootloader	as
well	as	operating	system	images	need	to	reside	inside	the	ESP.	Linux	kernels	need	to	be
configured	for	EFI	booting	by	setting	the	CONFIG_EFI_STUB	parameter	so	that
systemd-boot	can	directly	execute	them	as	EFI	images.

http://www.denx.de/wiki/DULG/Manual
http://git.denx.de

RedBoot

The	Red	Hat	Embedded	Debug	and	Bootstrap	Firmware	(RedBoot)	is	a	bootloader	based
on	the	eCos	hardware	abstraction	layer.	eCos	is	a	free,	open	source,	real-time	operating
system	targeting	embedded	applications.	eCos	and	RedBoot	were	originally	developed
and	maintained	by	Red	Hat,	but	the	company	has	discontinued	development	and	all
sources	have	since	been	relicensed	under	the	GPL.	Active	development	and	maintenance
have	been	taken	over	by	the	company	eCosCentric,5	which	has	been	formed	by	the	core
eCos	developers	from	Red	Hat.

5.	www.ecoscentric.com

Because	of	its	eCos	heritage,	RedBoot	supports	many	embedded	hardware	platforms	for
virtually	all	architectures,	among	them	ARM,	MIPS,	PPC,	and	x86.

RedBoot’s	networking	support	includes	BOOTP	and	DHCP.	It	can	download	images
over	Ethernet	using	TFTP	as	well	as	over	serial	connections	using	X-	or	Y-modem
protocols.

Monitor	functionality	with	an	interactive	command-line	interface	allows	RedBoot
configuration,	image	download	and	management,	as	well	as	boot	scripting.	Such	features
can	be	used	for	development	as	well	as	for	systems	deployed	in	the	field	for	remote
updating.

6.4	Kernel
The	two	primary	functions	of	an	operating	system’s	kernel	are	to

	Manage	the	computer’s	resources

	Allow	other	programs	to	execute	and	access	the	resources

The	core	resources	of	a	computer	are	typically	composed	of

	CPU:	The	CPU	is	the	execution	unit	for	programs.	The	kernel	is	responsible	for
allocating	programs	to	processors	(scheduling)	and	setting	up	the	execution
environment	(dispatching).

	Memory:	Memory	stores	instructions	as	well	as	data	for	the	programs.	Multiple
programs	compete	for	the	memory,	and	programs	can	demand	more	memory	than
physically	available	in	the	system	(virtual	memory).	The	kernel	is	responsible	for
allocating	memory	to	the	programs,	protecting	memory,	and	deciding	what	happens
if	a	program	requests	more	memory	than	available,	which	in	most	cases	is	less	than
the	physical	memory	of	the	computer.

	I/O	Devices:	I/O	devices	represent	sources	and	sinks	for	data	such	as	keyboard,
mouse,	display,	network	interfaces,	storage,	and	more.	The	kernel	is	responsible	for
servicing	program	requests	to	exchange	data	with	devices	through	a	uniform
programming	interface	that	abstracts	from	the	specifics	of	the	underlying	hardware.

Operating	system	kernel	architectures	are	typically	categorized	as	monolithic	kernel	or
microkernel.	Monolithic	kernels	execute	all	kernel	functions,	including	device	drivers
within	the	core	kernel	process	and	memory	context.	Microkernels	execute	only	core

http://www.ecoscentric.com

functions,	such	as	process	and	memory	management	within	the	core	kernel	context,	and
execute	device	drivers	as	separate	user	space	processes.	A	microkernel	allows	for	easier
system	configuration	and	maintenance	because	device	drivers	can	be	loaded	and	unloaded
while	the	system	is	running.	That	convenience,	however,	comes	at	a	performance	cost,
since	microkernels	use	interprocess	communication	(IPC)	to	exchange	data	between
kernel	modules.

Although	the	Linux	kernel	provides	loadable	kernel	modules	for	device	drivers	that	can
be	loaded	and	unloaded	during	runtime,	Linux	is	considered	a	monolithic	kernel,	since
these	modules	are	directly	inserted	into	the	kernel’s	execution	context.	Because	they	are
running	within	the	kernel’s	execution	context,	Linux	kernel	modules	have	access	to	all
system	resources,	including	memory.	Hence,	IPC	is	not	necessary	for	exchanging	data,
and	therefore	there	is	no	performance	hit.

Proponents	of	the	microkernel	architecture	claim	that	it	is	superior	to	the	monolithic
kernel	architecture,	since	it	is	a	cleaner	design	and	faulty	device	drivers	cannot
compromise	the	entire	system.	According	to	them,	this	advantage	outweighs	the
performance	hit	due	to	increased	context	switches	and	IPC.	This	issue	has	been	a	long-
standing	debate	between	Linus	Torvalds	and	Andrew	S.	Tanenbaum,	the	creator	of	the
Minix	OS.6

6.	Andrew	S.	Tanenbaum,	“Linux	Is	Obsolete,”	January	29,	1992,
https://groups.google.com/forum/#!msg/comp.os.minix/wlhw16QWltI/XdksCA1TR_QJ.

6.4.1	Major	Linux	Kernel	Subsystems
The	Linux	kernel	is	divided	into	a	set	of	major	subsystems	that	are	shown	in	Figure	6-2.

Figure	6-2	Linux	kernel	subsystems

Architecture-Dependent	Code

Although	the	majority	of	the	Linux	kernel	code	is	independent	of	the	architecture	it	is
executed	on,	there	are	portions	that	need	to	take	the	CPU	architecture	and	the	platform
into	consideration.

Inside	the	Linux	kernel	source	tree,	all	architecture	and	platform-specific	code	is

https://groups.google.com/forum/#!msg/comp.os.minix/wlhw16QWltI/XdksCA1TR_QJ

located	in	the	linux/arch	subdirectory.	Within	that	subdirectory	is	another	directory
for	each	architecture	supported	by	the	Linux	kernel.	Every	architecture	directory	contains
a	subdirectory	kernel	containing	the	architecture-specific	kernel	code.	The	assembly
file	head.S	(or	different	head_*.S	files	for	some	architectures)	provides	the	startup
code	for	the	CPU.

Device	Drivers

Device	drivers	handle	all	the	devices	that	the	Linux	kernel	supports.	In	most	cases,	these
are	hardware	devices,	but	some	drivers	implement	software	devices.	One	example	is	the
software	watchdog	timer.

Device	drivers	make	up	the	vast	majority	of	the	Linux	kernel	code.	Inside	the	Linux
source	tree,	device	driver	code	is	located	in	the	linux/drivers	directory,	which	is
further	divided	into	subdirectories	for	the	various	drivers	supporting	certain	device
categories,	such	as	Bluetooth,	FireWire,	I2C	SCSI,	and	many	more.

Memory	Management

Only	the	kernel	has	unrestricted	access	to	the	system’s	physical	memory	and	is	therefore
responsible	for	safely	allowing	processes	to	access	it.	Most	modern	CPUs	contain	an
MMU	providing	virtual	addressing	of	a	memory	space	that	is	typically	much	larger	than
the	actual	physical	memory	of	the	system.	Virtual	addressing	allows	each	process	to	have
its	own	private	memory	space	that	is	protected	(by	the	kernel)	from	other	processes.

While	a	process	runs,	the	kernel	must	ensure	that	the	process’s	virtual	memory	space	is
mapped	to	physical	memory.	Memory	is	mapped	from	virtual	addresses	to	physical
addresses	in	pages,	or	segments,	that	on	Linux	are	typically	4	k	in	size.7	However,	that
does	not	mean	that	a	process	can	allocate	only	4	k	of	memory	at	a	time.	Linux	provides
what	is	called	a	slab	allocator.	While	based	on	4	k	pages,	slab	allocation	allows	larger
chunks	of	memory	to	be	allocated,	eliminates	fragmentation	caused	by	allocations	and
deallocations,	and	reuses	previously	allocated	memory	by	tracking	the	usage	states	of
slabs.

7.	The	default	page	size	of	the	Linux	kernel	has	been	4	k	for	the	longest	time	because	it	has	been	a	good	compromise
between	granularity	and	management	overhead,	as	the	Linux	kernel	maintains	a	64-byte	(dependent	on	architecture
and	debug	options)	management	structure	per	page.	For	a	system	with	4	GB	of	RAM,	this	means	64	MB;	for	16
GB,	it	is	256	MB.	Server	systems	with	a	lot	of	memory	typically	use	a	larger	page	size	to	reduce	the	amount	of
memory	needed	for	the	page	tables.	The	page	size	is	defined	in	asm/page.h	as	#define	PAGE_SIZE	(1UL
<<	PAGE_SHIFT)	and	can	be	changed	by	modifying	PAGE_SHIFT.

Virtual	addressing	allows	allocation	of	more	memory	than	is	physically	present	in	the
system.	When	physical	memory	is	exhausted,	the	kernel	can	move	pages	from	the	memory
onto	external	storage	such	as	a	hard	drive.	This	process	is	called	swapping	because
memory	pages	are	swapped	from	memory	onto	the	disk.	Most	embedded	systems	do	not
have	a	hard	disk,	however.	While	swapping	to	flash	devices	is	possible,	it	is	rather
inefficient	and	reduces	the	life	span	of	the	flash	device.

You	can	find	the	memory	management	code	in	the	linux/mm	directory	of	the	kernel
source	tree.

Virtual	Filesystem

A	filesystem	is	an	organizational	scheme	for	persistent	data	storage	after	an	application
terminates.	It	provides	mechanisms	to	write,	read,	update,	and	erase	data	and	manages	the
available	space	on	the	storage	medium.

Unlike	other	operating	systems,	Linux	gives	users	the	choice	of	many	different	file-
systems	for	a	variety	of	applications	and	storage	media.	Besides	the	core	Linux
filesystems	ext2,	ext3,	and	ext4,	Linux	offers	support	for	many	others,	including	VFAT,
NTFS,	ZFS,	and	the	new	Btrfs.

With	a	broad	variety	comes	the	challenge	of	providing	an	abstraction	between
applications’	requirements	for	persistent	storage	from	the	details	of	the	filesystem.	For
basic	operations	such	as	creating,	writing,	and	reading	files	and	browsing	directories,
applications	must	not	need	to	be	aware	of	the	type	of	file	system	their	data	is	stored	on.

For	this	purpose,	the	Linux	kernel	provides	a	common	abstraction	interface	for	file
operations	known	as	the	virtual	file	system	(VFS).	The	VFS	is	a	switching	fabric	between
the	underlying	filesystem	implementations	and	file	operations	of	the	system	call	interface
(SCI).	The	filesystem	implementations	are	essentially	data	management	plugins	that	reside
between	the	VFS	layer	above	and	a	unified	data	buffer	below.	The	purpose	of	the	data
buffer	is	to	optimize	data	access	to	the	physical	storage	devices.	The	data	buffer	layer
implements	a	common	set	of	APIs	and	functions	for	data	access	from	the	filesystem
implementations	and	to	the	underlying	device	drivers	that	handle	the	specifics	of	the
storage	devices.

An	interesting	aspect	of	the	VFS	is	that	it	is	not	limited	to	filesystems	residing	on
physical	storage	devices	but	likewise	provides	the	same	uniform	interface	for	network
filesystems,	such	as	Network	File	System	(NFS)	and	Server	Message	Block	(SMB),	as
well	as	for	pseudo-filesystems	such	as	the	proc	filesystem.

Sources	for	VFS	and	the	filesystem	reside	in	the	linux/fs	directory	of	the	Linux
kernel	source	tree.

Process	Management

The	kernel’s	process	management	is	responsible	for	the	execution	of	processes.	The
application	programming	domain	typically	distinguishes	between	processes	and	threads.
In	this	context,	process	refers	to	the	execution	context	of	an	application,	and	thread	refers
to	independent	execution	paths	inside	a	process.	A	process	has	at	least	one	thread,	its	main
thread,	from	which	it	can	spawn	additional	threads.	All	threads	of	a	process	share	the	same
execution	context,	memory	space,	and	other	resources.	Therefore,	threads	are	also
commonly	referred	to	as	lightweight	processes.

The	Linux	kernel	does	not	separate	the	two	concepts	of	processes	and	threads.	Both	of
them	are	implemented	as	threads	that	represent	a	complete	execution	context	comprising
code,	data,	stack,	and	CPU	registers.

Process	management	allocates	the	core	resource	of	a	computer	system,	the	CPUs.	As
threads	compete	for	the	available	CPUs,	it	is	the	task	of	the	scheduler	to	select	the	threads
eligible	to	run	and	assign	them	to	the	available	CPUs	(or	CPU	cores).	The	Linux	kernel’s

default	scheduling	algorithm	is	the	Completely	Fair	Scheduler	(CFS).	The	goal	of	the	CFS
is	to	maximize	overall	CPU	utilization	while	also	maximizing	interactive	performance	of
the	system.	Like	the	earlier	O(1)	scheduler,	which	it	replaced,	CFS	provides	a	scheduling
time,	which	is	independent	of	the	number	of	processes	waiting	to	be	scheduled.

The	Linux	kernel	also	offers	real-time	scheduling	policies	with	static	priorities.	The
latest	addition	to	the	real-time	scheduling	policies	is	deadline	scheduling,	a	policy	that
uses	dynamic	priorities	based	on	the	closest	expiring	deadline.

Network	Stack

The	Linux	kernel’s	network	stack	is	essentially	modeled	after	the	well-known	ISO	Open
Systems	Interconnection	(OSI)	layered	architecture,	as	defined	by	ISO/IEC	7498-1.

On	the	network	layer,	Linux	of	course	supports	the	IPv4	and	IPv6	protocols	but	also
AppleTalk,	IPX,	X.25,	Frame	Relay,	and	others.	Transport	layer	protocols	include	TCP,
UDP,	SPX,	and	more.

The	socket	layer	provides	the	abstraction	between	application	programs	and	the
networking	protocol	stacks	in	the	kernel.	A	socket	is	a	communication	endpoint,	which	is
defined	by	its	domain	and	type.	The	domain	indicates	the	protocol	family	such	as	IPv4
(AF_INET)	or	IPv6	(AF_INET6).	Type	indicates	the	communication	semantics,	such	as
connection-based	two-way	byte	streams	(SOCK_STREAM)	or	raw	protocol	access
(SOCK_RAW).

The	network	stack	implementations	can	be	found	in	linux/net	inside	the	Linux
kernel	source	tree.

Interprocess	Communication

IPC	is	a	set	of	methods	for	data	exchange	between	processes	or	threads.	IPC	methods	are
typically	subdivided	into	message	passing,	shared	memory,	synchronization,	and	data
streams.

Implementation	of	the	Linux	kernel	IPC	methods	can	be	found	in	linux/ipc.	These
functions	create	the	core	for	the	higher-level	abstractions	of	the	System	V	and	POSIX
(Portable	Operating	System	Interface)	IPC	mechanisms.

System	Call	Interface

The	SCI	is	the	connection	between	the	Linux	kernel	and	applications	running	in	user
space.	Through	the	SCI,	the	kernel	provides	a	common	API	of	function	calls	for	process
management,	file	management,	device	management,	interprocess	communication,	and
system	management.

The	Linux	kernel’s	SCI	comprises	over	300	functions.	The	exact	number	is	dependent
on	the	architecture.	The	majority	of	the	functions	are	common,	though	their
implementations	may	be	architecture-dependent.	Some	functions	may	be	architecture-
specific	and	only	supported	by	a	particular	architecture.	The	SCI	implementation	can	be
found	in	linux/kernel	with	the	architecture-dependent	portions	in	the	subdirectories
of	linux/arch.

Each	system	call	represents	a	defined	entry	point	from	user	space	into	the	kernel.	A
system	call	always	constitutes	a	CPU	context	switch	from	user	mode	into	kernel	or
privileged	mode.	On	legacy	x86	CPUs,	this	context	switch	was	invoked	by	issuing	the
int	80h	software	interrupt	or	trap.	Newer	x86	CPUs	provide	the	sysenter
instruction,	which	is	more	efficient	than	a	trap.	Every	system	call	has	a	unique	number	by
which	it	is	identified.	This	number	is	also	referred	to	as	the	system	call	slot.	The	number	is
the	key	through	which	the	SCI	multiplexes	and	de-multiplexes	the	system	calls	through	a
single	API.	You	can	find	the	number	belonging	to	a	particular	system	call	in	the	file
/usr/include/asm/unistd.h.	Depending	on	the	architecture,	this	file	may	include
other	files	containing	the	actual	list	of	system	calls.

If	manual	pages	are	installed	on	your	system,	you	can	use	man	syscalls	or	info
syscalls	for	more	information	on	the	system	calls.

With	the	strace	tools,	you	can	trace	system	calls	and	signals.	For	instance,
$	strace	ls

shows	the	system	calls	in	their	sequential	call	order	used	by	the	ls	command	to	list	the
entries	of	the	current	directory.	The	strace	sources	are	also	a	great	resource	for	the	system
calls	for	the	different	architectures.	You	can	find	the	project’s	source	on	SourceForge	at
http://sourceforge.net/projects/strace.	In	the	code	tree	under	the	directory	linux,	there
are	subdirectories	for	the	various	architectures.	Each	of	these	subdirectories	contains	a	file
called	syscallent.h,	which	lists	all	the	system	calls	supported	by	that	architecture	in
order	of	their	slot.

For	each	architecture,	the	Linux	kernel	sources	maintain	system	call	tables.	For	x86
architecture,	you	can	find	them	in	arch/x86/syscalls/syscall_32.tbl	for	32-
bit	and	arch/x86/syscalls/syscall_64.tbl	for	64-bit.

There	is	not	a	single	location	inside	the	Linux	kernel	source	tree	where	all	the	system
calls	are	implemented.	However,	you	can	easily	find	the	implementation	of	a	particular
system	call	by	its	name	from	within	the	Linux	source	tree	using	the	command	shown	in
Listing	6-1.

Listing	6-1	Implementation	of	the	exit	System	Call
Click	here	to	view	code	image

yocto@yocto-dev:~/linux$	grep	-rA3	‘SYSCALL_DEFINE.\?(exit,’	*
kernel/exit.c:SYSCALL_DEFINE1(exit,	int,	error_code)
kernel/exit.c-{
kernel/exit.c-		do_exit((error_code&0xff)<<8);
kernel/exit.c-}

The	example	uses	the	exit	system	call.	Simply	replace	exit	in	the	command	line
with	a	different	system	call	name	to	find	the	implementation	for	that	system	call.	The
example	also	shows	the	definition	of	system	call	functions	using	the	SYSCALL_DEFINE
macro.	Depending	on	the	number	of	parameters	the	system	call	function	expects,	a
different	macro	with	the	number	of	parameters	in	its	name	is	used.

Invoking	system	call	functions	requires	saving	all	the	CPUs’	registers,	passing	the

http://sourceforge.net/projects/strace

system	call	number	and	its	parameters	in	specific	registers,	and	then	issuing	the	trap.	What
exactly	needs	to	be	done,	and	how,	is	dependent	on	the	architecture	and	is	usually	written
in	assembly	code.	Typically,	user	space	applications	do	not	invoke	system	calls	directly,
although	they	could,	but	through	wrapper	functions	contained	in	the	C	Library.

6.4.2	Linux	Kernel	Startup
Now	that	we	have	discussed	the	major	kernel	subsystems,	let’s	have	a	high-altitude	look	at
the	Linux	kernel	startup	process.	For	the	context	of	this	discussion,	it	is	sufficient	to
understand	how	control	is	passed	from	the	bootloader	to	the	kernel	and	then	finally	to	the
first	user	space	application	program,	the	init	process.	In	reality,	the	Linux	kernel	runs
through	many	stages	of	initialization	for	the	various	hardware	components	and
subsystems.	Many	of	these	stages	are	dependent	on	the	hardware	platform.

After	the	bootloader	has	copied	the	Linux	kernel	image	into	memory,	it	passes	control
to	the	bootstrap	loader	that	is	a	prepended	part	of	the	kernel	image.	To	save	space,	the
kernel	image	is	typically	compressed,	and	it	is	the	bootstrap	loader’s	responsibility	to
create	the	proper	execution	environment	for	the	kernel,	decompress	the	kernel,	relocate
the	kernel	in	memory,	and	then	pass	control	to	it.	The	bootstrap	loader	directly	passes
control	to	the	kernel	entry	point	inside	a	module,	which	is	called	head.o	for	most
architectures.

The	module	head.o	contains	architecture-specific	but	platform-independent
initialization	code	for	the	particular	CPU	architecture.	This	module	is	derived	from	the
assembly	language	file	head.S,	which	is	located	inside	the	directory
linux/arch/<ARCH>/kernel,	where	<ARCH>	is	replaced	by	the	particular
architecture.

At	a	high-level,	the	head.o	module	performs	the	following	tasks:

	Verifies	the	correct	architecture	and	CPU

	Detects	CPU	type	and	functionality,	such	as	hardware	floating-point	capabilities

	Enables	the	CPU’s	MMU	and	creates	the	initial	table	of	memory	pages

	Establishes	basic	error	reporting	and	handling

	Switches	to	non-architecture-specific	kernel	startup	function	start_kernel()	in
main.c

The	file	main.c	in	linux/init	contains	the	bulk	of	the	Linux	kernel	startup	code,
from	architecture	setup,	kernel	command-line	processing,	and	initialization	of	the	first
kernel	thread	to	mounting	the	root	filesystem	and	executing	the	first	user	space	application
program.

After	performing	a	basic	set	of	kernel	initialization,	the	start_kernel()	function
calls	rest_init(),	which	spawns	the	first	kernel	thread.	This	thread	is	spawned	by
calling	kernel_thread()	with	the	function	kernel_init()	as	the	first	parameter.
This	function	becomes	the	init	thread.	At	this	point,	there	are	now	two	threads	running:
start_kernel()	and	kernel_init().	The	former	kicks	off	the	scheduler	and	then

loops	forever	in	the	cpu_idle()	function.	The	latter	becomes	the	init()	thread,	the
parent	of	all	user	space	processes	with	the	process	ID	(PID)	of	1.

At	the	end,	kernel_init()	launches	the	first	user	space	application.	If	an	init
command	was	passed	as	part	of	the	kernel	command	line,	kernel_init()	first
attempts	to	start	that	program.	If	no	init	command	was	passed,	the	function	then	tries	a
set	of	default	programs	that	it	loads	from	the	root	filesystem.	It	tries	/sbin/init,
/etc/init,	/bin/init,	and	/bin/sh	in	this	order	until	one	succeeds.	If	none
succeeds,	the	kernel	exits	with	the	well-known	error	message	“No	init	found.	Try	passing
init=	option	to	the	kernel.	See	Linux	Documentation/init.txt	for	guidance.”

Typically,	the	first	user	space	process	is	part	of	an	init	or	a	startup	system	that	then
launches	other	user	processes.	The	init	systems	typically	used	by	Linux	desktops	and
servers	are	System	V	Init,	systemd,	and	Upstart.	Embedded	systems	commonly	use	more
lightweight	startup	systems	such	as	BusyBox	or	directly	launch	their	core	application.

6.5	User	Space
Now	that	the	kernel	has	completed	its	initialization,	launched	the	init	process,	and
within	it	executed	the	first	user	space	application,	the	system	has	entered	userland	or	user
space.	User	space	is	all	the	code	that	runs	outside	the	operating	system’s	kernel	and
includes	all	the	libraries	and	application	programs.	User	space	provides	all	the
functionality	required	for	the	system	to	serve	its	intended	purpose.

Configuration	of	the	user	space	and	which	libraries	and	application	programs	it	includes
differ	from	system	to	system.	However,	there	is	always	one	library	that	virtually	all
systems	include:	the	C	Standard	Library	(LIBC).	Just	as	the	init	process	is	the	parent	of
all	processes,	LIBC	can	be	considered	the	parent	of	all	libraries.

Even	the	canonical	Hello	World!	application	shown	in	Listing	6-2	requires	a	lot	of
logistics	to	put	the	two	words	on	the	screen.

Listing	6-2	Hello	World

#include	<stdio.h>
int	main()	{
				printf(“Hello	World!\n”);
				return	0;
}

This	program	calls	printf(),	which	is	one	of	many	functions	provided	by	the	LIBC
APIs,	alleviating	the	burden	on	application	programmers	to	perform	the	more	tedious
tasks	of	implementing	core	functionality	required	by	virtually	any	program.	The	LIBC
APIs	are	specified	by	the	ANSI	C	Standard.	For	UNIX	systems,	the	ANSI	C	Standard	is
described	as	part	of	the	POSIX	library,	which	is	a	superset	of	it.	POSIX	is	an	IEEE
standard.	The	current	version	is	POSIX.1-2008	or	IEEE	Std	1003.2008.

Many	of	the	LIBC	APIs	directly	map	to	the	kernel’s	systems	calls.	In	fact,	frequently,
the	implementation	of	the	function	is	merely	a	wrapper	around	the	system	call.

For	Linux	systems,	multiple	implementations	of	LIBC	are	available.	They	vary	by

footprint	of	the	library	itself,	compatibility	with	the	ANSI	C	Standard,	performance,
modularity,	and	configurability.	Table	6-2	provides	an	overview	of	the	common
implementations.

Table	6-2	C	Standard	Libraries	for	Linux

The	goal	of	EGLIBC	is	to	be	a	lightweight	and	configurable	LIBC	that	supports	cross-
build	and	is	binary-compatible	with	GLIBC.	Binary	compatibility	allows	application
programs	compiled	for	GLIBC	to	execute	on	systems	with	EGLIBC	without	requiring
recompilation.	Other	LIBC	implementations	typically	provide	compatibility	only	of	the
APIs	and	require	recompilation.

While	originally	intended	for	embedded	systems,	an	increasing	number	of	desktop	and

server	Linux	distributions	have	made	EGLIBC	their	default.	Therefore,	efforts	have	been
ongoing	to	phase	out	the	different	EGLIBC	and	GLIBC	branches	in	favor	of	a	common
development	effort	under	the	umbrella	of	GLIBC.	As	of	the	writing	of	this	book,	EGLIBC
has	now	officially	been	merged	into	GLIBC.	We	mention	EGLIBC	here	for	historic
reasons.

6.6	Summary
A	Linux	OS	stack	is	made	up	of	many	different	components.	In	this	chapter,	we	examined
its	architecture	to	create	a	foundation	for	the	discussions	on	how	the	OpenEmbedded	build
system	builds	the	components	and	assembles	them	into	a	working	Linux	system.

	Bootloaders	play	a	short	but	important	role	during	system	startup.	A	bootloader’s
responsibility	is	to	initialize	the	hardware,	and	load	and	boot	the	OS	kernel.

	The	Linux	kernel	is	a	large	and	complex	project.	It	is	divided	into	various
subsystems	that	provide	the	kernel’s	functionality	and	abstract	it	from	the	underlying
hardware.

	The	kernel’s	SCI	is	the	bridge	between	the	kernel	and	user	space	applications.

	User	space	or	userland	refers	to	all	the	code	that	runs	outside	the	kernel.	The	kernel
starts	the	first	user	space	process.

	LIBC	provides	a	common	set	of	APIs	and	functions	for	application	programs.	LIBC
eliminates	the	need	for	application	developers	to	deal	with	the	intricacies	of	the
system	and	makes	application	programs	portable	between	different	systems.

6.7	References
Kernel	Documentation,	https://www.kernel.org/doc/Documentation

https://www.kernel.org/doc/Documentation

7.	Building	a	Custom	Linux	Distribution

In	This	Chapter

7.1	Core	Images—Linux	Distribution	Blueprints

7.2	Building	Images	from	Scratch

7.3	Image	Options

7.4	Distribution	Configuration

7.5	External	Layers

7.6	Hob

7.7	Summary

In	the	preceding	chapters,	we	laid	the	foundation	for	using	the	Yocto	Project	tools	to	build
custom	Linux	distributions.	Now	it	is	time	that	we	put	that	knowledge	to	work.

Chapter	2,	“The	Yocto	Project,”	outlined	the	prerequisites	for	the	build	system	and	how
to	set	up	your	build	host,	configure	a	build	environment,	and	launch	a	build	that	creates	a
system	ready	to	run	in	the	QEMU	emulator.	In	this	chapter,	we	reuse	that	build
environment.	If	you	have	not	yet	prepared	your	build	system,	we	recommend	that	you	go
back	to	Chapter	2	and	follow	the	steps.	Performing	a	build	using	Poky’s	default	settings
validates	your	setup.	It	also	downloads	the	majority	of	the	source	code	packages	and
establishes	a	shared	state	cache,	both	of	which	speed	up	build	time	for	the	examples
presented	in	this	chapter.

In	Chapter	3,	“OpenEmbedded	Build	System,”	and	Chapter	4,	“BitBake	Build	Engine,”
we	explained	the	OpenEmbedded	build	system	and	the	BitBake	syntax.	This	and
following	chapters	show	examples	or	snippets	of	BitBake	recipes	utilizing	that	syntax.
While	the	syntax	is	mostly	straightforward	and	resembles	typical	scripting	languages,
there	are	some	constructs	that	are	particular	to	BitBake.	Referring	to	Chapter	4,	you	find
syntax	examples	and	explanations.

When	experimenting	with	the	Yocto	Project,	you	eventually	encounter	build	failures.
They	can	occur	for	various	reasons,	and	troubleshooting	can	be	challenging.	You	may
want	to	refer	to	Chapter	5,	“Troubleshooting,”	for	the	debugging	tools	to	help	you	track
down	build	failures.

Chapter	6,	“Linux	System	Architecture,”	outlined	the	building	blocks	of	a	Linux
distribution.	While	bootloader	and	the	Linux	kernel	are	indispensable	for	a	working	Linux
OS	stack,	user	space	makes	up	its	majority.	In	this	chapter,	we	focus	on	customizing	Linux
OS	stacks	with	user	space	libraries	and	applications	from	recipes	provided	by	the	Yocto
Project	and	other	compatible	layers	from	the	OpenEmbedded	project.

7.1	Core	Images—Linux	Distribution	Blueprints
The	OpenEmbedded	Core	(OE	Core)	and	other	Yocto	Project	layers	include	several
example	images.	These	images	offer	root	filesystem	configurations	for	typical	Linux	OS
stacks.	They	range	from	very	basic	images	that	just	boot	a	device	to	a	command-line
prompt	to	images	that	include	the	X	Window	System	(X11)	server	and	a	graphical	user
interface.	These	reference	images	are	called	the	core	images	because	the	names	of	their
respective	recipes	begin	with	core-image.	You	can	easily	locate	the	recipes	for	the	core
images	with	the	find	command	from	within	the	installation	directory	of	your	build
system	(see	Listing	7-1).

Listing	7-1	Core	Image	Recipes
Click	here	to	view	code	image

user@buildhost:~/yocto/poky$	find	./meta*/recipes*/images	-name	“*.bb”	\
																																		-print
./meta/recipes-core/images/core-image-minimal-initramfs.bb
./meta/recipes-core/images/core-image-minimal-mtdutils.bb
./meta/recipes-core/images/build-appliance-image_8.0.bb
./meta/recipes-core/images/core-image-minimal-dev.bb
./meta/recipes-core/images/core-image-minimal.bb
./meta/recipes-core/images/core-image-base.bb
./meta/recipes-extended/images/core-image-full-cmdline.bb
./meta/recipes-extended/images/core-image-testmaster-initramfs.bb
./meta/recipes-extended/images/core-image-lsb-sdk.bb
./meta/recipes-extended/images/core-image-lsb-dev.bb
./meta/recipes-extended/images/core-image-lsb.bb
./meta/recipes-extended/images/core-image-testmaster.bb
./meta/recipes-graphics/images/core-image-x11.bb
./meta/recipes-graphics/images/core-image-directfb.bb
./meta/recipes-graphics/images/core-image-weston.bb
./meta/recipes-graphics/images/core-image-clutter.bb
./meta/recipes-qt/images/qt4e-demo-image.bb
./meta/recipes-rt/images/core-image-rt-sdk.bb
./meta/recipes-rt/images/core-image-rt.bb
./meta/recipes-sato/images/core-image-sato-dev.bb
./meta/recipes-sato/images/core-image-sato-sdk.bb
./meta/recipes-sato/images/core-image-sato.bb
./meta-skeleton/recipes-multilib/images/core-image-multilib-example.bb

You	can	look	at	the	core	images	as	Linux	distribution	blueprints	from	which	you	can
derive	your	own	distribution	by	extending	them.	All	core	image	recipes	inherit	the	core-
image	class,	which	itself	inherits	from	image	class.	All	images	set	the
IMAGE_INSTALL	variable	to	specify	what	packages	are	to	be	installed	into	the	root
filesystem.	IMAGE_INSTALL	is	a	list	of	packages	and	package	groups.	Package	groups
are	collections	of	packages.	Defining	package	groups	alleviates	the	need	to	potentially	list
hundreds	of	single	packages	in	the	IMAGE_INSTALL	variable.	We	explain	package
groups	in	a	coming	section	of	this	chapter.	Image	recipes	either	explicitly	set
Image_INSTALL	or	extend	its	default	value	provided	by	the	core-image	class,	which
installs	the	two	package	groups	packagegroup-core-boot	and	packagegroup-
base-extended.	The	default	creates	a	working	root	filesystem	that	boots	to	the
console.

Let’s	have	a	closer	look	at	the	various	core	images:

	core-image-minimal:	This	is	the	most	basic	image	allowing	a	device	to	boot
to	a	Linux	command-line	login.	Login	and	command-line	interpreter	are	provided	by
BusyBox.

	core-image-minimal-initramfs:	This	image	is	essentially	the	same	as
core-image-minimal	but	with	a	Linux	kernel	that	includes	a	RAM-based
initial	root	filesystem	(initramfs).

	core-image-minimal-mtdutils:	Based	on	core-image-minimal,	this
image	also	includes	user	space	tools	to	interact	with	the	memory	technology	device
(MTD)	subsystem	in	the	Linux	kernel	to	perform	operations	on	flash	memory
devices.

	core-image-minimal-dev:	Based	on	core-image-minimal,	this	image
also	includes	all	the	development	packages	(header	files,	etc.)	for	all	the	packages
installed	in	the	root	filesystem.	If	deployed	on	the	target	together	with	a	native	target
toolchain,	it	allows	software	development	on	the	target.	Together	with	a	cross-
toolchain,	it	can	be	used	for	software	development	on	the	development	host.

	core-image-rt:	Based	on	core-image-minimal,	this	image	target	builds
the	Yocto	Project	real-time	kernel	and	includes	a	test	suite	and	tools	for	real-time
applications.

	core-image-rt-sdk:	In	addition	to	core-image-rt,	this	image	includes	the
system	development	kit	(SDK)	consisting	of	the	development	packages	for	all
packages	installed;	development	tools	such	as	compilers,	assemblers,	and	linkers;	as
well	as	performance	test	tools	and	Linux	kernel	development	packages.	This	image
allows	for	software	development	on	the	target.

	core-image-base:	Essentially	a	core-image-minimal,	this	image	also
includes	middle-ware	and	application	packages	to	support	a	variety	of	hardware
such	as	WiFi,	Bluetooth,	sound,	and	serial	ports.	The	target	device	must	include	the
necessary	hardware	components,	and	the	Linux	kernel	must	provide	the	device
drivers	for	them.

	core-image-full-cmdline:	This	minimal	image	adds	typical	Linux
command-line	tools—bash,	acl,	attr,	grep,	sed,	tar,	and	many	more—to	the	root
filesystem.

	core-image-lsb:	This	image	contains	packages	required	for	conformance	with
the	Linux	Standard	Base	(LSB)	specification.

	core-image-lsb-dev:	This	image	is	the	same	as	the	core-image-lsb	but
also	includes	the	development	packages	for	all	packages	installed	in	the	root
filesystem.

	core-image-lsb-sdk:	In	addition	to	core-image-lsb-dev,	this	image
includes	development	tools	such	as	compilers,	assemblers,	and	linkers	as	well	as
performance	test	tools	and	Linux	kernel	development	packages.

	core-image-x11:	This	basic	graphical	image	includes	the	X11	server	and	an
X11	terminal	application.

	core-image-sato:	This	image	provides	X11	support	that	includes	the
OpenedHand	Sato	user	experience	for	mobile	devices.	Besides	the	Sato	screen
manager,	the	image	also	provides	several	applications	using	the	Sato	theme,	such	as
a	terminal,	editor,	file	manager,	and	several	games.

	core-image-sato-dev:	This	image	is	the	same	as	core-image-sato	but
also	includes	the	development	packages	for	all	packages	installed	in	the	root
filesystem.

	core-image-sato-sdk:	In	addition	to	core-image-sato-dev,	this	image
includes	development	tools	such	as	compilers,	assemblers,	and	linkers	as	well	as
performance	test	tools	and	Linux	kernel	development	packages.

	core-image-directfb:	An	image	that	uses	DirectFB	for	graphics	and	input
device	management,	DirectFB	may	include	graphics	acceleration	and	a	windowing
system.	Because	of	its	much	smaller	footprint	compared	to	X11,	DirectFB	is	the
preferred	choice	for	lower-end	embedded	systems	that	need	graphics	support	but	not
the	entire	functionality	of	X11.

	core-image-clutter:	This	is	an	X11-based	image	that	also	includes	the
Clutter	toolkit.	Clutter	is	based	on	OpenGL	and	provides	functionality	for	animated
graphical	user	interfaces.

	core-image-weston:	This	image	uses	Weston	instead	of	X11.	Weston	is	a
compositor	that	uses	the	Wayland	protocol	and	implementation	to	exchange	data
with	its	clients.	This	image	also	includes	a	Wayland-capable	terminal	program.

	qt4e-demo-image:	This	image	launches	a	demo	application	for	the	embedded
Qt	toolkit	after	completing	the	boot	process.	Qt	for	embedded	Linux	provides	a
development	framework	of	graphical	applications	that	directly	write	to	the
framebuffer	instead	of	using	the	X11.

	core-image-multilib-example:	This	image	is	an	example	of	the	support	of
multiple	libraries,	typically	32-bit	support	on	an	otherwise	64-bit	system.	The	image
is	based	on	a	core	image	and	adds	the	desired	multilib	packages	to
IMAGE_INSTALL.

The	following	three	images	are	not	reference	images	for	embedded	Linux	systems.	We
include	them	in	this	discussion	for	completeness	purposes.

	core-image-testmaster,	core-image-testmaster-initramfs:
These	images	are	references	for	testing	other	images	on	actual	hardware	devices	or
in	QEMU.	They	are	deployed	to	a	separate	partition	to	boot	into	and	then	use	scripts
to	deploy	the	image	under	test.	This	approach	is	useful	for	automated	testing.

	build-appliance-image:	This	recipe	creates	the	Yocto	Project	Build
Appliance	virtual	machine	images	that	include	everything	needed	for	the	Yocto
Project	build	system.	The	images	can	be	launched	using	VMware	Player	or	VMware
Workstation.

Studying	the	reference	image	recipes	is	a	good	way	to	learn	how	these	images	are	built
and	what	packages	comprise	them.	The	core	images	are	also	a	good	starting	point	for	your
own	Linux	OS	stack.	You	can	easily	extend	them	by	adding	packages	and	package	groups
to	IMAGE_INSTALL.	Images	can	only	be	extended,	not	shrunk.	To	build	an	image	with
less	functionality,	you	have	to	start	from	a	smaller	core	image	and	add	only	the	packages
you	need.	There	is	no	simple	way	to	remove	packages.	The	majority	of	them	are	added
through	package	groups,	and	you	would	need	to	split	up	the	package	group	if	you	do	not
want	to	install	a	package	included	with	it.	Of	course,	if	you	are	removing	a	package,	you
also	have	to	remove	any	other	packages	that	depend	on	it.

There	are	several	ways	you	can	add	packages	and	package	groups	to	be	included	with
your	root	filesystem.	The	following	sections	explain	them	and	also	provide	information	on
why	you	would	want	to	use	one	method	over	another.

7.1.1	Extending	a	Core	Image	through	Local	Configuration
The	simplest	method	for	adding	packages	and	package	groups	to	images	is	to	add
IMAGE_INSTALL	to	the	conf/local.conf	file	of	your	build	environment:
Click	here	to	view	code	image

IMAGE_INSTALL_append	=	”	<package>	<package	group>”

As	we	have	seen,	image	recipes	set	the	IMAGE_INSTALL	variable	adding	packages
and	package	groups.	To	extend	an	image,	you	have	to	append	your	packages	and	packages
group	to	the	variable.	You	may	wonder	why	we	use	the	explicit	_append	operator
instead	of	the	+=	or	.+	operators.	Using	the	_append	operator	unconditionally	appends
the	specified	value	to	the	IMAGE_INSTALL	variable	after	all	recipes	and	configuration
files	have	been	processed.	Image	recipes	commonly	explicitly	set	the	IMAGE_INSTALL
variable	using	the	=	or	?=	operators,	which	may	happen	after	BitBake	processed	the
settings	in	conf/local.conf.

For	example,	adding
Click	here	to	view	code	image

IMAGE_INSTALL_append	=	”	strace	sudo	sqlite3”

installs	the	strace	and	sudo	tools	as	well	as	SQLite	in	the	root	filesystem.	When	using	the
_append	operator,	you	always	have	to	remember	to	add	a	space	in	front	of	the	first
package	or	package	group,	as	this	operator	does	not	automatically	include	a	space.

Using	IMAGE_INSTALL	in	the	conf/local.conf	of	your	build	environment
unconditionally	affects	all	images	you	are	going	to	build	with	this	build	environment.	If
you	are	looking	to	install	additional	packages	only	to	a	certain	image,	you	can	use
conditional	appending:
Click	here	to	view	code	image

IMAGE_INSTALL_append_pn-<image>	=	”	<package>	<package	group>”

This	installs	the	specified	packages	and	package	groups	only	into	the	root	filesystem	of
image.	For	example,
Click	here	to	view	code	image

IMAGE_INSTALL_append_pn-core-image-minimal	=	”	strace”

installs	the	strace	tool	only	into	the	root	filesystem	of	core-image-minimal.	All
other	images	are	unaffected.

Using	IMAGE_INSTALL	also	affects	core	images,	that	is,	images	that	inherit	from	the
core-image	class,	as	well	as	images	that	inherit	directly	from	the	image	class.	For
convenience	purposes,	the	core-image	class	defines	the	variable
CORE_IMAGE_EXTRA_INSTALL.	All	packages	and	package	groups	added	to	this
variable	are	appended	to	IMAGE_INSTALL	by	the	class.	Using
Click	here	to	view	code	image

CORE_IMAGE_EXTRA_INSTALL	=	“strace	sudo	sqlite3”

adds	these	packages	to	all	images	that	inherit	from	core-image.	Images	that	inherit
directly	from	image	are	not	affected.	Using	CORE_IMAGE_EXTRA_INSTALL	is	a	safer
and	easier	method	for	core	images	than	appending	directly	to	IMAGE_INSTALL.

7.1.2	Testing	Your	Image	with	QEMU
You	can	easily	test	your	image	with	the	QEMU	emulator.	Even	though	you	eventually
build	a	system	for	the	target	hardware	of	your	product,	using	QEMU	for	testing	makes
good	sense	for	the	following	reasons:

	The	round-trip	time	for	launching	QEMU	is	much	quicker	than	deploying	an	image
to	actual	hardware.

	Frequently,	hardware	is	not	yet	available	when	software	development	begins.

	Yocto	Project	board	support	packages	(BSP)	make	it	simple	to	switch	from	QEMU
to	hardware	and	back.

In	Chapter	2,	when	performing	our	first	build,	we	used	QEMU	to	verify	the	build
output.	The	Poky	reference	distribution	provides	the	script	runqemu	that	greatly
simplifies	the	task	of	launching	QEMU	by	providing	the	necessary	parameters.	In	its
simplest	form,	you	launch	the	script	with	a	single	parameter

$	runqemu	qemux86

which	tells	the	script	to	locate	the	latest	kernel	and	root	filesystem	image	builds	for	the
provided	QEMU	machine	and	otherwise	launch	QEMU	with	default	parameters.	The
parameter	values	match	the	QEMU	machine	types	in	conf/local.conf.

When	working	with	different	root	filesystem	images,	you	probably	want	to	select	the
particular	image	when	running	QEMU.	For	example,	you	have	built	core-image-
minimal	and	core-image-base	using	the	preceding	command	line,	since	runqemu
launches	whatever	image	you	last	built.	Using	the	command	as	follows	lets	you	choose	the
image:
Click	here	to	view	code	image

$	runqemu	qemux86	core-image-minimal

The	script	automatically	selects	the	correct	kernel	and	uses	the	latest	core-image-

minimal	root	filesystem.	For	even	more	control,	you	can	directly	specify	the	kernel
image	and	root	filesystem	image	file:
Click	here	to	view	code	image

$	runqemu	<path>/bzImage-qemux86.bin	<path>/core-image-minimal-qemux86.ext3

QEMU	and	the	runqemu	script	are	handy	tools	for	rapid	round-trip	application
development,	which	we	explore	in	Chapter	11,	“Application	Development.”

7.1.3	Verifying	and	Comparing	Images	Using	the	Build	History
When	building	a	product,	you	find	yourself	frequently	modifying	your	images,	adding
new	packages,	and	removing	extraneous	packages	to	trim	the	footprint.	A	tool	that	enables
you	to	easily	verify	and	compare	image	builds	with	each	other	can	simplify	that	otherwise
tedious	task.

To	help	maintain	build	output	quality	and	enable	comparison	between	different	builds,
BitBake	provides	build	history,	which	is	implemented	by	the	buildhistory	class.	This
class	records	information	about	the	contents	of	all	packages	built	and	about	the	images
created	by	the	build	system	in	a	Git	repository	where	you	can	examine	them.	Build	history
is	disabled	by	default.	To	enable	it,	you	need	to	add

INHERIT	+=	“buildhistory”
BUILDHISTORY_COMMIT	=	“1”

to	the	conf/local.conf	file	of	your	build	environment.	Please	note	that	INHERIT
(uppercase)	is	a	variable	to	which	you	have	to	add	the	buildhistory	class.	It	is
different	from	the	inherit	(lowercase)	directive	used	by	recipes	and	classes	to	inherit
functionality	from	classes.	Every	time	you	do	a	build,	buildhistory	creates	a	commit
to	the	Git	repository	with	the	changes.

The	buildhistory	Git	repository	is	stored	in	a	directory	as	defined	by	the
BUILDHISTORY_DIR	variable.	The	default	value	of	this	variable	is	set	to
Click	here	to	view	code	image

BUILDHISTORY_DIR	?=	“${TOPDIR}/buildhistory”

After	enabling	buildhistory	and	running	a	build,	you	see	a	buildhistory
directory	added	to	the	top-level	directory	of	your	build	environment.	The	directory
contains	the	two	subdirectories	images	and	packages.	The	former	contains	build
information	about	the	images	you	build,	the	latter	information	on	the	packages.	We
analyze	the	buildhistory	Git	repository	in	Chapter	13,	“Advanced	Topics.”	Here	we
just	look	at	the	images	subdirectory.	Inside	the	images	subdirectory,	the	images	are
sorted	into	further	subdirectories	by	target	machine,	target	C	library,	and	image	name:
Click	here	to	view	code	image

${TOPDIR}/buildhistory/images/<machine>/<clib>/<image>

For	the	build	of	our	core-image-minimal	for	qemux86	using	the	default	EGLIBC
target	library,	you	find	the	image	history	in
Click	here	to	view	code	image

${TOPDIR}/buildhistory/images/qemux86/eglibc/core-image-mininal

The	files	in	that	directory	give	you	detailed	information	on	what	makes	up	your	image:

	image-info.txt:	Overview	information	about	the	image	in	form	of	the	most
important	variables,	such	as	DISTRO,	DISTRO_VERSION,	and	IMAGE_INSTALL

	installed-packages.txt:	A	list	of	the	package	files	installed	in	the	image,
including	version	and	target	information

	installed-package-names.txt:	Similar	to	the	previous	file	but	contains
only	the	names	of	the	packages	without	version	and	target	information

	files-in-image.txt:	A	list	of	the	root	filesystem	with	directory	names,	file
sizes,	file	permissions,	and	file	owner

Simply	searching	the	file	installed-package-names.txt	gives	you
information	on	whether	or	not	a	package	has	been	installed.

7.1.4	Extending	a	Core	Image	with	a	Recipe
Adding	packages	and	package	groups	to	CORE_IMAGE_EXTRA_INSTALL	and
IMAGE_INSTALL	and	in	conf/local.conf	may	be	straightforward	and	quick,	but
doing	so	makes	a	project	hard	to	maintain	and	complicates	reuse.	A	better	way	is	to	extend
a	predefined	image	through	a	recipe.	Listing	7-2	shows	a	simple	recipe	that	extends
core-image-base.

Listing	7-2	Recipe	Extending	core-image-base
Click	here	to	view	code	image

DESCRIPTION	=	“A	console	image	with	hardware	support	for	our	IoT	device”

require	recipes-core/images/core-image-base.bb

IMAGE_INSTALL	+=	“sqlite3	mtd-utils	coreutils”
IMAGE_FEATURES	=	“dev-pkgs”

The	example	includes	the	recipe	for	core-image-base	and	adds	packages	to
IMAGE_INSTALL	and	an	image	feature	to	IMAGE_FEATURES.	We	explain	what	image
features	are	and	how	to	utilize	them	to	customize	image	in	the	next	section.

A	couple	of	things	to	consider	when	extending	images	with	recipes:

	Unlike	classes,	you	need	to	provide	the	path	relative	to	the	layer	for	BitBake	to	find
the	recipe	file	to	include,	and	you	need	to	add	the	.bb	file	extension.

	While	you	can	use	either	include	or	require	to	include	the	recipe	you	are
extending,	we	recommend	the	use	of	require,	since	it	causes	BitBake	to	exit	with
an	explicit	error	message	if	it	cannot	locate	the	included	recipe	file.

	Remember	to	use	the	+=	operator	to	add	to	IMAGE_INSTALL.	Do	not	use	=	or	:=
because	they	overwrite	the	content	of	the	variable	defined	by	the	included	recipe.

For	BitBake	to	actually	be	able	to	use	this	recipe	as	a	build	target,	you	have	to	add	it	to
a	layer	that	is	included	into	your	build	environment	via	the	conf/bblayers.conf

file.	It	is	not	recommended	that	you	add	your	recipes	to	the	core	Yocto	Project	layers,	such
as	meta,	meta-yocto,	and	others,	because	it	makes	it	hard	to	maintain	your	build
environment	if	you	upgrade	to	a	newer	version	of	the	Yocto	Project.	Instead,	you	should
create	a	layer	in	which	to	put	your	recipes.

Creating	a	layer	for	one	recipe	may	seem	like	a	lot	of	overhead,	but	hardly	any	project
ever	stays	small.	What	may	start	with	one	recipe	eventually	grows	into	a	sophisticated
project	with	recipes	for	images,	packages,	and	package	groups.	In	Chapter	3,	we
introduced	the	yocto-layer,	which	makes	creating	layers	a	breeze.

7.1.5	Image	Features
Image	features	provide	certain	functionality	that	you	can	add	to	your	target	images.	This
can	be	additional	packages	to	be	installed,	modification	of	configuration	files,	and	more.

For	example,	the	dev-pkgs	image	feature	adds	the	development	packages,	which
typically	include	headers	and	other	files	required	for	development,	for	all	packages
installed	in	the	root	filesystem.	Using	this	image	feature	is	a	convenient	way	to	enable	a
target	image	for	development	without	having	to	explicitly	specify	the	development
packages	in	the	IMAGE_INSTALL	variable.	For	deployment,	you	can	then	simply
remove	the	dev-pkgs	image	feature.

Installation	of	image	features	is	controlled	by	the	two	variables	IMAGE_FEATURES
and	EXTRA_IMAGE_FEATURES.	The	former	is	used	in	image	recipes	to	define	the
required	set	of	image	features.	The	latter	is	typically	used	in	the	conf/local.conf	file
to	define	additional	image	features	that,	of	course,	then	affect	all	images	built	with	that
build	environment.	The	content	of	EXTRA_IMAGE_FEATURES	is	simply	added	to
IMAGE_FEATURES	by	the	meta/conf/bitbake.conf	configuration	file.

Image	features	are	defined	by	different	classes.	The	list	of	currently	available	image
features	contains	the	following:

	Defined	by	image.bbclass:

	debug-tweaks:	Prepares	an	image	for	development	purposes.	In	particular,	it
sets	empty	root	passwords	for	console	and	Secure	Shell	(SSH)	login.

	package-management:	Installs	the	package	management	system	according	to
the	package	management	class	defined	by	PACKAGE_CLASSES	for	the	root
filesystem.

	read-only-rootfs:	Creates	a	read-only	root	filesystem.	This	image	feature
works	only	if	System	V	Init	(SysVinit)	system	is	used	rather	than	sytemd.

	splash:	Enables	showing	a	splash	screen	instead	of	the	boot	messages	during
boot.	By	default,	the	splash	screen	is	provided	by	the	psplash	package,	which
can	be	customized.	You	can	also	define	an	alternative	splash	screen	package	by
setting	the	SPLASH	variable	to	a	different	package	name.

	Defined	by	populate_sdk_base.bbclass:

	dbg-pkgs:	Installs	the	debug	packages	containing	symbols	for	all	packages
installed	in	the	root	filesystem.

	dev-pgks:	Installs	the	development	packages	containing	headers	and	other
development	files	for	all	packages	installed	in	the	root	filesystem.

	doc-pkgs:	Installs	the	documentation	packages	for	all	packages	installed	in	the
root	filesystem.

	staticdev-pkgs:	Installs	the	static	development	packages	such	as	static
library	files	ending	in	*.a	for	all	packages	installed	in	the	root	filesystem.

	ptest-pkgs:	Installs	the	package	test	(ptest)	packages	for	all	packages
installed	in	the	root	filesystem.

	Defined	by	core-image.bbclass:

	eclipse-debug:	Installs	remote	debugging	tools	for	integration	with	the
Eclipse	IDE,	namely	the	GDB	debugging	server,	the	Eclipse	Target
Communication	Framework	(TCF)	agent,	and	the	OpenSSH	SFTP	server.

	hwcodecs:	Installs	the	hardware	decoders	and	encoders	for	audio,	images,	and
video	if	the	hardware	platform	provides	them.

	nfs-server:	Installs	Network	File	System	(NFS)	server,	utilities,	and	client.

	qt4-pkgs:	Installs	the	Qt4	framework	and	demo	applications.

	ssh-server-dropbear:	Installs	the	lightweight	SSH	server	Dropbear,	which
is	popular	for	embedded	systems.	This	image	feature	is	incompatible	with	ssh-
server-openssh.	Either	one	of	the	two,	but	not	both,	can	be	used.

	ssh-server-openssh:	Installs	the	OpenSSH	server.	This	image	feature	is
incompatible	with	ssh-server-dropbear.	Either	one	of	the	two,	but	not
both,	can	be	used.

	tools-debug:	Installs	debugging	tools,	namely	the	GDB	debugger,	the	GDB
remote	debugging	server,	the	system	call	tracing	tool	strace,	and	the	memory
tracing	tool	mtrace	for	the	GLIBC	library	if	it	is	the	target	library.

	tools-profile:	Installs	common	profiling	tools	such	as	oprofile,
powertop,	latencytop,	lttng-ust,	and	valgrind.

	tools-sdk:	Installs	software	development	tools	such	as	the	GCC	compiler,
Make,	autoconf,	automake,	libtool,	and	many	more.

	tools-testapps:	Installs	test	applications	such	as	tests	for	X11	and
middleware	packages	like	the	telephony	manager	oFono	and	the	connection
manager	ConnMan.

	x11:	Installs	the	X11	server.

	x11-base:	Installs	the	X11	server	with	windowing	system.

	x11-sato:	Installs	the	OpenedHand	Sato	user	experience	for	mobile	devices.

It	matters	what	classes	define	the	image	features	when	creating	your	own	image	recipes
and	choosing	the	image	class	to	inherit.	The	class	image	inherits
populate_sdk_base	and	thus	all	image	features	defined	by	those	two	classes	are
available	to	images	that	inherit	image.	Image	features	defined	by	core-image	are
available	only	to	images	that	inherit	that	class,	which	in	turn	inherits	image	and	with	it
also	populate_sdk_base.

7.1.6	Package	Groups
We	have	touched	on	package	groups	a	couple	of	times	during	this	discussion	of	creating
custom	Linux	distribution	images.	Package	groups	are	bundles	of	packages	that	are
referenced	by	a	name.	Using	that	name	in	the	IMAGE_INSTALL	variable	installs	all	the
packages	defined	by	the	package	group	into	the	root	filesystem	of	your	target	image.

The	Yocto	Project	and	OE	Core	layers	define	a	common	set	of	package	groups	that	you
can	readily	use	for	your	images.	You	can	also	create	your	own	package	groups	containing
packages	from	any	layer,	including	your	own.	We	first	describe	the	package	groups
defined	by	the	Yocto	Project	and	OE	Core	layers	and	then	look	into	the	details	on	how
package	groups	are	defined.

Predefined	Package	Groups

Package	groups	are	defined	by	recipes.	Conventionally,	the	recipe	files	begin	with
packagegroup-	and	are	placed	inside	packagegroup	subdirectories	of	the
respective	recipe	categories.	For	instance,	you	can	find	package	group	recipes	related	to
the	Qt	development	framework	in	the	subdirectory	meta/recipes-
qt/packagegroups.

Using
Click	here	to	view	code	image

find	.	-name	“packagegroup-*”	-print

from	the	installation	directory	of	the	Yocto	Project	build	system	gives	you	a	list	of	all	the
package	group	recipes	for	the	predefined	package	groups	of	the	Yocto	Project	build
system.

Following	are	the	most	common	predefined	package	groups:

	packagegroup-core-ssh-dropbear:	Provides	packages	for	the	Dropbear
SSH	server	popular	for	embedded	systems	because	of	its	smaller	footprint	compared
to	the	OpenSSH	server.	This	package	group	conflicts	with	packagegroup-
core-ssh-openssh.	You	can	include	only	one	of	the	two	in	your	image.	The
ssh-server-dropbear	image	feature	installs	this	package	group.

	packagegroup-core-ssh-openssh:	Provides	packages	for	the	standard
OpenSSH	server.	This	package	group	conflicts	with	packagegroup-core-
ssh-dropbear.	You	can	include	only	one	of	the	two	in	your	image.	The	ssh-
server-openssh	image	feature	installs	this	package	group.

	packagegroup-core-buildessential:	Provides	the	essential	development

tools,	namely	the	GNU	Autotools	utilities	autoconf,	automake,	and	libtool;	the	GNU
binary	tool	set	binutils	which	includes	the	linker	ld,	assembler	as,	and	other	tools;
the	compiler	collection	cpp;	gcc;	g++;	the	GNU	internationalization	and	localization
tool	gettext;	make;	libstc++	with	development	packages;	and	pkgconfig.
	packagegroup-core-tools-debug:	Provides	the	essential	debugging	tools,
namely	the	GDB	debugger,	the	GDB	remote	debugging	server,	the	system	call
tracing	tool	strace,	and,	for	the	GLIBC	target	library,	the	memory	tracing	tool
mtrace.

	packagegroup-core-sdk:	This	package	group	combines	the
packagegroup-core-buildessential	package	group	with	additional	tools
for	development	such	as	GNU	Core	Utilities	coreutils	with	shell,	file,	and	text
manipulation	utilities;	dynamic	linker	ldd;	and	others.	Together	with
packagegroup-core-standalonesdk-target,	this	package	group	forms
the	tools-sdk	image	feature.

	packagegroup-core-standalone-sdk-target:	Provides	the	GCC	and
standard	C++	libraries.	Together	with	packagegroup-core-sdk,	this	package
group	forms	the	tools-sdk	image	feature.

	packagegroup-core-eclipse-debug:	Provides	the	GDB	debugging	server,
the	Eclipse	TCF	agent,	and	the	OpenSSH	SFTP	server	for	integration	with	the
Eclipse	IDE	for	remote	deployment	and	debugging.	The	image	feature	eclipse-
debug	installs	this	package	group.

	packagegroup-core-tools-testapps:	Provides	test	applications	such	as
tests	for	X11	and	middleware	packages	like	the	telephony	manager	oFono	and	the
connection	manager	ConnMan.	The	tools-testapps	image	feature	installs	this
package	group.

	packagegroup-self-hosted:	Provides	all	necessary	packages	for	a	self-
hosted	build	system.	The	build-appliance	image	target	uses	this	package
group.

	packagegroup-core-boot:	Provides	the	minimum	set	of	packages	necessary
to	create	a	bootable	image	with	console.	All	core-image	targets	install	this
package	group.	The	core-image-minimal	installs	just	this	package	group	and
the	postinstallation	scripts.

	packagegroup-core-nfs:	Provides	NFS	server,	utilities,	and	client.	The
nfs-server	image	feature	installs	this	package	group.

	packagegroup-base:	This	recipe	provides	multiple	package	groups	that	depend
on	each	other	as	well	as	on	machine	and	distribution	configuration.	The	purpose	of
these	package	groups	is	to	add	hardware,	networking	protocol,	USB,	filesystem,	and
other	support	to	the	images	dependent	on	the	machine	and	distribution
configuration.	The	two	top-level	package	groups	are	packagegroup-base	and
packagegroup-base-extended.	The	former	adds	hardware	support	for
Bluetooth,	WiFi,	3G,	and	NFC	only	if	both	the	machine	configuration	and	the

distribution	configuration	require	them.	The	latter	also	adds	configuration	for	those
technologies	if	the	distribution	configuration	requires	them.	However,	the	machine
configuration	does	not	support	them	directly	but	provides	support	for	PCI,
PCMCIA,	or	USB	host.	This	package	group	allows	you	to	create	an	image	with
support	for	devices	that	can	physically	be	added	to	the	target	device;	for	example,
via	USB	hotplug.	Most	commonly,	images	providing	hardware	support	use
packagegroup-base-extended	rather	than	packagegroup-base	for
dynamic	hardware	support;	for	example,	core-image-base.

	packagegroup-cross-canadian:	Provides	SDK	packages	for	creating	a
toolchain	using	the	Canadian	Cross	technique,	which	is	building	a	toolchain	on
system	A	that	executes	on	system	B	to	create	binaries	for	system	C.	A	use	case	for
this	package	group	is	to	build	a	toolchain	with	the	Yocto	Project	on	your	build	host
that	runs	on	your	image	target	but	produces	output	for	a	third	system	with	a	different
architecture	than	your	image	target.

	packagegroup-core-tools-profile:	Provides	common	profiling	tools
such	as	oProfile,	PowerTOP,	LatencyTOP,	LTTng-UST,	and	Valgrind.	The	tools-
profile	image	feature	uses	this	package	group.

	packagegroup-core-device-devel:	Provides	distcc	support	for	an	image.
Distcc	allows	distribution	of	compilation	across	several	machines	on	a	network.	The
distcc	must	be	installed,	configured,	and	running	on	your	build	host.	On	the	target
you	must	define	the	cross-compiler	variable	to	use	distcc	instead	of	the	local
compiler	(e.g.,	export	CC="distcc").

	packagegroup-qt-toolchain-target:	Provides	the	package	to	build
applications	for	the	X11-based	version	of	the	Qt	development	toolkit	on	the	target
system.

	packagegroup-qte-toolchain-target:	Provides	the	package	to	build
applications	for	the	embedded	version	of	the	Qt	development	toolkit	on	the	target
system.

	packagegroup-core-qt:	Provides	all	necessary	packages	for	a	target	system
using	the	X11-based	version	of	the	Qt	development	toolkit.

	packagegroup-core-qt4e:	Provides	all	necessary	packages	for	a	target
system	using	the	embedded	Qt	toolkit.	The	qt4e-demo-image	installs	this
package	group.

	packagegroup-core-x11-xserver:	Provides	the	X.Org	X11	server	only.

	packagegroup-core-x11:	Provides	packagegroup-core-x11-
xserver	plus	basic	utilities	such	as	xhost,	xauth,	xset,	xrandr,	and	initialization	on
startup.	The	x11	image	feature	installs	this	package	group.

	packagegroup-core-x11-base:	Provides	packagegroup-core-x11
plus	middleware	and	application	clients	for	a	working	X11	environment	that
includes	the	Matchbox	Window	Manager,	Matchbox	Terminal,	and	a	fonts	package.
The	x11-base	image	feature	installs	this	package	group.

	packagegroup-core-x11-sato:	Provides	the	OpenedHand	Sato	user
experience	for	mobile	devices,	which	includes	the	Matchbox	Window	Manager,
Matchbox	Desktop,	and	a	variety	of	applications.	The	x11-sato	image	feature
installs	this	package	group.	To	utilize	this	package	group	for	your	target	image,	you
also	have	to	install	packagegroup-core-x11-base.

	packagegroup-core-clutter-core:	Provides	packages	for	the	Clutter
graphical	toolkit.	To	use	the	toolkit	for	your	target	image,	you	also	have	to	install
packagegroup-core-x11-base.

	packagegroup-core-directfb:	Provides	packages	for	the	DirectFB	support
without	X11.	Among	others,	the	package	group	includes	the	directfb	package
and	the	directfb-example	package,	and	it	adds	touchscreen	support	if
provided	by	the	machine	configuration.

	packagegroup-core-lsb:	Provides	all	packages	required	for	LSB	support.

	packagegroup-core-full-cmdline:	Provides	packages	for	a	more
traditional	Linux	system	by	installing	the	full	command-line	utilities	rather	than	the
more	compact	BusyBox	variant.

When	explaining	the	different	package	groups,	we	used	the	terms	provide	and	install
somewhat	liberally,	since	the	package	group	recipes	actually	do	not	provide	or	install	any
packages.	They	only	create	dependencies	that	cause	the	build	system	to	process	the
respective	package	recipes,	as	we	see	in	the	next	section.

Several	of	the	package	groups	are	used	by	image	features,	which	raises	the	question
whether	to	use	an	image	feature	or	to	use	the	package	group	the	image	feature	uses.

Package	Group	Recipes

Package	groups	are	defined	by	recipes	that	inherit	the	packagegroup	class.	Package
group	recipes	are	different	from	typical	package	recipes,	as	they	do	not	build	anything	or
create	any	output.	Package	group	recipes	only	create	dependencies	that	trigger	the	build
system	to	process	the	recipes	of	the	packages	the	package	groups	reference.

Listing	7-3	shows	a	typical	package	group	recipe.

Listing	7-3	Package	Group	Recipe
Click	here	to	view	code	image

SUMMARY	=	“Custom	package	group	for	our	IoT	devices”
DESCRIPTION	=	“This	package	group	adds	standard	functionality	required	by	\
															our	IoT	devices.”

LICENSE	=	“MIT”

inherit	packagegroup
PACKAGES	=	“\
			packagegroup-databases	\
			packagegroup-python	\
			packagegroup-servers”

RDEPENDS_packagegroup-databases	=	“\
			db	\
			sqlite3”

RDEPENDS_packagegroup-python	=	“\
			python	\
			python-sqlite3”

RDEPENDS_packagegroup-servers	=	“\
			openssh	\
			openssh-sftp-server”

RRECOMMENDS_packagegroup-python	=	“\
			ncurses	\
			readline	\
			zip”

Names	of	package	group	recipes,	although	not	enforced	or	required	by	the	build	system,
should	adhere	to	the	convention	packagegroup-<name>.bb.	You	also	would	want	to
place	them	in	the	subdirectory	packagegroup	of	the	recipe	category	the	package
groups	are	integrating.	If	package	groups	span	recipes	and	possibly	package	groups	from
multiple	categories,	it	is	good	practice	to	place	them	into	the	recipes-core	category.

The	basic	structure	of	package	group	recipes	is	rather	simple.	As	should	any	recipe	(and
we	go	into	the	details	of	writing	recipes	in	Chapter	8,	“Software	Package	Recipes”),	a
package	group	recipe	should	provide	a	SUMMARY	of	what	the	recipe	does.	The
DESCRIPTION,	which	can	provide	a	longer,	more	detailed	explanation,	is	optional,	but	it
is	good	practice	to	add	it.	Any	recipe	also	needs	to	provide	a	LICENSE	for	the	recipe
itself.	All	package	group	recipes	must	inherit	the	packagegroup	class.

The	names	of	the	actual	package	groups	are	defined	by	the	PACKAGES	variable.	This
variable	contains	a	space-delimited	list	of	the	package	group	names.	In	the	case	of	Listing
7-3,	these	are	packagegroup-databases,	packagegroup-python,	and
packagegroup-servers.	By	convention,	package	group	names	begin	with
packagegroup-.	Although	the	build	system	does	not	require	it,	it	is	good	practice	if
you	adhere	to	it	for	your	own	package	group	names.

For	each	package	group,	the	recipe	must	define	its	dependencies	in	a	conditional
RDEPENDS_<package-group-name>	variable.	These	variables	list	the	required
dependencies,	which	can	be	packages	or	package	groups.

The	RRECOMMENDS_<package-group-name>	definitions	are	optional.	As	we
saw	in	Chapter	3,	recommendations	are	weak	dependencies	that	cause	a	package	to	be
included	only	if	it	already	has	been	built.

You	can	reference	package	groups	from	other	variables,	such	as	IMAGE_INSTALL,
which	of	course	causes	these	package	groups	to	be	installed	in	a	target	image.	You	can
also	use	them	to	create	dependencies	for	other	package	groups	for	a	hierarchy.	You	must
avoid	circular	dependencies	of	package	groups.	That	may	sound	simple	and
straightforward	but	can	easily	happen	by	mistake	in	rather	complex	environments.
BitBake,	however,	aborts	with	an	error	message	in	the	case	of	a	circular	package	group
dependency.

Package	group	recipes	can	also	be	directly	used	as	BitBake	build	targets.	For	example,
if	the	name	of	the	package	group	recipe	is	packagegroup-core-iot.bb,	you	can
build	all	the	packages	of	the	package	groups	defined	by	the	recipe	using
Click	here	to	view	code	image

$	bitbake	packagegroup-core-iot

Doing	so	allows	testing	the	package	groups	before	referencing	them	by	image	builds,
which	simplifies	debugging.

7.2	Building	Images	from	Scratch
Section	7.1	detailed	the	Yocto	Project	core	images	and	how	to	extend	them	through	setting
IMAGE_INSTALL,	CORE_IMAGE_EXTRA_INSTALL,	IMAGE_FEATURES,	and
EXTRA_IMAGE_FEATURES	in	conf/local.conf	and	in	recipes	extending
predefined	image	recipes.	Eventually,	you	may	want	to	create	your	custom	Linux
distribution	image	from	scratch	without	relying	on	one	of	the	reference	images.

A	custom	image	recipe	must	inherit	either	the	image	or	the	core-image	class.	The
latter	is	essentially	an	extension	of	the	former	and	defines	additional	image	features,	as
described	earlier	in	Section	7.1.5.	Which	one	to	choose	for	custom	image	recipes	depends
on	your	requirements.	However,	inheriting	core-image	generally	is	sound	advice,	since
the	image	features	are	made	available	but	only	installed	if	explicitly	requested.

Listing	7-4	shows	the	simplest	image	recipe	that	creates	a	bootable	console	image.

Listing	7-4	Basic	Image	Recipe
Click	here	to	view	code	image

SUMMARY	=	“Custom	image	recipe	that	does	not	get	any	simpler”
DESCRIPTION	=	“Well	yes,	you	could	remove	SUMMARY,	DESCRIPTION,	LICENSE.”

LICENSE	=	“MIT”

inherit	core-image

The	recipe	creates	an	image	with	the	core	packages	to	boot	and	hardware	support	for
the	target	device	because	the	core-image	class	adds	the	two	package	groups
packagegroup-core-boot	and	packagegroup-base-extended	to
IMAGE_INSTALL	by	default.	Also	added	to	IMAGE_INSTALL	by	the	class	is	the
variable	CORE_IMAGE_EXTRA_INSTALL,	which	allows	for	simple	image	modification
through	conf/local.conf,	as	described	earlier.

The	basic	image	with	package-group-core-boot	and	package-base-
extended	provides	a	good	starting	point	that	easily	can	be	extended	by	adding	to
IMAGE_INSTALL	and	IMAGE_FEATURES,	as	shown	in	Listing	7-5.

Listing	7-5	Adding	to	the	Basic	Image
Click	here	to	view	code	image

SUMMARY	=	“Custom	image	recipe	adding	packages	and	features”

DESCRIPTION	=	“Append	to	IMAGE_INSTALL	and	IMAGE_FEATURES	for	\
															further	customization.	“

LICENSE	=	“MIT”

#	We	are	using	the	append	operator	(+=)	below	to	preserve	the	default
#	values	set	by	the	core-image	class	we	are	inheriting.
IMAGE_INSTALL	+=	“mtd-utils”
IMAGE_FEATURES	+=	“splash”

inherit	core-image

Within	image	recipes,	you	append	directly	to	IMAGE_INSTALL	and
IMAGE_FEATURES	using	the	+=	operator.	Do	not	use	EXTRA_IMAGE_FEATURES	or
CORE_IMAGE_EXTRA_INSTALL	in	your	image	recipe.	These	variables	are	reserved	for
use	in	conf/local.conf	where	they	are	directly	assigned	and	overwrite	any	values
assigned	by	the	image	recipe.

An	image	recipe	that	does	not	rely	on	the	default	values	for	IMAGE_INSTALL	and
IMAGE_FEATURES	is	equally	simple,	as	Listing	7-6	shows.

Listing	7-6	Core	Image	from	Scratch
Click	here	to	view	code	image

SUMMARY	=	“Custom	image	recipe	from	scratch”
DESCRIPTION	=	“Directly	assign	IMAGE_INSTALL	and	IMAGE_FEATURES	for	\
															for	direct	control	over	image	contents.”

LICENSE	=	“MIT”

#	We	are	using	the	assignment	operator	(=)	below	to	purposely	overwrite
#	the	default	from	the	core-image	class.
IMAGE_INSTALL	=	“packagegroup-core-boot	packagegroup-base-extended	\
																	${CORE_IMAGE_EXTRA_INSTALL}	mtd-utils”
IMAGE_FEATURES	=	“${EXTRA_IMAGE_FEATURES}	splash”

inherit	core-image

At	first	glance,	the	image	recipes	of	Listings	7-5	and	7-6	look	rather	similar.	In	fact,	the
two	recipes	produce	exactly	the	same	image.	The	differences	are	subtle	but	significant.
Listing	7-5	uses	the	append	operator	+=	for	IMAGE_INSTALL	and	IMAGE_FEATURES
to	take	advantage	of	the	default	values	provided	by	the	core-image	class.	Listing	7-6
uses	the	assignment	operator	=	to	purposely	overwrite	the	default	values.

Overwriting	the	default	values	gives	you	the	most	control	over	the	content	of	your
image,	but	you	also	have	to	take	care	of	the	basics	yourself.	For	any	image,	you	would
most	likely	always	want	to	include	packagegroup-core-boot	to	get	a	bootable
image.	Whether	you	want	the	hardware	support	that	packagegroup-base-
extended	provides	depends	on	your	requirements.	Also	at	your	disposal	is
CORE_IMAGE_EXTRA_INSTALL:	if	you	do	not	explicitly	add	it	to
IMAGE_FEATURES,	you	will	not	be	able	to	use	this	variable	in	conf/local.conf	for
local	customization	of	your	target	image,	but	it	may	make	sense	to	do	so	for	a	controlled

build	environment	for	production.

The	same	holds	true	for	IMAGE_FEATURES	and	EXTRA_IMAGE_FEATURES.	If	you
use	the	assignment	operator	with	IMAGE_FEATURES	and	purposely	do	not	add
EXTRA_IMAGE_FEATURES,	it	is	not	included,	which	means	that	the	debug-tweaks
image	feature	is	not	applied,	and	you	need	to	provide	passwords	for	shell	and	SSH	logins.
Again,	this	makes	sense	for	production	build	environments	where	you	do	not	want	local
configuration	settings	to	override	the	settings	of	your	production	images.

7.3	Image	Options
The	following	sections	discuss	a	list	of	options	that	affect	how	the	Yocto	Project	build
system	creates	your	root	filesystem	images.

7.3.1	Languages	and	Locales
Additional	languages	for	different	territories	can	easily	be	added	to	a	root	filesystem	or
your	image	by	adding	the	IMAGE_LINGUAS	variable	to	an	image	recipe.	Using

IMAGE_LINGUAS	=	“en-gb	pt-br”

adds	the	specific	language	packages	for	British	English	and	Brazilian	Portuguese	to	the
image.	However,	not	all	software	packages	provide	locales	separated	by	language	and
territory.	Some	of	them	provide	the	locale	files	only	by	language.	In	this	case,	the	build
system	defaults	to	installing	the	correct	language	local	files	regardless	of	the	territory.

The	minimum	default	for	all	packages	is	en-us	and	is	always	installed.	In	addition,	the
image	class	defines
Click	here	to	view	code	image

IMAGE_LINGUAS	?=	“de-de	fr-fr	en-gb”

Any	additional	locale	packages,	of	course,	occupy	additional	space	in	your	root
filesystem	image.	Therefore,	if	your	device	does	not	require	any	additional	language
support,	it	is	good	practice	to	set

IMAGE_LINGUAS	=	””

in	image	recipes.

The	build	system	ignores	the	languages	for	packages	that	do	not	provide	them.

7.3.2	Package	Management
The	build	system	can	package	software	packages	using	the	four	different	packaging
formats	dpkg	(Debian	Package	Management),	opkg	(Open	Package	Management),	RPM
(Red	Hat	Package	Manager),	and	tar.	Only	the	first	three	can	be	used	to	create	root
filesystems.	Tar	does	not	provide	the	necessary	metadata	package	information	and
database	to	log	what	packages	in	what	versions	have	been	installed,	which	packages
conflict	with	each	other,	and	so	on.

The	variable	PACKAGE_CLASSES	in	conf/local.conf	of	your	build	environment
controls	what	package	management	systems	are	used	for	your	builds:

Click	here	to	view	code	image
PACKAGE_CLASSES	=	“package_rpm	package_ipk	package_tar”

You	can	declare	more	than	one	packaging	class,	but	you	have	to	provide	at	least	one.
The	build	system	creates	packages	for	all	classes	specified;	however,	only	the	first
packaging	class	in	the	list	is	used	to	create	the	root	filesystem	of	your	distribution	images.
The	first	packaging	class	in	the	list	must	not	be	tar.

The	build	system	stores	the	package	feeds	organized	by	the	package	management
system	in	separate	directories	in	tmp/deploy/<pms>,	where	<pms>	is	the	name	of	the
respective	package	management	system.	Inside	those	directories,	the	packages	are	further
subdivided	into	common,	architecture,	and	machine-dependent	packages.

What	package	management	system	should	you	choose	for	your	project?	That	depends
on	the	requirements	of	your	project.	Here	are	some	considerations	you	may	want	to	take
into	account:

	Opkg	creates	and	utilizes	less	package	metadata	than	dpkg	and	RPM.	That	makes
building	faster,	and	the	packages	are	smaller.

	Dpkg	and	RPM	offer	better	dependency	handling	and	version	management	than
opkg	because	of	the	enhanced	package	metadata.

	The	RPM	package	manager	is	written	in	Python	and	requires	Python	to	be	installed
on	the	target	to	install	packages	during	runtime	of	the	system.

By	default,	the	build	system	does	not	install	the	package	manager	on	your	target	system.
If	you	are	looking	to	install	packages	during	runtime	of	your	embedded	system,	you	have
to	add	the	package	manager	using	its	image	feature:
Click	here	to	view	code	image

IMAGE_FEATURES	+=	“package_management”

The	build	system	automatically	installs	the	correct	package	manager	depending	on	the
first	entry	of	PACKAGE_CLASSES.

The	package	management	system	for	your	root	filesystem	is	ultimately	controlled	by
the	variable	IMAGE_PKGTYPE.	This	variable	is	set	automatically	by	the	order	of	the
packaging	classes	defined	by	PACKAGE_CLASSES.	The	first	packaging	class	in	the	list
sets	the	variable.	We	recommend	that	you	do	not	set	this	variable	directly.

7.3.3	Image	Size
The	final	size	of	the	root	filesystem	is	dependent	on	multiple	factors	and	is	computed	by
the	build	system	using	the	function	_get_rootfs_size()	in	the	Python	module
meta/lib/oe/image.py.	The	computation	takes	into	account	the	actual	space
required	by	the	root	filesystem	and	the	following	variable	settings.	It	also	ensures	that	the
final	root	filesystem	image	size	is	always	sufficient	to	hold	the	entire	image.	Hence,	even
if	you	set	IMAGE_ROOTFS_SIZE	to	a	specific	value,	the	final	image	may	be	larger
than	that	value,	but	it	is	never	smaller.

	IMAGE_ROOTFS_SIZE:	Defines	the	size	in	kilobytes	of	the	created	root	filesystem

image.	The	build	system	uses	this	value	as	a	request	or	recommendation.	The	final
root	filesystem	image	size	may	be	larger	depending	on	the	actual	space	required.
The	default	value	is	65536.

	IMAGE_ROOTFS_ALIGNMENT:	Defines	the	alignment	of	the	root	filesystem
image	in	kilobytes.	If	the	final	size	of	the	root	filesystem	image	is	not	a	multiple	of
this	value,	it	is	rounded	up	to	the	nearest	multiple	of	it.	The	default	value	is	1.

	IMAGE_ROOTFS_EXTRA_SPACE:	Adds	extra	free	space	to	the	root	filesystem
image.	The	variable	specifies	the	value	in	kilobytes.	For	example,	to	add	an
additional	4	GB	of	space,	set	the	variable	to	IMAGE_ROOTFS_EXTRA_SPACE	=
"4194304".	The	default	value	is	0.

	IMAGE_OVERHEAD_FACTOR:	This	variable	specifies	a	multiplicator	for	the	root
filesystem	image.	The	factor	is	applied	after	the	actual	space	required	by	the	root
filesystem	has	been	determined.	The	default	value	is	1.3.

After	the	build	system	has	created	the	root	filesystem	in	the	staging	area,	a	directory
specified	by	the	variable	IMAGE_ROOTFS,	it	calculates	its	actual	size	in	kilobytes	using
du	-ks	${IMAGE_ROOTFS}.	The	function	_get_rootfs_size()	computes	the
final	root	filesystem	image	size,	as	shown	by	Listing	7-7	in	pseudocode.

Listing	7-7	Root	Filesystem	Image	Size	Computation	in	Pseudocode
Click	here	to	view	code	image

_get_rootfs_size():

			ROOTFS_SIZE	=`du	-ks	${IMAGE_ROOTFS}`
			BASE_SIZE	=	ROOTFS_SIZE	*	IMAGE_OVERHEAD_FACTOR

			if	(BASE_SIZE	<	IMAGE_ROOTFS_SIZE):
						IMG_SIZE	=	IMAGE_ROOTFS_SIZE	+	IMAGE_ROOTFS_EXTRA_SPACE
			else:
						IMG_SIZE	=	BASE_SIZE	+	IMAGE_ROOTFS_EXTRA_SPACE

			IMG_SIZE	=	IMG_SIZE	+	IMAGE_ROOTFS_ALIGNMENT	–	1
			IMG_SIZE	=	IMG_SIZE	%	IMAGE_ROOTFS_ALIGNMENT

			return	IMG_SIZE

Most	commonly,	your	image	recipes	set	IMAGE_ROOTFS_SIZE	and
IMAGE_ROOTFS_EXTRA_SPACE	to	adjust	the	final	root	filesystem	image	size.	If	you
are	concerned	with	the	footprint	of	your	root	filesystem,	then	you	may	also	want	to	reduce
IMAGE_OVERHEAD_FACTOR	or	set	it	to	1	to	shrink	your	image.

7.3.4	Root	Filesystem	Types
Eventually,	you	use	the	root	filesystem	image	to	create	a	bootable	medium	for	your	target
or	to	launch	the	QEMU	emulator.	For	that	purpose,	the	build	system	provides	the
image_types	class	that	can	create	a	root	filesystem	for	various	filesystem	types.

Your	image	recipes	do	not	use	the	image_types	class	directly	but	rather	set	the

variable	IMAGE_FSTYPES	to	one	or	more	of	the	filesystem	types	provided	by	the	class.
Using
Click	here	to	view	code	image

IMAGE_FSTYPES	=	“ext3	tar.bz2”

creates	two	root	filesystem	images,	one	using	the	ext3	filesystem	and	one	that	is	a	tar
archive	compressed	using	the	bzip2	algorithm.

The	image_types	class	defines	the	variable	IMAGE_TYPES,	which	contains	a	list	of
all	image	types	you	can	specify	in	IMAGE_FSTYPES.	The	list	shows	the	filesystem	types
ordered	by	core	type.	Commonly,	some	of	the	core	types	are	also	used	in	compressed
formats	to	preserve	space.	If	a	compression	algorithm	is	used	for	the	filesystem,	the	name
of	the	core	type	is	appended	with	the	compression	type:	<core	name>.
<compression	type>.

	tar,	tar.gz,	tar.bz2,	tar.xz,	tar.lz3:	Create	uncompressed	and
compressed	root	filesystem	images	in	the	form	of	tar	archives.

	ext2,	ext2.gz,	ext2.bz2,	ext2.lzma:	Root	filesystem	images	using	the
ext2	filesystem	without	or	with	compression.

	ext3,	ext3.gz:	Root	filesystem	images	using	the	ext3	filesystem	without	or	with
compression.

	btrfs:	Root	filesystem	image	with	B-tree	filesystem.

	jffs2,	jffs2.sum:	Uncompressed	or	compressed	root	filesystems	based	on	the
second	generation	of	the	Journaling	Flash	File	System	(JFFS2).	Since	JFFS2	directly
supports	NAND	flash	devices,	it	is	a	popular	choice	for	embedded	systems.	It	also
provides	journaling	and	wear-leveling.

	cramfs:	Root	filesystem	image	using	the	compressed	ROM	filesystem	(cramfs).
The	Linux	kernel	can	mount	this	filesystem	without	prior	decompression.	The
compression	uses	the	zlib	algorithm	that	compresses	files	one	page	at	a	time	to	allow
random	access.	This	filesystem	is	read-only	to	simplify	its	design,	as	random	write
access	with	compression	is	difficult	to	implement.

	iso:	Root	filesystem	image	type	using	the	ISO	9660	standard	for	bootable	CD-
ROM.	This	filesystem	type	is	not	a	standalone	format.	It	uses	ext3	as	the	underlying
filesystem	type.

	hddimg:	Root	filesystem	image	for	bootable	hard	drives.	It	uses	ext3	as	the	actual
filesystem	type.

	squashfs,	squashfs-xz:	Compressed	read-only	root	filesystem	type
specifically	for	Linux,	similar	to	cramfs	but	with	better	compression	and	support
for	larger	files	and	filesystems.	SquashFS	also	has	a	variable	block	size	from	0.5
kB	to	64	kB	over	the	fixed	4	kB	block	size	of	cramfs,	which	allows	for	larger	file
and	filesystem	sizes.	SquashFS	uses	gzip	compression,	while	squashfs-xz
uses	Lempel–Ziv–Markov	(LZMA)	compression	for	even	smaller	images.

	ubi,	ubifs:	Root	filesystem	images	using	the	unsorted	block	image	(UBI)	format
for	raw	flash	devices.	UBI	File	System	(UBIFS)	is	essentially	a	successor	to	JFFS2.
The	main	differences	between	the	two	is	that	UBIFS	supports	write	caching.	Using
ubifs	in	IMAGE_FSTYPES	just	creates	the	ubifs	root	filesystem	image.	Using
ubi	creates	the	ubifs	root	filesystem	image	and	also	runs	the	ubinize	utility	to
create	an	image	that	can	be	written	directly	to	a	flash	device.

	cpio,	cpio.gz,	cpio.xz,	cpio.lzma:	Root	filesystem	images	using
uncompressed	or	compressed	copy	in	and	out	(CPIO)	streams.

	vmdk:	Root	filesystem	image	using	the	VMware	virtual	machine	disk	format.	It
uses	ext3	as	the	underlying	filesystem	format.

	elf:	Bootable	root	filesystem	image	created	with	the	mkelfImage	utility	from	the
Coreboot	project	(www.coreboot.org).

Once	again,	which	image	types	to	use	depends	entirely	on	the	requirements	of	your
project,	particularly	on	your	target	hardware.	Boot	device,	bootloader,	memory
constraints,	and	other	factors	determine	what	root	filesystem	types	are	appropriate	for	your
project.	Our	recommendation	is	to	specify	the	root	filesystem	types	ext3	and	tar,	or	better,
one	of	the	compressed	formats	such	as	tar.bz2,	in	the	image	recipe.	The	ext3	format	allows
you	to	easily	boot	your	root	filesystem	with	the	QEMU	emulator	for	testing.	The	tar
filesystem	can	easily	be	extracted	onto	partitioned	and	formatted	media.	The	machine
configuration	files	for	your	target	hardware	can	then	add	additional	root	filesystem	types
appropriate	for	it.

7.3.5	Users,	Groups,	and	Passwords
The	class	extrausers	provides	a	comfortable	mechanism	for	adding	users	and	groups
to	an	image	as	well	as	setting	passwords	for	user	accounts	(see	Listing	7-8).

Listing	7-8	Modifying	Users,	Groups,	and	Passwords
Click	here	to	view	code	image

SUMMARY	=	“Custom	image	recipe	from	scratch”
DESCRIPTION	=	“Directly	assign	IMAGE_INSTALL	and	IMAGE_FEATURES	for	\
															for	direct	control	over	image	contents.”

LICENSE	=	“MIT”

#	We	are	using	the	assignment	operator	(=)	below	to	purposely	overwrite
#	the	default	from	the	core-image	class.
IMAGE_INSTALL	=	“packagegroup-core-boot	packagegroup-base-extended	\
																	${CORE_IMAGE_EXTRA_INSTALL}”

inherit	core-image
inherit	extrausers

#	set	image	root	password
ROOT_PASSWORD	=	“secret”
DEV_PASSWORD	=	“hackme”

EXTRA_USERS_PARAMS	=	“\
			groupadd	developers;	\

http://www.coreboot.org

			useradd	-p	`openssl	passwd	${DEV_PASSWORD}`	developer;	\
			useradd	-g	developers	developer;	\
			usermod	-p	`openssl	passwd	${ROOT_PASSWORD}`	root;	\
			”

The	listing	adds	a	group	named	developers	and	a	user	account	named	developer
and	adds	the	user	account	to	the	group.	It	also	changes	the	password	for	the	root	account.
Commands	for	adding	and	modifying	groups,	users,	and	passwords	are	added	to	the
variable	EXTRA_USERS_PARMS,	which	is	interpreted	by	the	class.	The	commands
understood	by	the	class	are

	useradd:	Add	user	account

	usermod:	Modify	user	account

	userdel:	Remove	user	account

	groupadd:	Add	user	group

	groupmod:	Modify	user	group

	groupdel:	Remove	user	group

The	class	executes	the	respective	Linux	utilities	with	the	corresponding	names.	Hence,
the	options	are	exactly	the	same	and	can	easily	be	found	in	the	Linux	man	pages.	Note	that
the	individual	commands	must	be	separated	with	a	semicolon.

Using	the	option	-p	with	the	commands	useradd	and	usermod	sets	the	password	of
the	user	account.	The	password	must	be	provided	as	the	password	hash.	You	can	either
calculate	the	password	hash	manually	and	add	it	to	the	recipe	or,	as	shown	in	the	example,
have	the	recipe	calculate	it.

A	word	about	the	root	user	account:	the	build	system	sets	up	the	root	user	for	an	image
with	an	empty	password	if	debug-tweaks	is	included	with	IMAGE_FEATURES.
Removing	debug-tweaks	replaces	the	empty	root	password	with	*,	which	disables	the
account,	so	logging	in	as	root	from	the	console	is	no	longer	possible.	For	production	use,
we	strongly	recommend	removing	debug-tweaks	from	the	build.	If	your	embedded
system	requires	console	login	capability,	you	can	either	set	the	root	password	as	shown
previously	or	add	the	sudo	recipe	and	set	up	user	accounts	as	sudoers.

For	example,	if	you	want	to	give	the	developer	user	account	sudoer	privileges,	simply
add	sudo	to	IMAGE_INSTALL	and	usermod	-a	-G	sudo	developer	to
EXTRA_USERS_PARAMS.

7.3.6	Tweaking	the	Root	Filesystem
For	further	customization	of	the	root	filesystem	after	it	has	been	created	by	the	build
system	and	before	the	actual	root	filesystem	images	are	created,
ROOTFS_POSTPROCESS_COMMAND	is	available	(see	Listing	7-9).	The	variable	holds	a
list	of	shell	functions	separated	by	semicolons.

Listing	7-9	ROOTFS_POSTPROCESS_COMMAND

Click	here	to	view	code	image

SUMMARY	=	“Custom	image	recipe	from	scratch”
DESCRIPTION	=	“Directly	assign	IMAGE_INSTALL	and	IMAGE_FEATURES	for	\
															for	direct	control	over	image	contents.”

LICENSE	=	“MIT”

#	We	are	using	the	assignment	operator	(=)	below	to	purposely	overwrite
#	the	default	from	the	core-image	class.
IMAGE_INSTALL	=	“packagegroup-core-boot	packagegroup-base-extended	\
																	${CORE_IMAGE_EXTRA_INSTALL}”

inherit	core-image

#	Additional	root	filesystem	processing
modify_shells()	{
			printf	“#	/etc/shells:	valid	login	shells\n/bin/sh\n/bin/bash\n”	\
											>	${IMAGE_ROOTFS}/etc/shells
}
ROOTFS_POSTPROCESS_COMMAND	+=	“modify_shells;”

The	example	adds	the	bash	shell	to	/etc/shells.	Be	sure	to	always	use	the	+=
operator	to	add	to	ROOTFS_POSTPROCESS_COMMAND,	as	the	build	system	adds	its	own
postprocessing	commands	to	it.

Sudo	Configuration

If	you	followed	the	example	on	giving	a	user	sudoer	privileges	in	the	previous	paragraph,
you	probably	noticed	that	it	does	not	work	unless	you	uncomment	the	line	%sudo	ALL=
(ALL)	ALL	in	/etc/sudoers.	A	simple	shell	function	added	to
ROOTFS_POSTPROCESS_COMMAND	takes	care	of	that	when	the	root	filesystem	image
is	created	(see	Listing	7-10).

Listing	7-10	Sudo	Configuration
Click	here	to	view	code	image

modify_sudoers()	{
			sed	‘s/#	%sudo/%sudo/’	<	${IMAGE_ROOTFS}/etc/sudoers	>	\
								${IMAGE_ROOTFS}/etc/sudoers.tmp
			mv	${IMAGE_ROOTFS}/etc/sudoers.tmp	${IMAGE_ROOTFS}/etc/sudoers
}
ROOTFS_POSTPROCESS_COMMAND	+=	“modify_sudoers;”

The	script	simply	uncomments	the	line	using	sed.

SSH	Server	Configuration

All	core	images	automatically	include	an	SSH	server	for	remote	shell	access	to	the	system.
By	default,	the	server	is	configured	to	allow	login	with	user	name	and	password.	Using
public	key	infrastructure	(PKI)	provides	an	additional	level	of	security	but	requires
configuration	of	the	root	server	and	installation	of	keys	into	the	root	filesystem.	A
ROOTFS_POSTPROCESS_COMMAND	can	also	easily	be	used	to	accomplish	that	task	(see
Listing	7-11).

Listing	7-11	SSH	Server	Configuration
Click	here	to	view	code	image

configure_sshd()	{
			#	disallow	password	authentication
			echo	“PasswordAuthentication	no”	>>	${IMAGE_ROOTFS}/etc/ssh/sshd_config
			#	create	keys	in	tmp/deploy/keys
			mkdir	-p	${DEPLOY_DIR}/keys
			if	[!	-f	${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot];	then
						ssh-keygen	-t	rsa	-N	”	\
									-f	${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot
			fi
			#	add	public	key	to	authorized_keys	for	root
			mkdir	-p	${IMAGE_ROOTFS}/home/root/.ssh
			cat	${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot.pub	\
							>>	${IMAGE_ROOTFS}/home/root/.ssh/authorized_keys
}
ROOTFS_POSTPROCESS_COMMAND	+=	“configure_sshd;”

The	script	first	disables	authentication	with	user	name	and	password	for	SSH.	It	then
creates	a	key	pair	in	tmp/deploy/keys	inside	the	build	environment	using	the	name	of
the	root	filesystem	image,	essentially	the	name	of	the	image	recipe.	If	a	previous	build	has
already	created	a	set	of	keys,	they	are	preserved.	Finally,	the	script	adds	the	public	key	to
the	authorized_keys	file	in	/home/root/.ssh,	which	is	typical	for	SSH
configuration.	Login	keys	for	other	users	can	be	created	in	a	similar	way.

This	method	works	well	if	you	do	not	require	different	keys	for	each	device	that	you
build,	as	every	copy	of	the	root	filesystem	of	course	contains	the	same	keys.	If	you	need
different	keys	or,	in	general,	individual	configuration	for	your	devices,	then	you	need	to
devise	a	provisioning	system	for	your	device	production.

7.4	Distribution	Configuration
The	build	system	provides	a	mechanism	for	global	configuration	that	applies	to	all	images
built.	This	mechanism	is	called	distribution	configuration	or	distribution	policy.	It	is
simply	a	configuration	file	that	contains	variable	settings.	The	distribution	configuration	is
included	through	the	DISTRO	variable	setting	in	the	build	environment	configuration	file
conf/local.conf:

DISTRO	=	“poky”

The	variable	setting	corresponds	to	a	distribution	configuration	file	whose	base	name	is
the	same	as	the	variable’s	argument	with	the	file	extension	.conf.	For	the	preceding
example,	the	build	system	searches	for	a	distribution	configuration	file	with	the	name
poky.conf	in	the	subdirectory	conf/distro	in	all	metadata	layers	included	by	the
build	environment.

7.4.1	Standard	Distribution	Policies
The	Yocto	Project	provides	several	distribution	configuration	files	for	standard
configuration	policies:

	poky:	Poky	is	the	default	policy	for	the	Yocto	Project’s	reference	distribution	Poky.

It	is	a	good	choice	for	getting	started	with	the	Yocto	Project	and	as	a	template	for
your	own	distribution	configuration	files.

	poky-bleeding:	This	distribution	configuration	is	based	on	poky	but	sets	the
versions	for	all	packages	to	the	latest	revision.	It	is	commonly	used	by	the	Yocto
Project	developers	for	integration	test	purposes.	You	may,	of	course,	use	it,	but	be
aware	that	there	could	be	issues	with	packages	with	incompatible	versions.

	poky-lsb:	This	distribution	configuration	is	for	a	stack	that	complies	with	LSB.	It
is	preferably	used	with	the	core-image-lsb	image	target	and	image	targets
derived	from	it.	It	inherits	the	base	settings	from	poky	and	adds	global
configuration	settings	to	enable	security	and	includes	default	libraries	required	for
LSB	compliance.

	poky-tiny:	This	distribution	configuration	tailors	the	settings	to	yield	a	very
compact	Linux	OS	stack	for	embedded	devices.	It	is	based	on	poky	but	provides
only	the	bare	minimum	functionality	necessary	to	support	the	hardware	and	a
BusyBox	environment.	It	does	not	support	any	video	but	only	a	serial	console.
Because	of	its	slim	configuration,	only	the	core-image-minimal	image	target
and	image	targets	based	on	it	can	be	built	with	the	poky-tiny	distribution
configuration.

The	standard	distribution	policies,	particularly	poky,	are	good	starting	points	for	your
own	distribution	configuration.	Let’s	have	a	closer	look	at	the	poky	distribution
configuration	to	understand	how	distribution	policies	are	set	and	how	we	can	use	them	for
our	own	projects.

7.4.2	Poky	Distribution	Policy
You	can	find	the	file	poky.conf	containing	the	Poky	distribution	policy	in	the	meta-
yocto/conf/distro	directory	of	the	build	system.	We	replicated	its	contents	here	for
convenience,	reformatted	the	file	to	fit	on	the	page,	grouped	the	variable	settings	into
logical	blocks,	and	added	some	comments	(see	Listing	7-12).

Listing	7-12	Poky	Distribution	Policy	meta-yocto/conf/distro/poky.conf
Click	here	to	view	code	image

#	Distribution	Information

DISTRO	=	“poky”
DISTRO_NAME	=	“Poky	(Yocto	Project	Reference	Distro)”
DISTRO_VERSION	=	“1.6+snapshot-${DATE}”
DISTRO_CODENAME	=	“next”
MAINTAINER	=	“Poky	<poky@yoctoproject.org>”
TARGET_VENDOR	=	“-poky”

#	SDK	Information
SDK_NAME	=	\
				”${DISTRO}-${TCLIBC}-${SDK_ARCH}-${IMAGE_BASENAME}-${TUNE_PKGARCH}”
SDK_VERSION	:=	\
				”${@’${DISTRO_VERSION}’.replace(‘snapshot-${DATE}’,‘snapshot’)}”
SDK_VENDOR	=	“-pokysdk”

SDKPATH	=	“/opt/${DISTRO}/${SDK_VERSION}”

#	Distribution	Features
#	Override	these	in	poky	based	distros
POKY_DEFAULT_DISTRO_FEATURES	=	“largefile	opengl	ptest	multiarch	wayland”
POKY_DEFAULT_EXTRA_RDEPENDS	=	“packagegroup-core-boot”
POKY_DEFAULT_EXTRA_RRECOMMENDS	=	“kernel-module-af-packet”

DISTRO_FEATURES	?=	“${DISTRO_FEATURES_DEFAULT}	${DISTRO_FEATURES_LIBC}	\
																				${POKY_DEFAULT_DISTRO_FEATURES}”

#	Preferred	Versions	for	Packages
PREFERRED_VERSION_linux-yocto	?=	“3.14%”
PREFERRED_VERSION_linux-yocto_qemux86	?=	“3.14%”
PREFERRED_VERSION_linux-yocto_qemux86-64	?=	“3.14%”
PREFERRED_VERSION_linux-yocto_qemuarm	?=	“3.14%”
PREFERRED_VERSION_linux-yocto_qemumips	?=	“3.14%”
PREFERRED_VERSION_linux-yocto_qemumips64	?=	“3.14%”
PREFERRED_VERSION_linux-yocto_qemuppc	?=	“3.14%”

#	Dependencies
DISTRO_EXTRA_RDEPENDS	+=	”	${POKY_DEFAULT_EXTRA_RDEPENDS}”
DISTRO_EXTRA_RRECOMMENDS	+=	”	${POKY_DEFAULT_EXTRA_RRECOMMENDS}”

POKYQEMUDEPS	=	“${@bb.utils.contains(\
					“INCOMPATIBLE_LICENSE”,	“GPLv3”,	””,	“qemu-config”,d)}”
DISTRO_EXTRA_RDEPENDS_append_qemuarm	=	”	${POKYQEMUDEPS}”
DISTRO_EXTRA_RDEPENDS_append_qemumips	=	”	${POKYQEMUDEPS}”
DISTRO_EXTRA_RDEPENDS_append_qemuppc	=	”	${POKYQEMUDEPS}”
DISTRO_EXTRA_RDEPENDS_append_qemux86	=	”	${POKYQEMUDEPS}”
DISTRO_EXTRA_RDEPENDS_append_qemux86-64	=	”	${POKYQEMUDEPS}”

#	Target	C	Library	Configuration
TCLIBCAPPEND	=	””

#	Target	Architectures	for	QEMU
#	(see	meta/recipes-devtools/qemu/qemu-targets.inc)
QEMU_TARGETS	?=	“arm	i386	mips	mipsel	ppc	x86_64”
#	Other	QEMU_TARGETS	“mips64	mips64el	sh4”

#	Package	Manager	Configuration
EXTRAOPKGCONFIG	=	“poky-feed-config-opkg”

#	Source	Mirrors
PREMIRRORS	??=	“\
bzr://.*/.*			http://downloads.yoctoproject.org/mirror/sources/	\n	\
cvs://.*/.*			http://downloads.yoctoproject.org/mirror/sources/	\n	\
git://.*/.*			http://downloads.yoctoproject.org/mirror/sources/	\n	\
gitsm://.*/.*	http://downloads.yoctoproject.org/mirror/sources/	\n	\
hg://.*/.*				http://downloads.yoctoproject.org/mirror/sources/	\n	\
osc://.*/.*			http://downloads.yoctoproject.org/mirror/sources/	\n	\
p4://.*/.*				http://downloads.yoctoproject.org/mirror/sources/	\n	\
svk://.*/.*			http://downloads.yoctoproject.org/mirror/sources/	\n	\
svn://.*/.*			http://downloads.yoctoproject.org/mirror/sources/	\n”

MIRRORS	=+	“\
ftp://.*/.*						http://downloads.yoctoproject.org/mirror/sources/	\n	\
http://.*/.*					http://downloads.yoctoproject.org/mirror/sources/	\n	\
https://.*/.*				http://downloads.yoctoproject.org/mirror/sources/	\n”

#	Build	System	Configuration

#	Configuration	File	and	Directory	Layout	Versions

LOCALCONF_VERSION	=	“1”
LAYER_CONF_VERSION	?=	“6”
#
#	OELAYOUT_ABI	allows	us	to	notify	users	when	the	format	of	TMPDIR	changes
#	in	an	incompatible	way.	Such	changes	should	usually	be	detailed	in	the
#	commit	that	breaks	the	format	and	have	been	previously	discussed	on	the
#	mailing	list	with	general	agreement	from	the	core	team.
#
OELAYOUT_ABI	=	“8”

#	Default	hash	policy	for	distro
BB_SIGNATURE_HANDLER	?=	‘OEBasicHash’

#	Build	System	Checks

#	add	poky	sanity	bbclass
INHERIT	+=	“poky-sanity”

#	The	CONNECTIVITY_CHECK_URIs	are	used	to	test	whether	we	can	successfully
#	fetch	from	the	network	(and	warn	you	if	not).	To	disable	the	test,	set
#	the	variable	to	be	empty.
#	Git	example	url:	\
					git://git.yoctoproject.org/yocto-firewall-test;protocol=git;rev=HEAD

CONNECTIVITY_CHECK_URIS	?=	”	\
													https://eula-downloads.yoctoproject.org/index.php	\
													http://bugzilla.yoctoproject.org/report.cgi”

SANITY_TESTED_DISTROS	?=	”	\
												Poky-1.4	\n	\
												Poky-1.5	\n	\
												Poky-1.6	\n	\
												Ubuntu-12.04	\n	\
												Ubuntu-13.10	\n	\
												Ubuntu-14.04	\n	\
												Fedora-19	\n	\
												Fedora-20	\n	\
												CentOS-6.4	\n	\
												CentOS-6.5	\n	\
												Debian-7.0	\n	\
												Debian-7.1	\n	\
												Debian-7.2	\n	\
												Debian-7.3	\n	\
												Debian-7.4	\n	\
												SUSE-LINUX-12.2	\n	\
												openSUSE-project-12.3	\n	\
												openSUSE-project-13.1	\n	\
												”

#	QA	check	settings	-	a	little	stricter	than	the	OE-Core	defaults
WARN_QA	=	“textrel	files-invalid	incompatible-license	xorg-driver-abi	\
											libdir	unknown-configure-option”
ERROR_QA	=	“dev-so	debug-deps	dev-deps	debug-files	arch	pkgconfig	la	\
												perms	useless-rpaths	rpaths	staticdev	ldflags	pkgvarcheck	\
												already-stripped	compile-host-path	dep-cmp	\
												installed-vs-shipped		install-host-path	packages-list	\
												perm-config	perm-line	perm-link	pkgv-undefined	\
												pn-overrides	split-strip	var-undefined	version-going-backwards”

The	file	shown	in	the	listing	is	from	the	head	of	the	Yocto	Project	Git	repository	at	the
writing	of	this	book.	Depending	on	what	version	of	the	Yocto	Project	tools	you	are	using,

this	file	may	look	slightly	different.	The	file	is	an	example	of	a	distribution	policy	only.	It
provides	the	variable	settings	most	commonly	associated	with	the	configuration	of	a
distribution.	You	are	not	limited	to	using	just	the	settings	shown	in	the	listing,	and	you	can
remove	settings	if	you	do	not	need	them	for	your	project.

Distribution	Information

This	section	of	the	distribution	policy	file	contains	settings	for	general	information	about
the	distribution.

	DISTRO:	Short	name	of	the	distribution.	The	value	must	match	the	base	name	of	the
distribution	configuration	file.

	DISTRO_NAME:	The	long	name	of	the	distribution.	Various	recipes	reference	this
variable.	Its	contents	are	shown	on	the	console	boot	prompt.

	DISTRO_VERSION:	Distribution	version	string.	It	is	referenced	by	various	recipes
and	used	in	filenames’	distribution	artifacts.	It	is	shown	on	the	console	boot	prompt.

	DISTRO_CODENAME:	A	code	name	for	the	distribution.	It	is	currently	used	only	by
the	LSB	recipes	and	copied	into	the	lsb-release	system	configuration	file.

	MAINTAINER:	Name	and	e-mail	address	of	the	distribution	maintainer.

	TARGET_VENDOR:	Target	vendor	string	that	is	concatenated	with	various	variables,
most	notably	target	system	(TARGET_SYS).	TARGET_SYS	is	a	concatenation	of
target	architecture	(TARGET_ARCH),	target	vendor	(TARGET_VENDOR),	and	target
operating	system	(TARGET_OS),	such	as	i586-poky-linux.	The	three	parts	are
delimited	by	hyphens.	The	TARGET_VENDOR	string	must	be	prefixed	with	the
hyphen,	and	TARGET_OS	must	not.	This	is	one	of	the	many	unfortunate
inconsistencies	of	the	OpenEmbedded	build	system.	You	may	want	to	set	this
variable	to	your	or	your	company’s	name.

SDK	Information

The	settings	in	this	section	provide	the	base	configuration	for	the	SDK.

	SDK_NAME:	The	base	name	that	the	build	system	uses	for	SDK	output	files.	It	is
derived	by	concatenating	the	DISTRO,	TCLIBC,	SDK_ARCH,	IMAGE_BASENAME,
and	TUNE_PKGARCH	variables	with	hyphens.	There	is	not	much	reason	for	you	to
change	that	string	from	its	default	setting,	as	it	provides	all	the	information	needed
to	distinguish	different	SDKs.

	SDK_VERSION:	SDK	version	string,	which	is	commonly	set	to
DISTRO_VERSION.

	SDK_VENDOR:	SDK	vendor	string,	which	serves	a	similar	purpose	as
TARGET_VENDOR.	Like	TARGET_VENDOR,	the	string	must	be	prefixed	with	a
hyphen.

	SDKPATH:	Default	installation	path	for	the	SDK.	The	SDK	installer	offers	this	path
to	the	user	during	installation	of	an	SDK.	The	user	can	accept	it	or	enter	an

alternative	path.	The	default	value	/opt/${DISTRO}/${SDK_VERSION}
installs	the	SDK	into	the	/opt	system	directory,	which	requires	root	privileges.	A
viable	alternative	would	be	to	install	the	SDK	into	the	user’s	home	directory	by
setting	SDKPATH	=	"${HOME}/${DISTRO}/${SDK_VERSION}".

Distribution	Features

These	feature	settings	provide	specific	functionality	for	the	distribution.

	DISTRO_FEATURES:	A	list	of	distribution	features	that	enable	support	for	certain
functionality	within	software	packages.	The	assignment	in	the	poky.conf
distribution	policy	file	includes	DISTRO_FEATURES_DEFAULT	and
DISTRO_FEATURES_LIBC.	Both	contain	default	distribution	feature	settings.	We
discuss	distribution	features	and	how	they	work	and	the	default	configuration	in	the
next	two	sections.

Preferred	Versions

Version	settings	prescribe	particular	versions	for	packages	rather	than	the	default	versions.

	PREFERRED_VERSION:	Using	PREFERRED_VERSION	allows	setting	particular
versions	for	software	packages	if	you	do	not	want	to	use	the	latest	version,	as	it	is
the	default.	Commonly,	that	is	done	for	the	Linux	kernel	but	also	for	software
packages	on	which	your	application	software	has	strong	version	dependencies.

Dependencies

These	settings	are	declarations	for	dependencies	required	for	distribution	runtime.

	DISTRO_EXTRA_RDEPENDS:	Sets	runtime	dependencies	for	the	distribution.
Dependencies	declared	with	this	variable	are	required	for	the	distribution.	If	these
dependencies	are	not	met,	building	the	distributions	fails.

	DISTRO_EXTRA_RRECOMMENDS:	Packages	that	are	recommended	for	the
distribution	to	provide	additional	useful	functionality.	These	dependencies	are	added
if	available	but	building	the	distribution	does	not	fail	if	they	are	not	met.

Toolchain	Configuration

These	settings	configure	the	toolchain	used	for	building	the	distribution.

	TCMODE:	This	variable	selects	the	toolchain	that	the	build	system	uses.	The	default
value	is	default,	which	selects	the	internal	toolchain	built	by	the	build	system
(gcc,	binutils,	etc.).	The	setting	of	the	variable	corresponds	to	a	configuration	file
tcmode-${TCMODE}.inc,	which	the	build	system	locates	in	the	path
conf/distro/include.	This	allows	including	an	external	toolchain	with	the
build	system	by	including	a	toolchain	layer	that	provides	the	necessary	tools	as	well
as	the	configuration	file.	If	you	are	using	an	external	toolchain,	you	must	ensure	that
it	is	compatible	with	the	Poky	build	system.

	TCLIBC:	Specifies	the	C	library	to	be	used.	The	build	system	currently	supports

EGLIBC,	uClibc,	and	musl.	The	setting	of	the	variable	corresponds	to	a
configuration	file	tclibc-${TCLIBC).inc	that	the	build	system	locates	in	the
path	conf/distro/include.	These	configuration	files	set	preferred	providers
for	libraries	and	more.

	TCLIBCAPPEND:	The	build	system	appends	this	string	to	other	variables	to
distinguish	build	artifacts	by	C	library.	If	you	are	experimenting	with	different	C
libraries,	you	may	want	to	use	the	settings
TCLIBCAPPEND	=	“-${TCLIBC}”
TMPDIR	.=	“${TCLIBCAPPEND}”

in	your	distribution	configuration,	which	creates	a	separate	build	output	directory
structure	for	each	C	library.

Mirror	Configuration

The	settings	in	this	section	configure	the	mirrors	for	downloading	source	packages.

	PREMIRRORS	and	MIRRORS:	The	Poky	distribution	adds	these	variables	to	set	its
mirror	configuration	to	use	the	Yocto	Project	repositories	as	a	source	for	downloads.
If	you	want	to	use	your	own	mirrors,	you	can	add	them	to	your	distribution
configuration	file.	However,	since	mirrors	are	not	strictly	distribution	settings,	you
may	want	to	add	these	variables	to	the	local.conf	file	of	your	build
environment.	Another	alternative	would	be	to	add	them	to	the	layer.conf	file	of
a	custom	layer.

Build	System	Configuration

These	settings	define	the	requirements	for	the	build	system.

	LOCALCONF_VERSION:	Sets	the	expected	or	required	version	for	the	build
environment	configuration	file	local.conf.	The	build	system	compares	this
value	to	the	value	of	the	variable	CONF_VERSION	in	local.conf.	If
LOCALCONF_VERSION	is	a	later	version	than	CONF_VERSION,	the	build	system
may	be	able	to	automatically	upgrade	local.conf	to	the	newer	version.
Otherwise,	the	build	system	exits	with	an	error	message.

	LAYER_CONF_VERSION:	Sets	the	expected	or	required	version	for	the
bblayers.conf	configuration	file	of	a	build	environment.	The	build	system
compares	this	version	to	the	value	of	LCONF_VERSION	set	by	bblayers.conf.
If	LAYER_CONF_VERSION	is	a	later	version	than	LCONF_VERSION,	the	build
system	may	be	able	to	automatically	upgrade	bblayers.conf	to	the	newer
version.	Otherwise,	the	build	system	exits	with	an	error	message.

	OELAYOUT_ABI:	Sets	the	expected	or	required	version	for	the	layout	of	the	output
directory	TMPDIR.	The	build	system	stores	the	actual	layout	version	in	the	file
abi_version	inside	of	TMPDIR.	If	the	two	are	incompatible,	the	build	system
exits	with	an	error	message.	This	typically	happens	only	if	you	are	using	a	newer
version	of	the	build	system	with	a	build	environment	that	was	created	by	a	previous

version	and	the	layout	changed	incompatibly.	Deleting	TMPDIR	resolves	the	issue
by	re-creating	the	directory.

	BB_SIGNATURE_HANDLER:	The	signature	handler	used	for	signing	shared	state
cache	entries	and	creating	stamp	files.	The	value	references	a	signature	handler
function	that,	because	of	its	complexity,	is	typically	implemented	in	Python.	The
code	in	meta/lib/oe/sstatesig.py	implements	OEBasic	and
OEBasicHash	based	on	the	BitBake	signature	generators
SignatureGeneratorBasic	and	SignatureGeneratorBasicHash
defined	by	bitbake/lib/bb/siggen.py	and	illustrates	how	to	insert	your
own	signature	handler	function.	The	two	signature	handlers	are	principally	the	same,
but	OEBasicHash	includes	the	task	code	in	the	signature,	which	causes	any
change	to	metadata	to	invalidate	stamp	files	and	shared	state	cache	entries	without
explicitly	changing	package	revision	numbers.	Using	the	default	value	of
OEBasicHash	is	typically	sufficient	for	most	applications.

Build	System	Checks

These	configuration	variables	control	various	validators	to	catch	build	system
misconfigurations.

	INHERIT	+=	“poky-sanity”:	Inherits	the	class	poky-sanity,	which	is
required	to	perform	the	build	system	checks.	It	is	recommended	that	you	include	this
directive	in	your	own	distribution	configuration	files.

	CONNECTIVITY_CHECK_URIS:	A	list	of	URIs	that	the	build	system	tries	to
verify	network	connectivity.	In	the	case	of	Poky,	these	point	to	files	on	the	Yocto
Project’s	high-availability	infrastructure.	If	you	intend	to	use	your	own	mirrors	for
downloading	source	packages,	you	could	use	URIs	pointing	to	files	on	your	mirror
servers	to	verify	proper	connectivity.

	SANITY_TESTED_DISTROS:	A	list	of	Linux	distributions	the	Poky	build	system
has	been	tested	on.	The	build	system	verifies	the	Linux	distribution	it	is	running	on
against	this	list.	If	that	distribution	is	not	in	the	list,	Poky	displays	a	warning
message	and	starts	the	build	process	regardless.	Poky	runs	on	most	current	Linux
distributions,	and	in	most	cases,	building	works	just	fine	even	if	the	distribution	is
not	officially	supported.

QA	Checks

The	QA	checks	are	defined	and	implemented	by	meta/classes/insane.bbclass.
This	class	also	defines	the	QA	tasks	that	are	included	with	the	build	process.	QA	checks
are	performed	after	configuration,	packaging,	and	other	build	tasks.	The	following	two
variables	define	which	QA	checks	cause	warning	messages	and	which	checks	cause	the
build	system	to	terminate	the	build	with	an	error	message:

	WARN_QA:	A	list	of	QA	checks	that	create	warning	messages,	but	the	build
continues

	ERROR_QA:	A	list	of	QA	checks	that	create	error	messages,	and	the	build	terminates

The	preceding	list	represents	the	most	common	variable	settings	used	by	a	distribution
configuration.	For	your	own	distribution	configuration,	you	may	add	and/or	omit	variables
as	needed.

7.4.3	Distribution	Features
Distribution	features	enable	support	for	certain	functionality	within	software	packages.
Adding	a	distribution	feature	to	the	variable	DISTRO_FEATURES	adds	the	functionality
of	this	feature	to	software	packages	that	support	it	during	build	time.	For	instance,	if	a
software	package	can	be	built	for	console	as	well	as	graphical	user	interfaces,	then	adding
x11	to	DISTRO_FEATURES	configures	that	software	package	so	that	it	is	built	with	X11
support.	Unlike	the	x11	image	feature,	this	does	not	mean	that	the	X11	packages	are
installed	in	your	target	root	filesystem.	The	distribution	feature	only	prepares	a	software
package	for	X11	support	so	that	it	uses	X11	on	a	system	where	the	X11	base	packages	are
installed.

Using	DISTRO_FEATURES	gives	you	granular	control	over	how	software	packages
are	built.	If	you	do	not	need	a	particular	functionality,	omitting	the	distribution	feature
enabling	it	typically	results	in	a	smaller	footprint	for	a	particular	software	package.

Using
$	grep	-R	DISTRO_FEATURES	*

from	the	installation	directory	of	your	build	system	gives	you	a	list	of	all	the	recipes	and
include	files	that	use	DISTRO_FEATURES	to	conditionally	modify	configuration	settings
or	build	processes	dependent	on	what	distribution	features	are	enabled.

Recipes	typically	scan	DISTRO_FEATURES	using
Click	here	to	view	code	image

bb.utils.contains(‘DISTRO_FEATURES’,	<feature>,	<true_val>,	<false_val>)

to	determine	if	a	particular	distribution	feature	is	enabled	by	DISTRO_FEATURES.	The
function	returns	true_val	if	DISTRO_FEATURES	contains	feature	and
false_val	otherwise.	That	makes	it	convenient	for	the	developer	to	assign	values	to
BitBake	variables	or	use	the	function	in	if-then-else	statements.	Typically,	this	is	used	by
the	do_configure	task	to	modify	the	configuration	based	on	DISTRO_FEATURES.
For	some	packages,	it	may	provide	flags	to	makefiles.

A	prime	example	is	the	recipe	to	build	the	EGLIBC	library.	EGLIBC	allows	enabling
functionality	by	setting	configuration	options.	The	file	meta/recipes-
core/egligc/egilbc-options.inc,	which	is	included	by	the	recipe,	sets	the
configuration	options	based	on	the	distribution	features	provided	by
DISTRO_FEATURES.

The	following	list	shows	the	most	common	distribution	features	that	you	can	add	to
DISTRO_FEATURES	to	enable	functionality	in	software	packages	globally	across	your
distribution:

	alsa:	Enable	support	for	the	Advanced	Linux	Sound	Architecture	(ALSA),

including	the	installation	of	open	source	compatibility	modules	if	available.

	bluetooth:	Enable	support	for	Bluetooth.

	cramfs:	Enable	support	for	the	compressed	filesystem	CramFS.

	directfb:	Enable	support	for	DirectFB.

	ext2:	Enable	support	and	include	tools	for	devices	with	internal	mass	storage
devices	such	as	hard	disks	instead	of	flash	devices	only.

	ipsec:	Enable	support	for	authentication	and	encryption	using	Internet	Protocol
Security	(IPSec).

	ipv6:	Enable	support	for	Internet	Protocol	version	6	(IPv6).

	irda:	Enable	support	for	wireless	infrared	data	communication	as	specified	by	the
Infrared	Data	Association	(IrDA).

	keyboard:	Enable	keyboard	support,	which	includes	loading	of	keymaps	during
boot	of	the	system.

	nfs:	Enable	client	NFS	support	for	mounting	NFS	exports	on	the	system.

	opengl:	Include	the	Open	Graphics	Library	(OpenGL),	which	is	an	application
programming	interface	for	rendering	2D	and	3D	graphics.	OpenGL	runs	on	different
platforms	and	provides	bindings	for	most	common	programming	languages.

	pci:	Enable	support	for	the	PCI	bus.

	pcmcia:	Enable	PCMCIA	and	CompactFlash	support.

	ppp:	Enable	Point-to-Point	Protocol	(PPP)	support	for	dial-up	networking.

	smbfs:	Enable	support	and	include	clients	for	Microsoft’s	Server	Message	Block
(SMB)	for	sharing	remote	filesystems,	printers,	and	other	devices	over	networks.

	systemd:	Include	support	for	the	system	management	daemon	(systemd)	that
replaces	the	SysVinit	script-based	system	for	starting	up	and	shutting	down	a
system.

	sysvinit:	Include	support	for	the	SysVinit	system	manager.

	usbgadget:	Enable	support	for	the	Linux-USB	Gadget	API	Framework	that
allows	a	Linux	device	to	act	like	a	USB	device	(slave	role)	when	connected	to
another	system.

	usbhost:	Enable	USB	host	support	allowing	client	devices	such	as	keyboards,
mice,	cameras,	and	more	to	be	connected	to	the	system’s	USB	ports	and	detected	by
it.

	wayland:	Enable	support	for	the	Wayland	compositor	protocol	and	include	the
Weston	compositor.

	wifi:	Enable	WiFi	support.

	x11:	Include	the	X11	server	and	libraries.

The	list	does	not	include	the	distribution	features	for	the	configuration	of	the	C	library.
These	distribution	features	all	begin	with	libc-.	They	enable	support	for	functionality
provided	by	the	C	library	if	the	C	library	is	configurable	like	the	Yocto	Project’s	default	C
library	glibc.	If	you	are	using	glibc,	then	you	do	not	have	to	worry	about	setting	these
distribution	features,	as	they	are	inherited	from	the	default	distribution	setup,	which	is
covered	in	the	next	section.

If	you	have	already	been	working	with	the	Yocto	Project,	you	may	have	noticed	that
there	is	also	a	variable	called	MACHINE_FEATURES	and	that	the	permissible	list	of
machine	features	has	a	large	intersection	with	the	distribution	feature	list.	For	example,
both	MACHINE_FEATURES	and	DISTRO_FEATURES	provide	the	feature	bluetooth.
Enabling	Bluetooth	in	DISTRO_FEATURES	causes	the	Bluetooth	packages	for	hardware
support	to	be	installed	and	also	enables	Bluetooth	support	for	various	software	packages.
However,	enabling	Bluetooth	in	MACHINE_FEATURES	only	causes	the	Bluetooth
packages	for	hardware	support	to	be	installed.	This	gives	you	control	over	functionality	on
the	machine	and	the	distribution	level.	We	discuss	machine	features	in	detail	when	we	are
looking	into	Yocto	Project	board	support	packages.

7.4.4	System	Manager
The	build	system	supports	SysVinit,	the	traditional	script-based	system	manager,	as	well
as	the	system	management	daemon	(systemd),	a	replacement	for	SysVinit	that	offers	better
prioritization	and	dependency	handling	between	services	and	the	ability	to	start	services	in
parallel	to	speed	up	the	boot	sequence.

SysVinit	is	the	default	system	manager	for	Linux	distributions	built	by	Poky.	You	do	not
have	to	change	the	configuration	if	you	want	to	use	SysVinit.

To	enable	systemd,	you	need	to	add	it	to	the	distribution	features	and	set	it	as	the	system
manager.	Add	the	following	to	your	distribution	configuration	file:
Click	here	to	view	code	image

DISTRO_FEATURES_append	=	”	systemd”
VIRTUAL-RUNTIME_init_manager	=	“systemd”

The	first	line	installs	systemd	in	the	root	filesystem.	The	second	line	enables	it	as	the
system	manager.	Installing	and	enabling	systemd	does	not	remove	SysVinit	from	your	root
filesystem	if	it	is	also	included	in	DISTRO_FEATURES.	If	you	are	using	one	of	the
standard	distribution	configurations,	such	as	poky,	then	you	can	remove	it	from
DISTRO_FEATURES	with
Click	here	to	view	code	image

DISTRO_FEATURES_BACKFULL_CONSIDERED	=	“sysvinit”

which	is	easier	than	redefining	DISTRO_FEATURES	altogether.	For	your	own
distribution	configuration,	you	can	of	course	simply	omit	SysVinit	from	the
DISTRO_FEATURES	list.

The	SysVinit	initscripts	to	start	the	individual	system	services	are	typically	part	of	the
package	that	provides	the	service.	To	conserve	space	in	the	root	filesystem,	you	may	not
want	to	install	the	initscripts	if	you	want	to	use	systemd	exclusively.	Use

Click	here	to	view	code	image
VIRTUAL-RUNTIME_initscripts	=	””

to	prevent	the	build	system	from	installing	the	SysVinit	initscripts.

A	word	of	caution:	some	daemons	may	not	yet	have	been	adapted	for	use	with	systemd
and	therefore	systemd	service	files	are	not	available.	If	you	come	across	such	software,
you	may	have	to	do	the	adaptation	yourself.	If	you	do	so,	please	consider	submitting	your
work	to	upstream.

7.4.5	Default	Distribution	Setup
The	OE	Core	metadata	layer	provides	default	distribution	setup	through	the	file
meta/conf/distro/defaultsetup.conf	and	a	series	of	other	files	included	by
it	(see	Listing	7-13).	It	is	not	quite	obvious	how	this	default	distribution	setup	is	included
into	the	build	configuration,	as	this	file	is	not	included	by	distribution	policy	configuration
files	such	as	poky.conf,	which	we	discussed	earlier.	Instead,	the	file	is	included	by
BitBake’s	main	configuration	file,	bitbake.conf.

Knowing	about	defaultsetup.conf	and	understanding	its	settings	is	important
because	your	own	distribution	policy	configuration	may	extend	or	overwrite	some	of	the
default	variable	settings	provided	by	it.	If	you	do	not	set	up	the	default	distribution
correctly,	you	may	inadvertently	lose	important	default	settings,	and	your	distribution
build	may	fail	or	not	yield	the	desired	results.

Listing	7-13	Default	Distribution	Setup
meta/conf/distro/defaultsetup.conf

Click	here	to	view	code	image

include	conf/distro/include/default-providers.inc
include	conf/distro/include/default-versions.inc
include	conf/distro/include/default-distrovars.inc
include	conf/distro/include/world-broken.inc

TCMODE	?=	“default”
require	conf/distro/include/tcmode-${TCMODE}.inc

TCLIBC	?=	“eglibc”
require	conf/distro/include/tclibc-${TCLIBC}.inc

#	Allow	single	libc	distros	to	disable	this	code
TCLIBCAPPEND	?=	“-${TCLIBC}”
TMPDIR	.=	“${TCLIBCAPPEND}”

CACHE	=	“${TMPDIR}/cache/${TCMODE}-${TCLIBC}${@[”,	‘/’	+	\
									str(d.getVar(‘MACHINE’,	True))][bool(d.getVar(‘MACHINE’,	\
									True))]}${@[”,	‘/’	+	str(d.getVar(‘SDKMACHINE’,	True))]	\
									[bool(d.getVar(‘SDKMACHINE’,	True))]}”

USER_CLASSES	?=	””
PACKAGE_CLASSES	?=	“package_ipk”
INHERIT_BLACKLIST	=	“blacklist”
INHERIT_DISTRO	?=	“debian	devshell	sstate	license”
INHERIT	+=	“${PACKAGE_CLASSES}	${USER_CLASSES}	${INHERIT_DISTRO}	\
												${INHERIT_BLACKLIST}”

The	file	first	includes	three	other	files	with	default	settings:	default-
providers.inc,	default-versions.inc,	and	default-distrovars.inc.
The	names	for	these	files	are	indicative	of	what	the	file	content	is	providing.

The	file	default-distrovars.inc	in	particular	provides	default	settings	for
DISTRO_FEATURES,	DISTRO_FEATURES_DEFAULT,	DISTRO_FEATURES_LIBC,
and	DISTRO_FEATURES_LIBC_DEFAULT.	If	you	are	going	to	set
DISTRO_FEATURES	in	your	own	distribution	policy	configuration	file,	you	need	to	pay
attention	that	you	do	not	inadvertently	remove	the	default	settings	by	overwriting	the
variable.	A	safe	way	of	doing	so	is	to	use	an	assignment	like
Click	here	to	view	code	image

DISTRO_FEATURES	?=	“${DISTRO_FEATURES_DEFAULT}	${DISTRO_FEATURES_LIBC}	\
																					${MY_DISTRO_FEATURES}”
MY_DISTRO_FEATURES	=	“<distro	features>”

which	includes	all	default	settings	and	adds	another	variable	to	include	additional
distribution	features	as	needed.

The	configuration	file	defaultsetup.conf	also	sets	the	defaults	for	TCMODE	and
TCLIBC	and	includes	their	respective	configuration	files,	as	described	earlier.

7.5	External	Layers
For	the	examples	in	the	preceding	sections,	we	used	software	packages	and	package
groups	from	the	OE	Core	layer	meta	and	the	Yocto	Project	base	layer	meta-yocto.

With	steadily	increasing	support	and	contributions	to	the	Yocto	Project	and
OpenEmbedded,	a	growing	number	of	additional	layers	with	hundreds	of	recipes	for
myriad	software	packages	are	now	available.	Many	of	them	are	cataloged	on	the
OpenEmbedded	website.	If	you	are	looking	for	a	recipe	to	build	a	specific	software
package,	chances	are	that	someone	has	already	done	the	work.

The	OpenEmbedded	website’s	metadata	index1	lets	you	search	by	layer,	recipe,	and
machine.	For	example,	searching	for	Java	by	layer	gives	you	a	list	of	the	layers	that
provide	Java.	Searching	for	JDK	by	recipes	gives	you	a	list	of	all	recipes	that	build	JDK
packages	together	with	the	layer	that	provides	the	recipe.

1.	http://layers.openembedded.org

The	metadata	index	also	lets	you	filter	for	the	supported	Yocto	Project	release	to	see	if	a
recipe	or	layer	is	compatible	with	that	particular	release.	Once	you	find	the	layer
containing	the	software	package	recipe	you	are	looking	for,	all	you	need	to	do	is	download
the	layer,	include	its	path	into	the	BBLAYERS	variable	of	the	conf/bblayers.conf
of	your	build	environment,	and	add	the	desired	software	package	to	your	image	using	one
of	the	methods	described	earlier.

7.6	Hob
Hob	is	a	graphical	user	interface	for	BitBake	provided	by	the	Yocto	Project.	It	is	one	of
the	Yocto	Project’s	subprojects	and	is	maintained	by	the	Yocto	Project	development	team.

http://layers.openembedded.org

Why	is	it	called	Hob?	In	the	early	days	of	Hob,	the	three	letters	stood	for	Human-
Oriented	Builder.	However,	that	does	not	really	sound	too	appealing	and	now	the	name	of
the	tool	is	commonly	associated	with	hob,	the	British	English	word	for	cooktop.	And	that
fits	well	into	the	scheme	of	BitBake	and	recipes.

With	Hob	you	can	conveniently	customize	your	root	filesystem	images	using	your
mouse	rather	than	editing	text	files.	If	that’s	the	case,	why	didn’t	we	introduce	Hob	first
rather	than	explain	how	to	build	your	custom	Linux	distribution	the	“hard”	way?	There	are
a	couple	of	reasons:

	You	can	do	a	lot	with	Hob,	but	not	everything.

	Hob	is	a	frontend	to	BitBake	and	your	build	environment.	It	manipulates	files	in
your	build	environment,	launches	BitBake,	and	collects	build	results.	Understanding
how	this	is	done	manually	helps	you	understand	what	Hob	does	in	particular	if
something	goes	wrong.

	Although	Hob	may	hide	some	of	the	complexity,	you	still	need	to	know	the
terminology	and	how	certain	variable	settings	influence	your	build	results.

Using	Hob	is	rather	simple.	First,	set	up	a	build	environment	and	then	launch	Hob	from
inside	it:
Click	here	to	view	code	image

$	source	oe-init-build-env	build
$	hob

Hob	launches	and	then	verifies	your	build	environment.	After	that	check	is	completed,
you	see	a	screen	similar	to	the	one	in	Figure	7-1	(we	already	made	choices	for	the	machine
and	image	recipe).

Figure	7-1	Hob

The	Hob	user	interface	is	easy	to	understand:

	Select	a	machine:	From	the	drop-down	menu,	choose	the	machine	you	want	to
build	for.	The	list	shows	all	the	machines	that	are	defined	by	any	layer	included	with
the	build	environment.	Selecting	the	machine	changes	the	MACHINE	variable	setting
in	the	con/local.conf	file.

	Layers:	Click	this	button	to	open	a	graphical	editor	that	lets	you	include	layers	with
and	remove	them	from	your	build	environment.	Doing	so	modifies	the
conf/bblayers.conf	file	in	your	build	environment.

	Select	an	image	recipe:	From	this	drop-down	menu,	you	can	choose	the	image	that
you	want	to	build.	This	provides	the	image	target	to	BitBake	similar	to	running
bitbake	<image-target>.	The	menu	contains	image	targets	from	all	layers
included	with	your	build	environment.

	Advanced	configuration:	Clicking	on	this	button	opens	a	menu	that	lets	you	select
root	filesystem	types,	packaging	format,	distribution	policy,	image	size,	and	more,	as
outlined	in	Sections	7.3	and	7.4.	Hob	adds	these	options	to	the
conf/local.conf	file	of	the	build	environment.

	Edit	image	recipe:	This	button	at	the	bottom	of	the	screen	lets	you	modify	the
image	recipe	by	adding	and/or	removing	packages	and/or	package	groups.	Doing	so
effectively	modifies	the	IMAGE_INSTALL	variable	of	the	image	target.	You

cannot,	however,	define	new	package	groups	from	the	Hob	user	interface.	For	that
task,	you	have	to	write	your	package	group	recipe	as	explained	in	Section	7.1.6.	But,
of	course,	if	you	wrote	your	package	recipe	and	included	the	layer	it	resides	in	with
Hob,	then	you	are	able	to	select	it	from	the	package	groups	list.

	Settings:	This	button	in	the	upper	right	corner	of	the	user	interface	allows	you	to
modify	general	settings	contained	in	conf/local.conf	such	as	parallelism,
download	directory,	shared	state	cache,	mirrors,	and	network	proxies.	Using	the
Others	tab,	you	can	add	any	variable	to	conf/local.conf	and	assign	a	value	to
it.

	Images:	This	button	next	to	the	Settings	button	in	the	upper	right	corner	of	the	Hob
user	interface	displays	a	list	of	previously	built	images.	The	list	is	created	by	parsing
the	tmp/deploy/images/<machine>	subdirectories	of	the	build	environment.
You	can	select	an	image	from	the	list,	run	it	if	it	is	a	QEMU	image,	or	rebuild	it.

	Build	image:	This	button	launches	BitBake	with	the	selected	configuration	and
image	target.	The	user	interface	switches	to	the	Log	tab	of	the	build	view	from
which	you	can	follow	the	build	process.	This	view	has	a	major	advantage	over	the
BitBake	output	when	started	from	the	command	line:	not	only	do	you	see	the	tasks
that	are	currently	run	but	also	the	pending	tasks	and	the	ones	that	already	have
completed.	If	there	are	any	build	issues,	warnings,	or	errors,	they	are	logged
underneath	the	Issues	tab.	There	you	can	examine	build	issues	and	directly	view	the
entire	log	file	of	a	task	without	navigating	through	the	build	environment	directory
structure.

After	the	build	finishes,	Hob	presents	you	with	a	summary	page	where	you	can	view	the
created	files	in	the	file	browser	of	your	build	system.	You	can	also	examine	a	summary	log
showing	the	run	results	for	each	task	as	well	as	any	notes,	warnings,	or	error	messages.	If
you	used	Hob	to	build	a	root	filesystem	image	and	Linux	kernel	for	the	QEMU	emulator,
you	can	launch	QEMU	directly	from	Hob	to	verify	your	image	by	clicking	on	the	Run
image	button	in	the	lower	right	corner	of	the	user	interface.	From	the	summary	page,	you
can	also	make	changes	to	your	configuration	and	run	a	new	build.

Whether	you	prefer	Hob	over	configuring	your	build	environment,	customizing	your
target	images,	and	launching	BitBake	manually	is	entirely	up	to	you.	Hob	is	great	for	rapid
prototyping	and	to	quickly	enable	somebody	who	is	not	all	that	familiar	with	BitBake	and
the	Yocto	Project	to	build	predefined	root	filesystem	image	targets.	Hob	does	not	allow
you	to	create	your	own	image	recipes,	nor	can	you	create	your	own	distribution	policy
files	with	it	(or	even	edit	them).	For	these	tasks,	you	need	to	set	up	your	own	layer	and
create	the	necessary	files	and	recipes	manually.

From	Yocto	Project	version	2.1	on,	Hob	is	being	deprecated	in	favor	of	the	web-based
Toaster,	which	we	explore	in	detail	in	Chapter	13.

7.7	Summary
The	largest	building	block	of	a	Linux	distribution	is	the	user	space	that	contains	the
various	libraries	and	applications	that	provide	the	essential	functionality	of	the	system.
This	chapter	presented	the	fundamental	concepts	on	how	the	Poky	build	system	creates
root	filesystem	images	and	how	you	can	customize	them	to	meet	your	requirements.

	The	OpenEmbedded	build	system’s	core	images	provide	distribution	blueprints	that
you	can	extend	and	modify.

	Core	images	can	easily	be	extended	by	appending	packages	and	package	groups	to
the	list	contained	in	the	variable	IMAGE_INSTALL.

	The	QEMU	emulator	is	a	convenient	and	quick	way	to	test	your	root	file	before
booting	it	on	an	actual	device.

	Enabling	the	build	history	lets	you	track	changes	to	your	images	and	compare
subsequent	executions	of	the	build	process.

	Creating	your	own	image	recipes	that	build	on	core	image	recipes	by	including	them
provides	you	with	more	control	over	what	packages	your	root	filesystem	image
contains.	Image	recipes	that	directly	inherit	the	core-image	class	let	you	build
root	filesystem	images	from	scratch.

	Package	groups	are	a	mechanism	to	bundle	multiple	packages	and	reference	them	by
a	single	name,	which	greatly	simplifies	image	customization	with	the
IMAGE_INSTALL	variable.	Poky	provides	a	series	of	predefined	package	groups
that	organize	common	packages.

	The	build	system	can	produce	root	filesystem	images	in	various	output	formats.
Some	of	them	can	be	written	directly	to	storage	media	such	as	flash	devices	to	boot
a	system.

	Setting	up	a	distribution	policy	allows	operating	system	configuration	independent
of	the	content	of	the	root	filesystem.	It	also	provides	the	means	to	use	an	external
toolchain	with	the	build	system	and	to	change	the	C	library.

	Hob	is	a	graphical	user	interface	for	BitBake.	Launched	from	within	an	initialized
build	environment,	it	allows	configuring	and	building	of	root	filesystem	images
without	modifying	files	using	a	text	editor.

8.	Software	Package	Recipes

In	This	Chapter

8.1	Recipe	Layout	and	Conventions

8.2	Writing	a	New	Recipe

8.3	Recipe	Examples

8.4	Devtool

8.5	Summary

8.6	References

Chapter	7,	“Building	a	Custom	Linux	Distribution,”	explored	how	to	build	your	own
custom	Linux	OS	stacks	and	create	root	filesystems	to	boot	them.	For	the	examples	in	that
chapter,	we	used	software	packages	for	which	the	recipes	are	provided	as	part	of	the
default	metadata	layers	that	are	included	with	the	OpenEmbedded	build	system.	The
default	packages	give	you	operational	Linux	systems	as	a	foundation	for	your	own
projects.	They	can	be	as	simple	and	basic	as	a	system	that	just	boots	to	an	interactive
console	but	also	as	complex	as	a	system	with	the	X	Window	System	(X11)	providing	a
graphical	user	interface.

Unless	you	are	building	development	boards	for	embedded	Linux	engineers,	your
device	eventually	requires	you	to	add	your	own	software	packages	to	the	operating	system
stack.	Ideally,	you	want	BitBake	to	build	your	software	packages	for	you	and	be	able	to
include	them	with	the	root	filesystem	using	the	methods	we	discussed	in	Chapter	7.

This	chapter	begins	by	presenting	the	structure	of	a	recipe	building	a	software	package
and	describing	the	typical	metadata	used.	We	then	show	how	to	write	recipes	that	build
directly	from	C	files,	build	with	standard	makefiles,	build	using	CMake,	and	build	with
GNU	Autotools.	We	then	explain	how	the	various	build	artifacts	are	split	into	different
packages	using	package	management	systems.	We	conclude	this	chapter	with	a	section	on
how	to	modify	existing	recipes	with	append	files.

8.1	Recipe	Layout	and	Conventions
The	majority	of	recipes	are	intended	to	build	software	packages.	Over	the	course	of	the
continuing	evolution	of	the	Yocto	Project/OpenEmbedded	conventions,	guidelines	and
best	practices	have	been	established	on	how	to	write	recipes	for	software	packages.	They
are	not	absolute	rules,	and	you	find	many	recipes,	particularly	legacy	recipes,	that	do	not
strictly	adhere	to	these	guidelines.	However,	the	community	converges	toward	these	best
practices,	and	it	makes	good	sense	to	follow	them.	You	can	find	a	recipe	style	guide	on	the
OpenEmbedded	website.1

1.	http://openembedded.org/wiki/Styleguide

http://openembedded.org/wiki/Styleguide

8.1.1	Recipe	Filename
Recipe	filenames	follow	the	convention	<packagename>_<version>-
<revision>.bb	where	packagename	is	the	name	of	the	software	package	the	recipe
builds.	The	underscore	separates	the	version	string	from	the	package	name,	and	the
hyphen	separates	the	version	string	from	the	revision.	Do	not	use	the	underscore	anywhere
else	in	the	recipe	name,	such	as	for	delimiting	parts	of	the	package	name.	The	use	of
hyphens	is	allowed	for	the	package	name	as	well	as	for	the	package	version	but	should	be
avoided	for	the	latter.	The	package	revision	must	not	contain	hyphens.	Examples	of	recipe
names	are

	avahi_0.6.31.bb

	linux-yocto_3.14.bb

	wpa-supplicant_2.2.bb

The	fields	packagename,	version,	and	revision	of	the	recipe	filename	are
assigned	by	BitBake	to	the	variables	PN,	PV,	and	PR,	respectively.

A	particular	issue	for	the	recipe	filename	arises	when	the	package	is	fetched	from	a
branch	of	a	software	configuration	management	(SCM)	system	and	the	version	is	not
associated	with	a	tag.	In	this	case,	recipes	should	be	named
<packagename>_<scm>.bb	where	scm	is	the	name	of	the	versioning	system,	such	as
git,	svn,	or	cvs.	The	recipe	should	then	set	PV	explicitly	to	PV	=	"
<version>+git${SRCREV}"	where	version	is	the	most	recent	release	or	tag	point,
and	SRCREV	points	to	the	revision	to	fetch	from	the	SCM.	It	is	important	that	you	follow
the	naming	guidelines	for	recipe	files,	as	package	name,	version,	and	revision	are	also
used	for	the	package	management	systems.	Using	incorrect	recipe	names	could	result	in
trouble	with	the	package	managers	creating,	installing,	and	maintaining	package	versions
for	the	target	root	filesystems.

8.1.2	Recipe	Layout
Recipes	follow	a	standard	layout	to	make	recipe	files	more	accessible	and	easier	to
understand.	This	layout	can	be	broken	up	into	several	sections	that	logically	group
metadata.	We	explain	the	structure	using	the	gettext	recipe	from	meta/recipes-
core/gettext/gettext_0.18.3.2.bb,	shown	in	Listing	8-1.

Listing	8-1	Gettext	Recipe	gettext_0.18.3.2.bb
Click	here	to	view	code	image

#	Descriptive	Meta-data
SUMMARY	=	“Utilities	and	libraries	for	producing	multi-lingual	messages”
DESCRIPTION	=	“GNU	gettext	is	a	set	of	tools	that	provides	a	framework	to
help
other	programs	produce	multilingual	messages.	These	tools	include	a	set	of
conventions	about	how	programs	should	be	written	to	support	message	catalogs,
a	directory	and	file	naming	organization	for	the	message	catalogs	themselves,
a	runtime	library	supporting	the	retrieval	of	translated	messages,	and	a	few
standalone	programs	to	massage	in	various	ways	the	sets	of	translatable	and
already	translated	strings.”

HOMEPAGE	=	“http://www.gnu.org/software/gettext/gettext.html”

#	Package	Manager	Meta-data
SECTION	=	“libs”

#	Licensing	Meta-data
LICENSE	=	“GPLv3+	&	LGPL-2.1+”
LIC_FILES_CHKSUM	=	“file://COPYING;md5=d32239bcb673463ab874e80d47fae504”

#	Inheritance	Directives
inherit	autotools	texinfo

#	Build	Meta-data
DEPENDS	=	“gettext-native	virtual/libiconv	expat”
DEPENDS_class-native	=	“gettext-minimal-native”
PROVIDES	=	“virtual/libintl	virtual/gettext”
PROVIDES_class-native	=	“virtual/gettext-native”
RCONFLICTS_${PN}	=	“proxy-libintl”
SRC_URI	=	“${GNU_MIRROR}/gettext/gettext-${PV}.tar.gz	\
											file://parallel.patch	\
										”

PACKAGECONFIG[msgcat-curses]	=	“\
				—with-libncurses-prefix=${STAGING_LIBDIR}/..,\
				—disable-curses,ncurses,”

LDFLAGS_prepend_libc-uclibc	=	”	-lrt	-lpthread	“

SRC_URI[md5sum]	=	“241aba309d07aa428252c74b40a818ef”
SRC_URI[sha256sum]	=
“d1a4e452d60eb407ab0305976529a45c18124bd518d976971ac6dc7aa8b4c5d7”

EXTRA_OECONF	+=	“—without-lispdir	\
																	—disable-csharp	\
																	—disable-libasprintf	\
																	—disable-java	\
																	—disable-native-java	\
																	—disable-openmp	\
																	—disable-acl	\
																	—with-included-glib	\
																	—without-emacs	\
																	—without-cvs	\
																	—without-git	\
																	—with-included-libxml	\
																	—with-included-libcroco	\
																	—with-included-libunistring	\
																”

acpaths	=	‘-I	${S}/gettext-runtime/m4	\
											-I	${S}/gettext-tools/m4’

#	Packaging	Meta-data
#	these	lack	the	.x	behind	the	.so,	but	shouldn’t	be	in	the	-dev	package
#	Otherwise	you	get	the	following	results:
#	7.4M				Angstrom-console-image-glibc-ipk-2008.1-test-20080104-
ep93xx.rootfs.tar.gz
#	25M					Angstrom-console-image-uclibc-ipk-2008.1-test-20080104-
ep93xx.rootfs.tar.gz
#	because	gettext	depends	on	gettext-dev,
#	which	pulls	in	more	-dev	packages:
#	15228			KiB	/ep93xx/libstdc++-dev_4.2.2-r2_ep93xx.ipk
#	1300				KiB	/ep93xx/uclibc-dev_0.9.29-r8_ep93xx.ipk
#	140					KiB	/armv4t/gettext-dev_0.14.1-r6_armv4t.ipk

#	4							KiB	/ep93xx/libgcc-s-dev_4.2.2-r2_ep93xx.ipk

PACKAGES	=+	“libgettextlib	libgettextsrc”
FILES_libgettextlib	=	“${libdir}/libgettextlib-*.so*”
FILES_libgettextsrc	=	“${libdir}/libgettextsrc-*.so*”

PACKAGES	=+	“gettext-runtime	gettext-runtime-dev	gettext-runtime-doc”

FILES_${PN}	+=	“${libdir}/${BPN}/*”

FILES_gettext-runtime	=	“${bindir}/gettext	\
																									${bindir}/ngettext	\
																									${bindir}/envsubst	\
																									${bindir}/gettext.sh	\
																									${libdir}/libasprintf.so*	\
																									${libdir}/GNU.Gettext.dll	\
																								”
FILES_gettext-runtime_append_libc-uclibc	=	”	${libdir}/libintl.so.*	\
																																													${libdir}/charset.alias	\
																																											”
FILES_gettext-runtime-dev	+=	“${libdir}/libasprintf.a	\
																						${includedir}/autosprintf.h	\
																					”
FILES_gettext-runtime-dev_append_libc-uclibc	=	”	${libdir}/libintl.so	\
																																																	${includedir}/libintl.h	\
																																															”
FILES_gettext-runtime-doc	=	“${mandir}/man1/gettext.*	\
																													${mandir}/man1/ngettext.*	\
																													${mandir}/man1/envsubst.*	\
																													${mandir}/man1/.*	\
																													${mandir}/man3/*	\
																													${docdir}/gettext/gettext.*	\
																													${docdir}/gettext/ngettext.*	\
																													${docdir}/gettext/envsubst.*	\
																													${docdir}/gettext/*.3.html	\
																													${datadir}/gettext/ABOUT-NLS	\
																													${docdir}/gettext/csharpdoc/*	\
																													${docdir}/libasprintf/autosprintf.html	\
																													${infodir}/autosprintf.info	\
																												”

#	Task	Overrides,	Prepends	and	Appends
do_install_append()	{
				rm	-f	${D}${libdir}/preloadable_libintl.so
}

do_install_append_class-native	()	{
								rm	${D}${datadir}/aclocal/*
								rm	${D}${datadir}/gettext/config.rpath
								rm	${D}${datadir}/gettext/po/Makefile.in.in
								rm	${D}${datadir}/gettext/po/remove-potcdate.sin
}

#	Variants	/	Class	Extensions
BBCLASSEXTEND	=	“native	nativesdk”

We	reformatted	this	recipe	slightly	and	included	comments	to	outline	the	metadata
sections	we	are	discussing.	Gettext	is	a	fairly	comprehensive	recipe	that	includes	most	of
the	metadata	you	may	encounter	in	a	recipe.	However,	not	all	recipes	are	that	complex.
Most	are	actually	rather	simple	because	building	their	respective	software	packages	can	be

carried	out	entirely	by	the	various	classes	without	any	major	modifications.

The	following	discussion	explains	the	sections	of	a	recipe	and	the	metadata	that	they
typically	contain.

Descriptive	Metadata

Descriptive	metadata	provides	information	about	the	recipe	and	the	software	package	it
builds.

	SUMMARY:	A	one-line	(up	to	80	characters	long),	short	description	of	the	package.

	DESCRIPTION:	An	extended	(possibly	multiple	lines	long),	detailed	description	of
the	package	and	what	it	provides.

	AUTHOR:	Name	and	e-mail	address	of	the	author	of	the	software	package	(not	the
recipe)	in	the	form	of	AUTHOR	=	"Santa	Claus
<santa@northpole.com>".	This	can	be	a	list	of	multiple	authors.

	HOMEPAGE:	The	URL,	starting	with	http://,	where	the	software	package	is	hosted.

	BUGTRACKER:	The	URL,	starting	with	http://,	to	the	project’s	bug	tracking	system.

Package	Manager	Metadata

The	metadata	in	this	section	provides	additional	information	for	the	package	management
systems	used	primarily	for	the	maintenance	of	the	package	database.	Not	all	package
management	systems	support	these	settings,	however.

	SECTION:	The	category	the	software	package	belongs	to.	Package	management
tools	use	this	category	to	organize	the	packages.	Although	the	categories	are	not
strictly	standardized	and	the	various	mainstream	Linux	distributions	define	their
own	lists,	a	list	of	commonly	used	categories	has	evolved.	Examples	for	common
sections	or	categories	are	app,	audio,	base,	devel,	and	libs.

	PRIORITY:	Priorities	are	used	to	tell	the	package	management	tools	whether	a
software	package	is	required	for	a	system	to	operate,	is	optional,	or	eventually
conflicts	with	other	packages.	Priorities	are	utilized	only	by	the	Debian	package
manager	dpkg	and	the	Open	Package	Manager	opkg.	The	priorities	are

	standard:	Packages	that	are	standard	for	any	Linux	distribution,	including	a
reasonably	small	but	not	too	limited	console-mode	system

	required:	Packages	that	are	necessary	for	the	proper	function	of	the	system

	optional:	Packages	that	are	not	necessary	for	a	functional	system	but	for	a
reasonably	usable	system

	extra:	Packages	that	may	conflict	with	other	packages	from	higher	priorities	or
that	have	specialized	requirements

Licensing	Metadata

The	metadata	of	this	section	allows	the	build	system	to	automatically	track	open	source
licensing	requirement.	This	information	is	mandatory	for	all	recipes.	We	address	the
details	of	license	management	with	the	Yocto	Project	in	Chapter	12,	“Licensing	and
Compliance.”

	LICENSE:	The	name	of	the	license	(or	licenses)	used	for	this	software	package.	In
most	cases,	only	a	single	license	applies,	but	some	open	source	software	packages
employ	multiple	licenses.	These	can	be	dual	licenses	allowing	the	user	of	a	package
to	choose	one	of	several	licenses	or	multiple	licenses	where	parts	of	the	software
package	are	licensed	differently.	Dual	licenses	are	specified	by	concatenating	the
license	names	with	the	pipe	symbol	(|).	Multiple	licenses	are	specified	by
concatenating	the	license	names	with	the	ampersand	(&)	symbol.	The	build	system
also	supports	complex	logical	license	“arithmetic,”	such	as	GLv2	&	(LGPLv2.1
|	MPL-1.1	|	BSD).

	LIC_FILES_CHECKSUM:	This	variable	allows	tracking	changes	to	the	license	file
itself.	The	variable	contains	a	space-delimited	list	of	license	files	with	their
respective	checksums.	After	fetching	and	unpacking	a	software	package’s	source
files,	the	build	system	verifies	the	license	by	calculating	a	checksum	over	the	license
file,	or	portions	thereof,	and	comparing	it	with	the	checksum	provided.

Inheritance	Directives	and	Includes

This	section	contains	the	inherit	directives	for	the	recipe	to	inherit	functionality	from
classes.	It	can	also	contain	include	and/or	require	statements	to	insert	other	files	directly	at
the	location	of	the	statement.	The	position	in	the	recipe	file	does	not	matter	for
inheritance,	but	it	may	be	important	for	including	files.	Included	files	can	set	variables	that
you	may	want	to	override	in	your	recipe.

Build	Metadata

We	call	the	metadata	in	this	section	build	metadata	because	it	provides	settings	required	to
build	the	software	package,	such	as	URIs;	declares	dependencies;	and	defines	the
provisions.

	PROVIDES:	Space-delimited	list	of	one	or	more	additional	package	names	typically
used	for	abstract	provisioning.

	DEPENDS:	Space-delimited	list	of	names	of	packages	that	must	be	built	before	this
package	can	be	built.

	PN:	The	package	name.	The	value	of	this	variable	is	derived	by	BitBake	from	the
base	name	of	the	recipe	file.	For	most	packages,	this	is	correct	and	sufficient.	Some
packages	may	need	to	adjust	this	value.	For	example,	the	cross-toolchain
applications—for	instance,	gcc-cross—have	the	target	architecture	appended	to
their	names.

	PV:	The	package	version,	which	is	derived	by	BitBake	from	the	base	name	of	the
recipe	file.	For	all	but	packages	that	directly	build	from	source	repositories,	this

value	is	correct	and	sufficient.	For	those	that	build	from	SCM,	Section	8.1.1	explains
how	to	set	PV	correctly.

	PR:	The	package	revision.	The	default	revision	is	r0.	In	the	past,	BitBake	required
you	to	increase	the	revision	every	time	the	recipe	itself	has	changed	to	trigger	a
rebuild.	However,	the	new	signature	handlers	now	calculate	the	signature	of	recipe
metadata	including	functions.	The	build	system	now	entirely	relies	on	the	signatures
for	rebuilding.

For	correct	package	naming,	it	may	still	be	necessary	to	increase	the	value	of	PR	so
that	package	managers	can	correctly	maintain	databases	for	package	upgrades.
Previously,	maintenance	was	accomplished	by	using	the	PRINC	variable.	However,
this	approach	has	proven	to	be	error	prone,	so	PRINC	has	been	deprecated	and
replaced	with	the	PR	service.	PR	service	is	a	revision	server	that	calculates	PR	on
the	basis	of	signatures.2

2.	PR	service	is	disabled	by	default.	For	more	information	and	how	to	enable	it,	see	the	PR	service	wiki	at
https://wiki.yoctoproject.org/wiki/PR_Service.

	SRC_URI:	Space-delimited	list	of	URIs	to	download	source	code,	patches,	and
other	files	from.

	SRCDATE:	The	source	code	date.	This	variable	applies	only	when	sources	are
retrieved	from	SCM	systems.

	S:	The	directory	location	in	the	build	environment	where	the	build	system	places	the
unpacked	source	code.	The	default	location	depends	on	the	recipe	name	and	version:
${WORKDIR}/${PN}-${PV}.	The	default	location	is	appropriate	for	virtually	all
packages	built	from	archives.	For	packages	directly	built	from	SCM,	you	need	to	set
this	variable	explicitly,	such	as	${WORKDIR}/git	for	GIT	repositories.

	B:	The	directory	location	in	the	build	environment	where	the	build	system	places	the
object	created	during	the	build.	The	default	is	the	same	as	S:
${WORKDIR}/${PN}-${PV}.	Many	software	packages	are	built	in	tree	or	in
location,	placing	the	objects	inside	the	source	tree.	Recipes	building	packages	with
GNU	Autotools,	the	Linux	kernel,	and	cross-toolchain	applications	separate	source
and	build	directories.

	FILESEXTRAPATHS:	Extends	the	build	system’s	search	path	for	additional	local
files	defined	by	FILESPATH.	This	variable	is	most	commonly	used	for	append	files
in	the	form	FILESEXTRAPATHS_prepend	:=	"${THISDIR}/${PN}",
which	causes	the	build	system	to	first	look	for	additional	files	in	a	subdirectory	with
the	name	of	the	package	of	the	directory	where	the	append	file	is	located	before
looking	in	the	other	directories	specified	by	FILESEXTRAPATHS.

	PACKAGECONFIG:	This	variable	allows	enabling	and	disabling	features	of	a
software	package	at	build	time.	You	define	features	as	quadruples	of	lists	in	the	form
of

Click	here	to	view	code	image
PACKAGECONFIG[f1]	=	“—with-f1,—wo-f1,build-deps-f1,rt-deps-f1”

https://wiki.yoctoproject.org/wiki/PR_Service

PACKAGECONFIG[f2]	=	“—with-f2,—wo-f2,build-deps-f2,rt-deps-f2”
PACKAGECONFIG[f3]	=	“—with-f3,—wo-f3,build-deps-f3,rt-deps-f3”

The	quadruples	are	delimited	by	commas.	Their	order	is	of	significance:

1.	Extra	arguments	added	to	the	configuration	list	of	the	configure	script
(EXTRA_OECONF)	if	the	feature	is	enabled

2.	Extra	arguments	added	to	EXTRA_OECONF	if	the	feature	is	disabled

3.	Additional	build	dependencies	added	to	DEPENDS	if	the	feature	is	enabled

4.	Additional	runtime	dependencies	added	to	RDEPENDS	if	the	feature	is	enabled

To	enable	a	feature,	you	can	either	create	an	append	file	or	do	so	in	a	configuration
file:

	Append	file:	Create	an	append	file	in	your	own	layer	and	name	it
<packagename>.bbappend	where	packagename	is	the	name	of	the	recipe
you	want	to	append.	Inside	your	append	file,	you	can	then	entirely	redefine	the
variable	by	overwriting	it	with	PACKAGECONFIG	=	"f2	f3"	or	you	can
preserve	previously	set	values	with	PACKAGECONFIG_append	=	"	f2
f3".

	Configuration	file:	You	can	simply	add	the	variable	to	a	configuration	file	such
as	local.conf	or	a	distribution	configuration	file	using
PACKAGECONFIG_pn-<packagename>	=	"f2	f3"	or
PACKAGECONFIG_append_pn-<packagename>	=	"	f2	f3".

Both	methods	are	identical	in	their	result.

	EXTRA_OECONF:	Additional	configure	script	options.

	EXTRA_OEMAKE:	Additional	options	for	GNU	Make.

	EXTRA_OECMAKE:	Additional	options	for	CMake.

	LDFLAGS:	Options	passed	to	the	linker.	The	default	setting	depends	on	what	the
build	system	is	building:	TARGET_LDFLAGS	when	building	for	the	target,
BUILD_LDFLAGS	when	building	for	the	build	host,	BUILDSDK_LDFLAGS	when
building	an	SDK	for	the	host.	You	typically	won’t	overwrite	this	variable	entirely
but	instead	will	add	options	to	it.

	PACKAGE_ARCH:	Defines	the	architecture	of	the	software	package.	By	default,	this
variable	is	set	to	TUNE_PKGARCH	when	building	for	the	target,	to	BUILD_ARCH
when	building	for	the	build	host,	and	to	"${SDK_ARCH}-${SDKPKGSUFFIX}"
when	building	an	SDK.	The	defaults	are	typically	adequate	unless	your	software
package	is	entirely	dependent	on	a	specific	machine	rather	than	on	the	machine’s
architecture.	In	this	case,	set	PACKAGE_ARCH	=	"${MACHINE_ARCH}"	inside
the	recipe.

Packaging	Metadata

The	metadata	section	of	a	recipe	defines	how	the	build	output	is	packaged	into	different
packages	using	the	package	manager.	Packaging	happens	after	the	software	has	been	built
and	installed	into	a	root	filesystem	structure	local	to	the	package’s	build	directory.	We
introduce	the	variables	here	and	discuss	the	details	in	a	following	section.

	PACKAGES:	This	variable	is	a	space-delimited	list	of	packages	that	are	created
during	the	packaging	process.	The	default	value	of	this	variable	is	"${PN}-dbg
${PN}-staticdev	${PN}-dev	${PN}-doc	${PN}-locale
\${PACKAGE_BEFORE_PN}	${PN}".	The	list	is	processed	from	left	to	right,
meaning	that	the	leftmost	package	is	created	first	and	the	rightmost	last.	The	order	is
important,	since	a	package	consumes	the	files	that	are	associated	with	it.	If	two	or
more	packages	consume	the	same	files,	only	the	first	package	processed	contains	the
files.	Recipes	typically	add	extra	packages	to	the	front	of	the	list.

	FILES:	The	FILES	variable	defines	lists	of	directories	and	files	that	are	placed	into
a	particular	package.	The	build	system	defines	default	file	and	directory	lists	for	the
default	packages,	such	as	FILES_${PN}-dbg	=	"<files>",	where	files	is
a	space-delimited	list	of	directories	and	files	that	can	contain	wildcards.	If	your
recipe	adds	extra	packages	to	the	list	in	PACKAGES,	you	need	to	define	FILES	for
that	package,	too.	Your	recipe	may	produce	objects	not	typically	found	in	the	default
packages	that	you	would	like	to	add	to	a	standard	package.	In	that	case,	you	would
append	a	list	with	those	files	to	FILES.

	PACKAGE_BEFORE_PN:	This	variable	lets	you	easily	add	packages	before	the	final
package	name	is	created.	You	can	easily	see	how	this	works.	In	the	default	list	of
PACKAGES,	the	content	of	the	PACKAGE_BEFORE_PN	variable	is	expanded	before
the	final	package	PN.	Simply	add	your	packages	to	the	variable:
PACKAGE_BEFORE_PN	=	"${PN}-examples".	Of	course,	you	also	have	to
define	the	FILES	list	for	the	examples	package.

	PACKAGE_DEBUG_SPLIT_STYLE:	This	variable	determines	how	to	split	binary
and	debug	objects	when	the	${PN}-dgb	package	is	created.	There	are	three
variants:

	“.debug”:	The	files	containing	the	debug	symbols	are	placed	in	a	.debug
directory	inside	the	directory	where	the	binaries	are	installed	on	the	target.	For
example,	if	the	binaries	are	installed	in	/usr/bin,	the	debug	symbol	files	are
placed	in	/usr/bin/.debug.	This	option	also	installs	the	source	files	in
.debug,	which	is	the	default	behavior.

	“debug-file-directory”:	Debug	files	are	placed	under
/usr/lib/debug	on	the	target,	separating	them	from	the	binaries.

	“debug-without-src”:	This	variant	is	the	same	as	.debug,	but	the	source
files	are	not	installed.

	PACKAGESPLITFUNCS:	This	variable	defines	a	list	of	functions	that	perform	the

package	splitting.	The	default,	defined	by	package.bbclass,	is
PACKAGESPLITFUNCS	?=	"package_do_split_locales
populate_packages".	Recipes	can	prepend	to	this	variable	to	run	their	own
package-splitting	functions	before	the	default	ones	are	run.

Task	Overrides,	Prepends,	and	Appends

In	this	section	recipes	override,	prepend,	or	append	to	tasks	to	redefine,	change,	or	extend
the	default	behavior.

Variants/Class	Extensions

This	section	simply	contains	the	BBCLASSEXTEND	variable	to	create	variants	such	as	a
native	or	SDK	build	of	the	package.

Runtime	Metadata

This	metadata	section	defines	runtime	dependencies.

	RDEPENDS:	A	list	of	packages	that	this	package	depends	on	at	runtime	and	that
must	be	installed	for	this	package	to	function	correctly.	The	variable	applies	to	the
packages	being	built,	and	hence	you	need	to	define	it	conditionally	on	the	particular
package.	For	example,	if	the	development	package	depends	on	Perl	to	operate
correctly,	you	need	to	specify	RDEPENDS_${PN}-dev	+=	"perl",	which	tells
the	build	system	to	create	this	package	dependency	in	the	package	manager’s
manifest.

	RRECOMMENDS:	Similar	to	RDEPENDS	but	indicates	a	weak	dependency,	as	these
packages	are	not	essential	for	the	package	being	built.	They	do,	however,	enhance
usability.	Package	managers	install	these	packages	if	they	are	available	but	do	not
fail	if	not.

	RSUGGESTS:	Similar	to	RRECOMMENDS	but	even	weaker	in	the	sense	that	package
managers	do	not	install	these	packages	even	if	they	are	available.	They	only	provide
the	information	that	installing	these	packages	may	be	beneficial.

	RPROVIDES:	Package	name	alias	list	for	runtime	provisioning.	The	package’s	own
name	is	always	implicitly	part	of	that	list.	As	for	all	of	the	runtime	metadata	that
controls	package	creation,	you	need	to	use	conditional	assignment:
RPROVIDES_${PN}	=	"alias1	alias2".

	RCONFLICTS:	List	of	names	of	conflicting	packages.	A	package	manager	does	not
install	this	package	if	not	all	of	the	conflicting	packages	are	removed	prior	to
installation.	As	for	all	of	the	runtime	metadata	that	controls	package	creation,	you
need	to	use	conditional	assignment:	RCONFILCTS_${PN}	=	"conflicting-
package-name".

	RREPLACES:	List	of	names	of	packages	this	package	replaces.	The	package
manager	uses	this	variable	to	determine	which	other	packages	this	package	replaces.
If	the	packages	can	coexist,	then	the	package	manager	does	install	this	package	even
if	the	other	packages	in	this	list	are	installed.	If	the	packages	cannot	coexist,	then

this	package	must	also	set	the	RCONFLICTS	variable	to	include	those	packages.	As
for	all	of	the	runtime	metadata	that	controls	package	creation,	you	need	to	use
conditional	assignment:	RCONFILCTS_${PN}	=	"conflicting-package-
name".

The	build	system	supports	versioned	dependencies:
Click	here	to	view	code	image

RDEPENDS_${PN}	=	“<package>	(<operator>	<version>)”

where	the	operator	is	one	of	=,	<,	>,	<=,	or	>=.	For	example
Click	here	to	view	code	image

RDEPENDS_${PN}	=	“gettext	(>	0.16)”

You	can	use	versioned	dependencies	with	RDEPENDS,	RRECOMMENDS,
RSUGGESTS,	RCONFILCTS,	and	RREPLACES.

8.1.3	Formatting	Guidelines
Formatting	guidelines	for	source	code,	BitBake	recipes,	and	classes	are	essentially	source
code.	Their	purpose	is	to	create	a	consistent	format	and	look	across	all	artifacts	so	that
someone	who	is	trying	to	work	with	the	Yocto	Project	and	OpenEmbedded	can	learn	and
understand	quickly.	Guidelines	also	ease	reviewing	contributions	by	maintainers.

OpenEmbedded	has	established	a	style	guide3	that	establishes	the	ground	rules	for
formatting	recipes,	classes,	and	configuration	files:

3.	http://openembedded.org/wiki/Styleguide

	Assignments

	Use	a	single	space	on	each	side	of	the	assignment	operator.

	Use	quotes	only	on	the	right	hand	side	of	the	assignment:
VARIABLE	=	“VALUE”

	Continuation

	Continuation	is	used	to	split	long	variable	lists,	such	as	SRC_URI,	for	better
readability.

	Use	the	line	continuation	symbol	(\).

	Do	not	place	any	spaces	after	the	line	continuation	symbol.

	Indent	successive	lines	up	to	the	level	of	the	start	of	the	value.

	Use	spaces	instead	of	tabs	for	indentation,	since	developers	tend	to	set	their	tab
sizes	differently.

	Place	the	closing	quote	on	its	own	line.
VARIABLE	=	“\
												value1	\
												value2	\
											”

http://openembedded.org/wiki/Styleguide

	Python	Functions

	Use	four	spaces	per	indent;	do	not	use	tabs.

	Python	is	rather	finicky	about	indentation.	Never	mix	spaces	and	tabs.

	Shell	Functions

	Use	four	spaces	per	indent;	do	not	use	tabs.

	Some	layers,	such	as	OECore,	use	tabs	for	indentation	for	shell	functions.
However,	it	is	recommended	that	you	use	four	spaces	for	new	layers	to	stay
consistent	with	Python	functions.

	Comments

	Comments	are	allowed	and	encouraged	in	recipes,	classes,	and	configuration	files.

	Comments	must	start	at	the	beginning	of	the	line	using	the	#	character.

	Comments	cannot	be	used	inside	of	a	continuation.

Even	if	you	do	not	intend	to	submit	patches	or	contribute	recipes	or	layers	to
OpenEmbedded	or	the	Yocto	Project,	following	these	simple	guidelines	makes	it	much
easier	for	you	and	your	organization	to	maintain	your	own	recipes,	classes,	and
configuration	files.

8.2	Writing	a	New	Recipe
Writing	a	new	recipe	for	a	software	package	and	adding	it	to	your	build	is	an	essential	task
when	working	with	the	OpenEmbedded	build	system.	It	may	be	daunting	at	first,	but	it	is
not	as	hard	as	it	might	seem.	Most	of	the	complexity	is	covered	by	the	various	classes.
Figure	8-1	shows	a	step-by-step	approach	to	writing	recipes.

Figure	8-1	Recipe	creation	workflow

The	workflow	for	creating	recipes	pretty	much	resembles	the	BitBake	process	for
building	packages	that	we	discussed	in	Chapter	3,	“OpenEmbedded	Build	System.”	That,
of	course,	is	not	by	accident.	When	creating	a	new	recipe,	you	add,	step	by	step,	the
necessary	metadata	for	each	process	step.	The	workflow	is	also	not	as	linear	as	depicted
but	typically	an	iteration	of	making	additions	or	changes	to	the	recipe	and	then	testing	the
changes.	Since	the	outcome	of	a	previous	step	influences	subsequent	steps,	it	is	important
to	get	each	step	right.	Sometimes	an	issue	with	running	a	process	step,	such	as	compile,
may	be	related	to	a	problem	in	one	of	the	preceding	steps,	such	as	configure.

Before	writing	a	new	recipe,	we	recommend	that	you	look	for	a	recipe	that	someone
else	has	already	written	and	that	meets,	or	at	least	comes	close	to	meeting,	your
requirements.	The	OpenEmbedded	metadata	index4	is	a	good	start	for	your	search.	You
may	find	recipes	that	you	can	modify	to	fit	your	needs.	However,	that	approach	may	not
work	well	if	you	are	writing	a	recipe	for	your	own	software	packages.	In	that	case,	starting
from	an	established	recipe	and	trying	to	modify	it	may	require	more	effort	than	creating	a
recipe	from	scratch	or	from	a	recipe	skeleton.

4.	http://layers.openembedded.org

The	following	sections	detail	each	workflow	step	for	creating	a	recipe	from	scratch.

8.2.1	Establish	the	Recipe
Even	if	you	are	creating	only	a	single	recipe,	we	always	recommend	that	you	place	it	into
one	of	your	own	layers	or	create	a	new	layer	for	it.	Why?	Very	seldom	does	a	project
remain	simple.	Most	projects	grow	over	time,	since	you	will	be	adding	to	them.
Establishing	a	structure	by	using	your	own	layers	greatly	simplifies	maintenance	down	the
road.	If	you	do	not	already	have	a	layer	to	place	your	recipe	into,	you	can	easily	create	one
using	the	yocto-layer	tool:

$	yocto-layer	create	mylayer

The	tool	interactively	walks	you	through	creating	a	layer	and	also	offers	to	create	a
sample	recipe	for	you.	You	can	start	from	the	sample	recipe	or	from	the	skeleton	shown	in
Listing	8-2.

Listing	8-2	Skeleton	Recipe

SUMMARY	=	””
DESCRPTION	=	””
AUTHOR	=	””
HOMEPAGE	=	””
BUGTRACKER	=	””

Create	the	skeleton	recipe	inside	your	layer.	BitBake	locates	the	recipes	inside	your
layer	according	to	the	setting	of	the	BBFILES	variable	in	the	conf/layer.conf	file
inside	your	layer.	BBFILES	defines	a	search	pattern	for	recipe	files.	It	is	typically	set	to
Click	here	to	view	code	image

BBFILES	+=	“${LAYERDIR}/recipes-*/*/*.bb	\

http://layers.openembedded.org

												${LAYERDIR}/recipes-*/*/*.bbappend”

You	could,	of	course,	change	the	search	pattern	for	your	own	layer,	but	using	the	above
default	makes	good	sense,	as	all	OpenEmbedded/Yocto	Project	layers	use	it.
Consequently,	the	yocto-layer	tool	creates	the	conf/layer.conf	file	with	this	setting
for	BBFILES.

For	example,	if	you	are	creating	a	recipe	for	an	application	that	is	called	myapp,	you
would	want	to	place	the	recipe	in	the	directory	recipes-apps/myapp.

The	name	of	your	recipe	must	adhere	to	the	naming	conventions	discussed	in	Section
8.1.1	and	should	at	least	be	<packagename>_<version>.bb,	such	as
myapp_1.0.bb.

8.2.2	Fetch	the	Source	Code
The	first	thing	a	recipe	does	is	fetch	the	source	code.	Consequently,	a	recipe	must	provide
the	SRC_URI	variable	to	tell	the	build	system	where	to	fetch	the	sources	from	and	what
protocol	to	use.	Fetching	is	carried	out	by	the	do_fetch	task.

For	most	of	the	typical	open	source	upstream	downloads,	the	source	files	are	provided
as	compressed	archives.	These	archives	can	be	fetched	using	the	standard	file	transfer
protocols,	as	we	saw	in	Chapter	3	when	we	discussed	the	BitBake	fetchers	in	detail.	For
example,
Click	here	to	view	code	image

SRC_URI	=	“http://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz”

fetches	the	source	archive	for	the	GNU	Hello	World	program.	Using	hardcoded	version
numbers	in	SRC_URI,	however,	makes	the	recipe	less	portable.	It	is	recommended	to	use
PV	instead:
Click	here	to	view	code	image

SRC_URI	=	“http://ftp.gnu.org/gnu/hello/hello-${PV}.tar.gz”

When	fetching	source	archives,	the	build	system	requires	you	to	provide	MD5	and/or
SHA256	checksums	to	verify	whether	the	archive	has	been	downloaded	correctly.	You	can
specify	the	checksum	directly	as	part	of	SRC_URI,	but	because	these	checksums	tend	to
be	somewhat	unwieldy,	we	recommend	that	you	give	your	archive	a	name	in	the
SRC_URI	and	specify	the	checksum	separately:
Click	here	to	view	code	image

SRC_URI	=	“http://ftp.gnu.org/gnu/hello/hello-${PV}.tar.gz;name=archive”
SRC_URI[archive.md5sum]	=	“67607d2616a0faaf5bc94c59dca7c3cb”
SRC_URI[archive.sha256sum]	=	\
“ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7”

Doing	so	makes	SRC_URI	easier	to	maintain	and	also	works	better	with	when
SRC_URI	contains	multiple	URIs.

Fetching	source	code	directly	from	an	SCM	is	also	common	practice.	The	build	system
supports	virtually	all	common	SCM	systems.	The	SCM	most	frequently	used	with	open
source	software	today	is	Git.	Fetching	from	an	SCM	does	not	require	checksums	but

typically	requires	a	revision	or	tag	to	check	out:
Click	here	to	view	code	image

SRC_URI	=	“git://git.lttng.org/lttng-ust.git;branch=stable-2.5	\
											file://lttng-ust-doc-examples-disable.patch	\
										”
SRCREV	=	“ce59a997afdb7dc8af02b464430bb7e35549fa66”

Many	recipes	also	require	files	to	be	fetched	locally	from	the	build	host.	Commonly,
these	are	integration	patches,	configuration	files,	and	more:
Click	here	to	view	code	image

SRC_URI	=	“git://git.lttng.org/lttng-tools.git;branch=stable-2.5	\
											file://runtest-2.4.0.patch	\
											file://run-ptest	\
										”

Using	the	file://	protocol	specifier	instructs	the	build	system	to	look	for	files	on	the
build	host.	The	paths	are	relative	to	the	paths	specified	by	FILESPATH.	The	variable
typically	contains	multiple	paths.	The	first	path	with	a	matching	file	is	used.	By	default,
the	directory	list	in	FILESPATH	includes	BP	(base	package	name	and	version),	BPN
(base	package	name),	and	files.	All	of	these	are	assumed	to	be	subdirectories	to	the
directory	where	the	recipe	is	located.

8.2.3	Unpack	the	Source	Code
After	fetching,	the	source	code	needs	to	be	unpacked.	Unpacking	is	required	only	if	the
source	code	was	downloaded	as	a	source	archive.	If	it	was	fetched	from	an	SCM,
unpacking	is	not	necessary,	as	the	files	can	be	checked	out	individually	from	the
repository.	The	do_unpack	task	takes	care	of	the	unpacking.	It	can	handle	virtually	all
common	archiving	and	compression	schemes.

The	source	code	is	unpacked	into	the	directory	specified	by	the	variable	S.	The	build
system	expects	the	source	archive	to	contain	a	directory	tree	with	a	single	top-level	or	root
directory	with	the	name	${BP}	or	${BPN}-${PV}.	Using	the	GNU	Hello	example,	the
hello-2.9.tar.gz	archive	must	unpack	into	a	single	directory	called	hello-2.9.
This	is	a	convention	that	most	open-source	packages	follow.	For	packages	for	which	this
is	not	the	case,	you	need	to	set	S	in	your	recipe	explicitly.	For	instance,	for	an	archive	that
does	not	have	a	top-level	directory,	you	need	to	set	S	to

S	=	“${WORKDIR}/${BP}”

What	exactly	you	need	to	set	S	to	depends	on	how	the	source	code	is	packaged.	It	may
eventually	be	necessary	to	append	the	do_unpack	task	to	rename	or	copy	a	directory	or
to	copy	and	move	directory	contents.

You	also	need	to	set	S	explicitly	if	your	recipe	is	fetching	source	code	from	an	SCM.	In
that	case,	S	is	typically	set	to	${WORKDIR}/<scm>,	where	<scm>	is	the	name	of	the
SCM.	For	Git,	you	would	set

S	=	“${WORKDIR}/git”

After	you	set	up	your	new	recipe	for	fetching	and	unpacking,	it	is	a	good	idea	to	run	it

and	verify	that	the	sources	get	downloaded	and	unpacked	correctly:
Click	here	to	view	code	image

$	bitbake	-c	fetch	<myrecipe>
$	bitbake	-c	unpack	<myrecipe>

lets	you	run	the	fetch	and	unpack	tasks	individually.	If	you	just	run	the	unpack	task	and
the	fetch	task	has	not	yet	been	run,	BitBake	automatically	runs	it	because	unpack	is
dependent	on	fetch.

After	the	fetch	task	has	completed,	you	should	find	the	source	archive	in	the	download
directory	specified	by	DL_DIR.	For	fetches	from	an	SCM,	the	download	directory
contains	a	subdirectory	with	the	name	of	the	SCM	to	which	the	remote	repositories	have
been	cloned	or	checked	out.

After	running	the	unpack	task,	you	should	be	able	to	find	the	unpacked	sources	in	the
source	directory	S.

8.2.4	Patch	the	Source	Code
If	your	SRC_URI	contains	any	patches—that	is,	files	that	end	in	.patch	or	.diff—
then	the	do_patch	task	automatically	applies	these	patches	to	the	unpacked	source	code
using	the	Quilt	tool.

The	build	system	expects	that	patches	can	be	applied	with	the	-p1	option,	meaning	that
the	first	directory	level	is	stripped	off.	If	your	patch	needs	multiple	directory	levels
stripped	off,	you	need	to	provide	the	striplevel	option	with	a	number	as	part	of
SRC_URI	of	the	patch.	If	your	patch	needs	to	be	applied	in	a	specific	subdirectory	that	is
not	provided	inside	the	patch	file	itself,	you	can	add	the	patchdir	option	to	SRC_URI:
Click	here	to	view	code	image

SRC_URI	=	“http://downloads.tld.com/pub/package-1.2.tar.gz	\
											file://patch-1.patch;striplevel=3	\
											file://patch-2.diff;patchdir=src/common	\
										”

You	should	place	patches	as	well	as	any	other	locally	fetched	files	in	a	subdirectory	next
to	the	recipe	that	is	either	named	the	same	as	the	base	name	of	the	recipe	BPN,	named	the
base	name	plus	the	version	number	BP,	or	named	files.	For	instance,	if	the	name	of
your	recipe	is	foo_2.3.1.bb,	then	the	name	of	the	directory	can	either	be	foo,	foo-
2.3.1,	or	files.	Using	foo	instead	of	simply	files	helps	with	organizing	the
patches	for	different	recipes.	Using	foo-2.3.1	instead	of	just	foo	allows	separating
patches	for	different	versions	of	the	foo	recipe.

8.2.5	Add	Licensing	Information
All	recipes	are	required	to	provide	licensing	information	by	setting	the	variables
LICENSE	and	LIC_FILES_CHKSUM.	Both	variables	are	mandatory;	otherwise,	the
build	system	rejects	the	recipe	and	does	not	build	it.

	LICENSE:	The	name	of	the	license	used	for	this	software	package.	In	most	cases,
only	a	single	license	applies,	but	some	open	source	software	packages	employ

multiple	licenses.	These	can	be	dual	licenses	that	allow	the	user	of	a	package	to
choose	one	of	several	licenses	or	multiple	licenses	where	parts	of	the	software
package	are	licensed	differently.	Dual	licenses	are	specified	by	concatenating	the
license	names	with	the	pipe	symbol	(|).	Multiple	licenses	are	specified	by
concatenating	the	license	names	with	the	ampersand	(&)	symbol.	The	build	system
also	supports	complex	logical	license	“arithmetic,”	such	as	GLv2	&	(LGPLv2.1
|	MPL-1.1	|	BSD).

	LIC_FILES_CHKSUM:	This	variable	allows	tracking	changes	to	the	license	files
itself.	The	variable	contains	a	space-delimited	list	of	license	files	with	their
respective	checksums.	After	fetching	and	unpacking	a	software	package’s	source
files,	the	build	system	verifies	the	license	by	calculating	a	checksum	over	the	license
file,	or	portions	thereof,	and	comparing	it	with	the	checksum	provided.

Licenses	listed	by	LICENSE	can	have	any	name	as	long	as	the	name	does	not	contain
any	spaces	or	the	characters	&,	|,	(,	and).	For	standard	licenses,	we	recommend	that	you
use	the	names	of	the	license	files	in	meta/files/common-licenses	or	the	license
names	from	the	SPDXLICENSEMAP	attributes	in	meta/conf/licenses.conf.

If	the	source	package	provides	the	actual	license	in	a	file,	such	as	COPYING,
LICENSE,	or	a	similar	file,	you	should	specify	it	in	LIC_FILES_CHKSUM:
Click	here	to	view	code	image

LIC_FILES_CHKSUM	=	“file://COPYING;md5=<md5sum>”

Some	software	packages	using	standard	open	source	licenses	may	simply	state	the	name
and	version	of	the	license	but	may	not	include	the	license	file	itself.	In	that	case,	use	the
license	files	provided	in	COMMON_LICENSE_DIR:
Click	here	to	view	code	image

LIC_FILES_CHKSUM	=	\
				“file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302”

If	you	do	not	have	the	MD5	checksum	of	the	license	file,	there	is	no	need	for	you	to
calculate	it	manually.	Just	leave	the	md5	parameter	open,	and	the	build	system	fails	with
an	error	message	providing	the	checksum,	which	you	then	can	copy	and	paste	into	your
recipe.

8.2.6	Configure	the	Source	Code
Building	software	packages	commonly	depends	on	the	build	system	and	the	build
environment,	such	as	development	tools	and	dependencies	on	other	software	packages	and
libraries.	This	is	particularly	the	case	when	cross-building	for	different	architectures.	To
make	source	packages	portable	so	that	they	can	be	built	on	a	variety	of	build	systems	with
different	build	environments	as	well	as	for	a	large	number	of	target	systems,	developers
provide	means	to	configure	the	source	code	and	its	build	system.

In	the	simplest	case,	this	configuration	is	carried	out	by	setting	environment	variables
that	the	source	code’s	build	system	uses	for	its	makefiles	and/or	build	scripts.
Unfortunately,	this	approach	is	not	very	user	friendly,	as	someone	who	wants	to	build	the
software	package	needs	to	understand	the	variables	and	what	they	are	intended	to	do	in

order	to	be	able	to	provide	the	correct	settings.	Different	developers	also	tend	to	name
variables	differently,	which	adds	to	the	complexity.	While	there	are	some	agreed-on
common	denominators—for	example,	CC	as	the	variable	for	the	C	compiler,	CPP	for	the
C++	compiler,	and	LD	for	the	linker—developers	may	still	define	other	variables	that	you
may	need	to	address.

To	mitigate	the	problem,	build	systems	were	developed	that	make	source	code	portable
in	a	standardized	form.	The	two	most	common	ones	are	GNU	Autotools	and	CMake.	Both
are	designed	to	simplify	porting	of	source	code	and	make	configuration	user	friendly	by
providing	automated	tools	for	source	code	configuration.	These	tools	determine	the
necessary	configuration	by	matching	a	configuration	file	that	is	shipped	with	the	source
code	to	the	actual	build	system	and	build	environment	configuration	and	then	set	the
required	variables	based	on	the	outcome.

As	a	first	step,	you	need	to	determine	what	other	software	packages	the	package	you	are
writing	the	recipe	for	depends	on.	Typically,	the	software	package’s	documentation	should
provide	you	with	this	information.	You	need	to	add	these	packages	to	the	DEPENDS
variable	so	that	BitBake	can	build	these	packages	first	to	fulfill	the	dependencies.

Second,	you	need	to	determine	whether	the	software	package	you	are	building	uses	a
source	configuration	system.

	GNU	Autotools:	Your	software	package	uses	GNU	Autotools	if	it	contains	a
configure.ac	file.	This	file	contains	a	list	of	macros	for	detecting	compilers,
looking	for	specific	header	files,	testing	for	libraries,	and	much	more.	The	autoconf
tool	creates	a	shell	script	from	this	file	called	configure	that	then	performs	the
actual	tests.	GNU	Autotools	build	on	top	of	the	traditional	Make	native	system	for
building	software	packages.	After	the	configure	script	has	completed
successfully,	it	creates	the	makefile.

If	your	software	package	uses	GNU	Autotools,	then	all	you	have	to	do	is	inherit	the
autotools	class.	This	class	provides	the	do_configure	task,	and	in	most
cases,	you	do	not	have	to	modify	the	configuration	any	further.

However,	some	software	packages	may	still	require	you	to	make	adjustments	to	the
configuration.	For	this	purpose,	the	OpenEmbedded	build	system	provides	the
variable	EXTRA_OECONF	allowing	you	to	add	or	overwrite	configuration	settings.

	CMake:	Your	software	package	uses	CMake	if	it	contains	a	CMakeLists.txt
file.	This	file	contains	configuration	directives.	CMake	is	used	in	conjunction	with
native	build	systems	such	as	Make.

If	your	software	package	uses	CMake,	then	all	you	have	to	do	is	inherit	the	cmake
class.	This	class	provides	the	do_configure	task,	and	in	most	cases,	you	do	not
have	to	modify	the	configuration	any	further.

If	you	do	need	to	make	adjustments	to	the	configuration,	the	OpenEmbedded	build
system	provides	the	variable	EXTRA_OECMAKE	for	passing	any	required
configuration	options.

	Other:	If	your	source	package	does	not	contain	a	configure.ac	or

CMakeLists.txt	file,	then	it	is	using	some	other	method	of	configuration	by
directly	passing	environment	variables	to	the	build	system,	which	typically	is	Make.
If	that	is	the	case,	you	may	have	to	write	your	own	do_configure	task	to	apply
the	correct	settings.	In	simpler	cases,	it	may	be	sufficient	to	set	the
EXTRA_OEMAKE	variable	to	pass	the	settings.

At	this	point,	you	should	run	the	configure	task	and	check	its	log	file	to	ensure	that
the	configuration	succeeded	and	the	correct	options	have	been	passed.	The	log	also	tells
you	if	you	are	missing	any	required	dependencies	from	the	DEPENDS	variable	or	if
options	have	been	enabled	that	you	might	not	want.

8.2.7	Compile
Now	your	recipe	is	ready	to	compile	the	source	code.	Run	the	compile	task	and	see	if
compilation	succeeds.	If	it	does,	there	is	nothing	else	you	need	to	do	for	this	step.
However,	if	compilation	fails,	you	need	to	analyze	the	log	file	for	the	cause.	The	most
common	failures	at	this	point	are	parallel	build	failure,	host	leakage,	and	missing	headers
or	libraries:

	Parallel	Build	Failure:	Using	multiple	threads	for	Make	is	enabled	by	default	for
all	packages	by	the	PARALLEL_MAKE	variable	in	conf/local.conf	of	your
build	environment.	Sometimes,	this	can	cause	race	conditions,	which	manifest	in
intermittent	failures.	Commonly,	compilation	fails	because	an	artifact	could	not	be
found	that	should	have	been	created.	These	failures	are	hard	to	track	down	because
upon	inspection	you	may	find	that	the	artifact	indeed	has	been	created;	however,	the
issue	is	that	part	of	the	build	process	has	been	executed	in	the	wrong	order.

As	a	workaround,	you	can	set	PRALLEL_MAKE	=	""	(empty	string)	in	the	recipe.
This	setting	turns	off	parallel	building	for	just	this	recipe.	It,	of	course,	slows	down
building	your	software	package.	If	you	want	to	resolve	the	issue	and	allow	parallel
building,	you	may	need	to	do	further	debugging	and	eventually	apply	a	patch	to
change	the	order	of	the	build	process.

	Host	Leakage:	This	issue	is	related	to	building	for	the	target	or	when	building	an
SDK.	The	problem	occurs	when	the	build	process	references	header	files,	libraries,
or	other	files	from	the	host	system	rather	than	from	the	cross-build	environment.	The
root	cause	in	virtually	all	cases	is	the	use	of	absolute	paths	such	as
/usr/include,	/usr/lib,	and	so	forth.	Host	leakage	is	reported	by	the	QA
tools,	including	Swabber.	You	should	be	able	to	easily	spot	these	issues	from	the	QA
messages	and	by	analyzing	the	log	files	and	then	create	a	patch	to	resolve	them.

	Missing	Headers	or	Libraries:	If	compilation	fails	because	the	compiler	cannot
find	header	files	or	libraries	from	other	software	packages,	then	the	root	cause
typically	is	that	these	packages	have	not	been	declared	in	the	DEPENDS	variable,	or
the	dependency	exists	but	the	path	to	the	files	is	incorrect,	and	it	was	not	detected	by
the	configure	step.

Adding	the	dependency	to	DEPENDS	resolves	the	issue	in	most	cases.	However,	it
may	not	manifest	itself	immediately.	Commonly,	you	start	out	with	a	build

environment	that	has	already	been	used	to	build	a	target	root	filesystem.	In	many
cases,	the	dependencies	may	already	have	been	built	for	other	software	packages
before	you	begin	adding	the	recipe	for	your	new	package,	causing	the	dependency	to
be	fulfilled	albeit	not	declared	in	DEPENDS.	For	that	case,	it	is	advisable	to	test	with
a	fresh	build	environment.

On	rare	occasions,	you	may	need	to	adjust	paths	to	header	files	and	libraries	of
dependencies	by	setting	the	variables	STAGING_BINDIR,	STAGING_INCDIR,
STAGING_DATADIR,	STAGING_BASELIBDIR,	and	so	on.

8.2.8	Install	the	Build	Output
After	the	software	package	is	built,	the	do_install	task	copies	build	artifacts	such	as
binaries,	libraries,	header	files,	configuration	files,	and	documentation	files	into	a
filesystem	hierarchy	that	mirrors	the	root	filesystem	of	the	target	device.	The	files	are
copied	from	the	S,	B,	and	WORKDIR	directories	to	the	D	directory,	which	is	set	to
${WORKDIR}/image.	After	installation,	this	directory	contains	a	local	root	filesystem
structure	with	all	the	subdirectories	and	files	of	the	installed	software	package.

Since	the	packaging	process	collects	the	files	from	the	installation	directory	D,	you	have
to	ensure	that	your	software	package	has	been	installed	correctly:	all	directories	and	files
have	been	created	in	the	right	place	of	the	root	filesystem	structure.	Depending	on	how
your	software	package	is	built,	you	may	need	to	make	adjustments	to	the	installation
process:

	GNU	Autotools	and	CMake:	If	your	software	package	is	built	using	GNU
Autotools	or	CMake,	the	autotools	and	cmake	classes	respectively	provide	a
do_install	task	that	is	adequate	for	installing	most	software	packages.	You	just
need	to	verify	that	the	do_install	task	completes	without	issues	and	that	the
directory	structure	inside	D	is	correct.

If	you	need	to	install	additional	files	that	have	not	been	copied	by	the	do_install
task	as	provided	by	the	class,	you	need	to	create	a	do_install_append	function
in	your	recipe	that	takes	care	of	installing	the	remaining	files.	You	must	use
install	-d	<source>	<dest>	to	copy	the	files	rather	than	cp	or	any	other
copy	utility.

	Make:	If	your	software	package	is	built	using	just	the	Make	build	system	without
GNU	Autotools	or	CMake,	you	need	to	create	a	do_install	task	in	your	recipe.
The	makefile	most	likely	already	contains	an	install	target	to	copy	the	files.	This
target	typically	requires	a	destination	directory,	which	is	the	root	directory	of	the
filesystem	structure	and	can	be	set	through	a	variable.	What	this	variable	is	depends
on	the	makefile.	Typical	examples	are	DESTDIR,	PREFIX,	and	INSTALLROOT.

The	OpenEmbedded	build	system	provides	the	function	oe_runmake,	which
executes	Make	with	a	specified	target.	This	function	allows	you	to	pass	variables	to
the	makefile.	You	simply	use	that	function	in	your	do_install	task,	as	follows,
assuming	that	the	variable	required	by	the	makefile	to	pass	the	root	installation

directory	is	called	PREFIX:

:
Click	here	to	view	code	image

do_install()	{
				oe_runmake	install	PREFIX=${D}
}

If	your	makefile	does	not	provide	an	install	target,	then	see	the	next	bullet	for
manual	installation.

	Manual	Installation:	If	your	software	package’s	build	system	does	not	provide	an
installation	facility	at	all,	you	need	to	create	a	do_install	task	and	use
install	-d	<src>	<dest>	to	install	the	required	files:

Click	here	to	view	code	image
do_install()	{
				install	-d	${B}/bin/hello	${D}${bindir}
				install	-d	${B}/lib/hello.lib	${D}${libdir}
}

You	can	use	the	following	variables	for	standard	installation	directories	and
concatenate	them	to	D:

	bindir	=	"/usr/bin"

	sbindir	=	"/usr/sbin"

	libdir	=	"/usr/lib"

	libexecdir	=	"/usr/lib"

	sysconfdir	=	"/etc"

	datadir	=	"/usr/share"

	mandir	=	"/usr/share/man"

	includedir	=	"/usr/include"

To	verify	the	installation	of	your	software	package,	run	the	install	task	and	check	the	D
directory	for	the	correct	subdirectories	and	files.

8.2.9	Setup	System	Services
If	your	software	package	provides	a	system	service	that	is	supposed	to	be	started	when	the
system	boots	and	to	be	stopped	when	it	shuts	down,	then	your	recipe	needs	to	set	up
system	services	for	your	software	packages.

First,	you	need	to	verify	whether	your	software	package	provides	the	necessary	startup
scripts	and	the	install	task	copies	them	into	the	correct	location.	What	these	scripts	need	to
contain	and	where	they	are	installed	depends	on	the	service	manager	you	are	using.	If	your
package	does	not	provide	the	scripts	or	does	not	install	them,	then	you	have	to	add	them
and	append	the	do_install	task.

The	build	system	supports	the	two	service	managers	SysVinit	and	systemd:

	SysVinit:	System	V	Init	is	the	traditional	service	manager	for	UNIX-like	systems.
After	the	Linux	kernel	completes	its	initialization	on	boot,	it	spawns	the	init
process,	which	then	goes	through	the	service	scripts	and	starts	the	services	according
to	run	level	and	priority.

The	do_install	task	must	install	the	service	start-stop-script	into	the
proper	directory,	typically	/etc/init.d.	Then	the	service	needs	to	be	enabled	by
creating	links	to	the	script	from	the	resource	control	directories	(/etc/rc0.d
through	/etc/rc6.d),	so	that	the	service	can	be	started	and	stopped	when	the
system	enters	the	particular	run	level.	This	is	accomplished	by	the	update-rc.d
class,	which	uses	the	update-rc.d	tool	that	your	recipe	needs	to	inherit.	The
class	does	all	the	configuration	work.	All	that	is	needed	are	three	variables	in	the
recipe	to	provide	the	necessary	configuration	to	the	class:

	INITSCRIPT_PACKAGES:	List	of	packages	that	contain	the	init	scripts	for
this	software	package.	This	variable	is	optional	and	defaults	to
INITSCRIPT_PACKAGES	=	"${PN}".

	INITSCRIPT_NAME:	The	name	of	the	init	script.

	INITSCRIPT_PARAMS:	The	parameters	passed	to	update-rc.d.	This	can	be
a	string	such	as	"defaults	80	20"	to	start	the	service	when	entering	run
levels	2,	3,	4,	and	5	and	stop	it	from	entering	run	levels	0,	1,	and	6.

The	manual	page5	for	update-rc.d	provides	details	about	the	tool	and	its
usage.

5.	www.tin.org/bin/man.cgi?section=8&topic=update-rc.d

	systemd:	The	System	Management	Daemon	(systemd)	was	developed	as	a
substitute	for	the	aging	SysVinit.	In	particular,	it	provides	better	prioritization	and
dependency	handling	between	services	and	the	ability	to	start	services	in	parallel,
which	speeds	up	the	boot	sequence	of	the	system.	The	systemd	homepage6	provides
detailed	information.

6.	www.freedesktop.org/wiki/Software/systemd

The	software	package	must	provide	the	systemd	service	script,	and	the	recipe	must
install	it	in	the	proper	location,	which	is	typically	/lib/systemd/system.	Then
the	recipe	can	configure	the	service	by	inheriting	the	systemd	class	and	providing
the	following	variables:

	SYSTEMD_PACKAGES:	List	of	packages	that	contain	the	systemd	service	files
for	the	software	package.	This	variable	is	optional	and	defaults	to
SYSTEMD_PACKAGES	=	"${PN}".

	SYSTEMD_SERVICE:	The	name	of	the	service	file.

While	your	Linux	system	obviously	can	utilize	only	one	system	management	service,
you	can	write	your	recipe	to	support	both.	The	classes	and	variables	do	not	conflict,	and
the	build	system	selects	the	correct	settings	from	your	recipe.

http://www.tin.org/bin/man.cgi?section=8&topic=update-rc.d
http://www.freedesktop.org/wiki/Software/systemd

For	more	information	on	how	to	set	up	system	services,	see	update-
rc.d.bbclass	and	systemd.bbclass	and	consult	the	documentation	for	the
respective	system	service	manager.

8.2.10	Package	the	Build	Output
At	this	point,	all	the	necessary	files	of	the	software	package	are	built	and	staged	in	the
filesystem	structure	residing	inside	the	destination	directory	D.	The	next	step,	carried	out
by	the	do_package	task,	is	to	collect	the	files	and	distribute	them	into	packages	for	the
package	management	systems.

Package	Splitting

The	process	of	grouping	the	build	output	into	different	packages	is	called	package
splitting.	Most	software	packages	produce	many	different	artifacts	of	which,	depending	on
your	requirements,	you	may	need	only	some	to	be	installed	in	the	root	filesystem	of	your
target	device.	Splitting	packages	to	select	only	the	artifacts	you	need	helps	you	control	the
footprint	of	your	system	and	also	avoids	the	installation	of	binaries,	libraries,	debug
information,	and	other	files	that	could	pose	a	security	risk	for	your	device.

The	two	main	variables	that	control	package	splitting	are	PACKAGES	and	FILES:

	PACKAGES:	This	variable	is	a	space-delimited	list	of	package	names.	The	default
value	of	this	variable	is	defined	in	meta/conf/bitbake.conf	is	PACKAGES
=	"${PN}-dbg	${PN}-staticdev	${PN}-dev	${PN}-doc	${PN}-
locale	${PACKAGE_BEFORE_PN}	${PN}".	The	do_package	task
processes	the	list	from	the	left	to	the	right,	creating	the	leftmost	package	first	and	the
rightmost	last.	The	order	is	important,	since	a	package	consumes	the	files	that	are
associated	with	it.

	FILES:	The	FILES	variable	defines	lists	of	directories	and	files	that	are	placed	into
a	particular	package.	This	variable	is	always	used	with	conditional	assignment,	for
example:
FILES_${PN}-dbg	=	“<files>”

with	files	being	a	space-delimited	list	of	directories	and	files	that	can	contain
wildcards	to	match	portions	for	the	directory	structure	of	the	destination	directory	D
where	the	do_install	task	created	the	directories	and	installed	the	files.

The	default	settings	for	FILES	for	the	default	packages	listed	in	PACKAGES	are
defined	in	meta/conf/bitbake.conf.

The	default	settings	for	PACKAGES	and	FILES	cover	the	needs	of	most	software
packages.	However,	your	software	package	may	create	additional	artifacts	and	install	them
into	directories	not	covered	by	the	default	settings.	In	other	cases,	although	covered	by	the
default	settings,	you	may	wish	to	further	split	packages,	such	as	to	create	different
packages	for	multiple	binaries	created.	In	both	cases	you	need	to	add	package	names	to
PACKAGES	and/or	include	the	additional	artifacts	by	adding	to	FILES.	Listing	8-3
demonstrates	how	to	customize	packaging.

Listing	8-3	Customizing	Packaging
Click	here	to	view	code	image

SUMMARY	=	“Hello	Universe	Application”
DESCRPTION	=	“The	ultimate	hello	extending	beyond	‘world’.”
AUTHOR	=	“spacey@universetrotter.com”
HOMEPAGE	=	“http://universetrotter.com”
BUGTRACKER	=	“https://bugs.universetrotter.com”

PN	=	“hellouniverse”

#	Other	recipe	stuff
#	…

PACKAGES	=+	“graphics”
FILES_${PN}-graphics	=	“${datadir}/pixmaps/*”
FILES_${PN}-doc	=+	“${datadir}/blurbs/*”

PACKAGE_BEFORE_PN	=	“examples”
FILES_${PN}-examples	=	“${datadir}/examples”

The	example	in	Listing	8-3	prepends	an	additional	package,	named	graphics,	to
PACKAGES	and	then	sets	FILES_${PN}-graphics	to	the	filter.	It	also	appends	a
filter	to	FILES_${PN}-doc	to	collect	documentation	files	from	the	nonstandard
${datadir}/blurb	directory	and	place	them	into	the	doc	package.

The	last	package	from	the	default	list	in	PACKAGES	is	${PN},	which	is	the	standard
package.	The	associated	definition	for	FILES	essentially	consumes	all	files	and
directories	that	have	not	yet	been	claimed	by	packages	preceding	it:
Click	here	to	view	code	image

SOLIBS	=	“.so.*”
FILES_${PN}	=	“${bindir}/*	${sbindir}/*	${libexecdir}/*	${libdir}/lib*	\
																{SOLIBS}	${sysconfdir}	${sharedstatedir}	${localstatedir}	\
																${base_bindir}/*	${base_sbindir}/*	\
																${base_libdir}/*${SOLIBS}	\
																${base_prefix}/lib/udev/rules.d	$prefix}/lib/udev/rules.d	\
																${datadir}/${BPN}	${libdir}/${BPN}/*	\
																${datadir}/pixmaps	${datadir}/applications	\
																${datadir}/idl	${datadir}/omf	${datadir}/sounds	\
																${libdir}/bonobo/servers”

The	BitBake	syntax	only	allows	you	to	prepend	or	append	to	a	variable.	However,	if	you
need	to	insert	packages	right	before	the	${PN}	package,	you	can	set	the
PACKAGE_BEFORE_PN	variable	and	then	use	a	conditional	assignment	to	FILES	to	set
the	file	filter,	as	shown	in	Listing	8-3.

The	final	two	variables	that	control	packaging	are	PACKAGE_DEBUG_SPLIT_STYLE
and	PACKAGESPLITFUNCS.	The	former	gives	you	control	over	how	to	handle	binary
and	debug	objects.	The	latter	lets	you	add	your	own	functions	for	package	splitting	to	your
recipe.	They	are	less	common.	We	explained	the	basics	in	Section	8.1.2.

Packaging	QA

The	insane	class	adds	plausibility	and	error	checking	to	the	packaging	process.	The
class	defines	a	list	of	checking	functions	that	are	invoked	before,	during,	and	after	the
packaging	process,	such	as	ownership	and	file/directory	permissions,	correct	architecture
for	executables	and	libraries,	dependencies	of	debug	packages	on	non-debug	packages,
and	so	on.	For	a	list	of	the	functions,	refer	to	the	class	itself	or	to	the	Yocto	Project
Reference	Manual.7

7.	www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-classes-insane

You	can	use	the	variables	WARN_QA	and	ERROR_QA	to	determine	whether	a	QA
function	should	create	a	warning	message,	which	lets	the	build	continue	and	succeed
despite	the	warning,	or	an	error	message,	which	fails	the	build.	You	typically	set	these
variables	on	a	global	level,	either	as	outlined	in	the	previous	chapter	in	a	distribution
configuration	or	in	conf/local.conf	of	your	build	environment.

If	you	need	to	disable	a	particular	check	for	a	recipe,	you	can	use	the	INSANE_SKIP
variable.	For	example,

INSANE_SKIP_${PN}	+=	“dev-so”

skips	the	symbolic	link	check	for	dynamically	loaded	libraries.	Typically,	these	links	are
useful	only	for	development	packages,	but	some	software	packages	may	need	them	to
function	properly.

In	addition	to	the	automatic	checks	performed	by	the	insane	class,	you	can	manually
verify	correct	package	splitting.	The	directory	${WORKDIR}/packages-split
contains	separate	directory	structures	for	each	package	created.

Package	Architecture

In	general,	the	build	system	marks	all	packages	to	be	specific	to	the	target	architecture.
That	convention	is	appropriate	for	most	packages.	There	are	two	use	cases	in	which	you
may	need	to	adjust	the	package	architecture:

	Machine-Dependent	Package:	If	your	package	is	dependent	on	the	particular
machine	it	is	built	for,	which	is	typically	the	case	if	it	passes	the	setting	of	the
MACHINE	variable	to	the	configuration	script	when	executing	the	do_configure
task,	then	you	need	to	set	your	package	architecture	explicitly	to
PACKAE_ARCH	=	“${MACHINE_ARCH}

	Architecture-Independent	Package:	If	your	package	applies	to	all	architectures
regardless	of	the	machine	it	is	built	for—for	example,	if	it	is	a	fonts	or	scripts
package—then	your	recipe	needs	to	inherit	the	allarch	class	to	mark	the	package
correctly:
inherit	allarch

Even	if	you	do	not	change	the	package	architecture	explicitly,	we	recommend	that	you
try	building	your	package	for	different	architectures	by	doing	multiple	builds	for	different
machines	by	setting	the	MACHINE	variable	in	the	conf/local.conf	file	of	your	build
environment.

http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-classes-insane

8.2.11	Custom	Installation	Scripts
Package	management	systems	have	the	ability	to	run	custom	scripts	before	and	after	a
package	is	installed,	upgraded,	or	uninstalled.	These	scripts	are	included	with	the	package,
and	the	package	management	system	executes	them	when	they	are	invoked	to	carry	out	a
particular	action.	The	OpenEmbedded	build	system	supports	providing	such	scripts	as	part
of	the	recipe.	They	are	added	to	the	recipe	as	functions.	The	package	class	picks	up	the
functions	and	adds	them	to	the	respective	package	depending	on	the	package	management
system.	The	mechanism	is	transparent	to	the	package	management	system	and	is
supported	only	for	RPM,	dpkg,	and	ipkg.	Tar	packaging	does	not	support	custom
installation	scripts.	You	can	define	the	following	four	scripts:

	pkg_preinst_<packagename>:	Preinstallation	script	that	is	run	before	the
package	is	installed

	pkg_postinst_<packagename>:	Postinstallation	script	that	is	run	after	the
package	is	installed

	pkg_prerm_<packagename>:	Pre-uninstallation	script	that	is	run	before	the
package	is	uninstalled

	pkg_postrm_<packagename>:	Post-uninstallation	script	that	is	run	after	the
package	is	uninstalled

You	need	to	replace	<packagename>	with	the	name	of	the	package,	which	is	one	of
the	names	listed	in	the	PACKAGES	variable.	Specifying	the	package	name	allows	you	to
conditionally	apply	scripts	to	certain	packages.

Custom	installation	scripts	are	typically	shell	scripts.	Listing	8-4	shows	a	skeleton	for	a
postinstallation	script	for	the	main	package	${PN}.

Listing	8-4	Postinstallation	Script	Skeleton

pkg_postinst_${PN}()	{
#!/bin/sh
#	shell	commands	go	here
}

This	script	is	executed	after	the	package	is	installed.	For	the	package	to	install
successfully,	the	script	must	complete	successfully.	The	script	executes	regardless	of
whether	the	package	manager	is	run	by	the	OpenEmbedded	build	system	when	creating
the	root	filesystem	or	is	run	on	the	target.	In	some	cases,	you	may	want	to	run	the	script
only	when	the	package	is	installed	on	the	target	by	executing	the	package	manager	on	the
target,	or	you	may	want	to	carry	out	different	commands	when	installing	on	the	target.
Listing	8-5	shows	a	skeleton	of	how	to	accomplish	that.

Listing	8-5	Conditional	Postinstallation	Script	Skeleton
Click	here	to	view	code	image

pkg_postinst_${PN}()	{
#!/bin/sh
if	[x”$D”	=	“x”];	then

			#	shell	commands	for	target	execution
else
			#	shell	commands	for	build	system	execution
fi
}

The	logic	behind	the	skeleton	script	in	Listing	8-5	is	that	the	destination	directory
variable	D	is	set	in	the	context	of	the	build	system	but	not	when	the	package	manager	is
executed	on	the	target.

8.2.12	Variants
All	recipes	build	the	software	package	for	the	target.	If	you	want	your	recipe	to	build	for
the	build	host	and/or	for	an	SDK	in	addition	to	the	target,	you	have	to	set	the
BBCLASSEXTEND	variable:

	native:	Build	for	the	build	host.

	native-sdk:	Build	for	the	SDK.

You	may	need	to	make	adjustments	to	the	recipe	as	necessary	by	conditionally	setting
or	overriding	variables	when	building	variants.

8.3	Recipe	Examples
This	section	provides	examples	of	how	to	write	recipes	for	building	different	types	of
software	packages.	These	are	purposely	simple	examples	that	you	can	put	to	the	test	right
away	using	your	own	build	environment.	As	always,	we	recommend	that	you	create	your
own	layer	for	it:

$	yocto-layer	create	mylayer

Have	the	tool	create	the	sample	recipe	for	you,	or	create	the	directory	structure	and	files
manually.	The	examples	are	applications,	and	we	assume	that	they	are	placed	inside	the
layer	under	meta-mylayer/recipes-apps/<appname>.

Do	not	forget	to	include	your	layer	in	your	build	environment	by	adding	it	to	the
BBLAYERS	variable	in	conf/bblayers.conf	of	your	build	environment.

8.3.1	C	File	Software	Package
This	example	illustrates	how	to	write	a	recipe	that	directly	builds	a	software	package	from
its	source	files.	While	this	technique	is	not	commonly	used,	since	virtually	all	packages
use	some	sort	of	a	build	system,	the	example	shows	that	the	build	system	can	be	adapted
to	build	any	software	package.	Also,	if	you	have	the	necessary	compilers	as	part	of	your
native	builds,	you	are	not	limited	to	building	source	code	that	uses	the	C	or	C++
programming	languages.

The	source	code	for	the	example	consists	of	two	C	source	files	and	one	C	header	file,
which	we	have	replicated	in	Listing	8-6.

Listing	8-6	C	File	Software	Package	Source	Code
Click	here	to	view	code	image

helloprint.h:
void	printHello(void);

helloprint.c:
#include	<stdio.h>
#include	“helloprint.h”
void	printHello(void)	{
				printf(“Hello,	World!	My	first	Yocto	Project	recipe.\n”);
				return;
}

hello.c:
#include	“helloprint.h”
int	main()	{
				printHello();
				return(0);
}

For	the	example,	we	assume	that	you	create	a	compressed	tar	archive	containing	the
three	files	named	hello-1.0.tgz	using	the	command

$	tar	cvfz	hello-1.0.tgz	.

from	within	the	directory	where	you	created	the	three	files.	Then	copy	the	tar	file	into	the
subdirectory	meta-mylayer/recipes-apps/hello/hello-1.0.

Next,	create	the	recipe	shown	in	Listing	8-7	with	the	name	hello_1.0.bb	in	meta-
mylayer/recipes-apps/hello.

Listing	8-7	Recipe	to	Build	C	File	Source	Package
Click	here	to	view	code	image

SUMMARY	=	“Simple	Hello	World	Application”
DESCRIPTION	=	“A	test	application	to	demonstrate	how	to	create	a	recipe	\
															by	directly	compiling	C	files	with	BitBake.”

SECTION	=	“examples”
PRIORITY	=	“optional”

LICENSE	=	“MIT”
LIC_FILES_CHKSUM	=	“\
			file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302”

SRC_URI	=	“file://hello-1.0.tgz”

S	=	“${WORKDIR}”

do_compile()	{
				${CC}	-c	helloprint.c
				${CC}	-c	hello.c
				${CC}	-o	hello	hello.o	helloprint.o
}

do_install()	{
				install	-d	${D}${bindir}
				install	-m	0755	hello	${D}${bindir}
}

The	build	system	sets	the	variable	CC	automatically	for	the	correct	C	compiler
including	all	necessary	flags	for	machine	architecture,	system	root,	tuning	parameters,	and
more.	The	only	other	thing	to	note	about	this	recipe	is	the	setting	of	the	variable	S.	Since	S
defaults	to	${WORKDIR}/${PN}-${PV}	but	our	tar	archive	does	not	contain	a	root
directory	with	the	package	name	and	package	version,	the	recipe	has	to	adjust	the	setting
for	S	so	that	the	build	system	can	find	the	source.

This	recipe	builds	the	application	and	also	automatically	creates	the	main	package
hello.	All	other	packages	are	empty,	since	do_install	only	installs	the	hello
application	file.

8.3.2	Makefile-Based	Software	Package
For	this	example,	we	reuse	the	three	source	files	from	the	previous	example	and	add	the
makefile	shown	in	Listing	8-8	to	build	the	software	package.

Listing	8-8	Makefile
Click	here	to	view	code	image

CC=gcc
RM=rm

CFLAGS=-c	-Wall
LDFLAGS=

DESTDIR=
BINDIR=/usr/bin

SOURCES=hello.c	helloprint.c
OBJECTS=$(SOURCES:.c=.o)

EXECUTABLE=hellomake

.cpp.o:
								$(CC)	$(CFLAGS)	$<	-o	$@

all:	$(SOURCES)	$(EXECUTABLE)

$(EXECUTABLE):	$(OBJECTS)
								$(CC)	$(LDFLAGS)	$^	-o	$@

clean:
								$(RM)	$(EXECUTABLE)	*.o

install:	$(EXECUTABLE)
								mkdir	-p	$(DESTDIR)/$(BINDIR)
								install	-m	0755	$<	$(DESTDIR)/$(BINDIR)

This	is	a	typical	albeit	simple	makefile	that	sets	a	couple	of	variables	specifying	the	C
compiler	and	a	couple	of	flags.	Using	this	makefile,	you	can	build	the	software	package	on
your	host	system.	However,	the	makefile	does	not	take	cross-building	into	consideration.

Place	this	makefile	into	the	same	directory	as	the	other	three	source	files,	and	create	a
tar	archive	using
Click	here	to	view	code	image

$	tar	—transform	“s/^./hellomake-1.0/”	-cvzf	hellomake-1.0.tgz	.

This	command	not	only	creates	the	compressed	tar	archive	but	also	prefixes	the	files	in
the	archive	with	the	directory	hellomake-1.0	to	create	the	proper	directory	structure
so	that	the	recipe	does	not	have	to	adjust	the	S	variable.	Copy	the	tar	file	into	the
subdirectory	meta-mylayer/recipes-apps/hello/hellomake-1.0.

Then	create	the	recipe	shown	in	Listing	8-9	with	the	name	hellomake_1.0.bb	in
meta-mylayer/recipes-apps/hellomake.

Listing	8-9	Recipe	to	Build	Makefile-Based	Software	Package
Click	here	to	view	code	image

SUMMARY	=	“Hello	with	Makefile”
DESCRIPTION	=	“A	test	application	to	demonstrate	how	to	create	a	\
															recipe	for	makefile-based	project.”

SECTION	=	“examples”
PRIORITY	=	“optional”

LICENSE	=	“MIT”
LIC_FILES_CHKSUM	=	“\
			file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302”

SRC_URI	=	“file://${P}.tgz”

EXTRA_OEMAKE	=	“‘CC=${CC}’	‘RANLIB=${RANLIB}’	‘AR=${AR}’	\
			‘CFLAGS=${CFLAGS}	-I${S}/.	-DWITHOUT_XATTR’	‘BUILDDIR=${S}’”

do_install	()	{
			oe_runmake	install	DESTDIR=${D}	BINDIR=${bindir}	SBINDIR=${sbindir}	\
						MANDIR=${mandir}	INCLUDEDIR=${includedir}
}

The	function	oe_runmake	is	executed	by	the	do_compile	task	and	invokes	the
Make	tool	with	the	makefile.	You	typically	have	to	pass	parameters	for	variable	settings	to
the	makefile	by	setting	the	EXTRA_OEMAKE	variable.	The	variable	provides	mappings
from	the	build	system	variables	to	the	variables	used	by	the	makefile	and	additional
parameters.

If	you	need	to	provide	additional	options	to	the	CFLAGS	variable,	you	must	not
override	it	because	the	build	system	uses	it	to	pass	cross-build	settings	to	the	compiler.
Instead	use

CFLAGS_prepend	=	“<flags>”

to	add	the	additional	options.

There	is	no	need	to	override	the	do_compile	task.	The	default	task	defined	by
base.bbclass	executes	oe_runmake,	which	in	turn	executes	the	Make	tool,	passing
the	EXTRA_OEMAKE	variable	to	it.

You	do,	however,	have	to	provide	your	own	do_install	task,	since	the	default
defined	by	base.bbclass	does	nothing.	If	your	makefile	provides	an	install	target,
then	the	task	can	simply	invoke	oe_runmake	with	parameters,	as	shown	in	the	example.

Otherwise,	you	have	to	write	the	installation	explicitly,	as	shown	by	the	previous	example.

8.3.3	CMake-Based	Software	Package
CMake	is	an	open	source	cross-platform	build	system	to	build,	test,	and	package	software.
The	CMake	suite	of	tools	uses	platform-	and	compiler-independent	configuration	files	to
control	and	manage	the	build	process.	CMake	creates	native	makefiles	and	even
workspaces	for	various	integrated	development	environments	(IDEs).

The	OpenEmbedded	build	system	provides	support	for	software	packages	using	CMake
with	the	cmake	class.	The	class	takes	care	of	the	configuration	and	build	process,
reducing	most	recipes	to	just	the	descriptive	metadata,	licensing	information,	source	URIs,
and	inherit	statement	for	the	cmake	class.	Listing	8-10	shows	the	recipe	for	building
Synergy—a	client–server	application	that	allows	sharing	of	keyboard	and	mouse	between
multiple	computers	over	a	local	network.	Synergy	uses	CMake	to	control	its	build	process.
The	recipe	shown	is	replicated	from	the	OpenEmbedded	meta-oe	layer.

Listing	8-10	Recipe	to	Build	Synergy—synergy_1.3.8.bb

Click	here	to	view	code	image

SUMMARY	=	“Synergy	-	control	multiple	computers	with	one	keyboard	and	mouse”
HOMEPAGE	=	“http://synergy.googlecode.com”
LIC_FILES_CHKSUM	=	“file://COPYING;md5=9772a11e3569985855e2ce450e56f991”
LICENSE	=	“GPL-2.0”
SECTION	=	“x11/utils”

DEPENDS	=	“libx11	libxtst	libxinerama”

SRC_URI	=	“http://synergy.googlecode.com/files/synergy-${PV}-Source.tar.gz”

SRC_URI[md5sum]	=	“3534c65ecfa6e47d7899c57975442f03”
SRC_URI[sha256sum]	=	\
			“0afc83e4ed0b46ed497d4229b2b2854e8d3c581a112f4da05110943edbfacc03”

S	=	“${WORKDIR}/${PN}-${PV}-Source”

inherit	cmake

do_install()	{
				install	-d	${D}/usr/bin
				install	-m	0755	${S}/bin/synergy*	${D}/usr/bin/
}

8.3.4	GNU	Autotools-Based	Software	Package
The	GNU	build	system,	commonly	called	GNU	Autotools,	has	emerged	as	a	de	facto
standard	for	developing	applications	that	can	be	ported	between	UNIX-like	systems.

Developers	frequently	criticize	Autotools	for	being	complex	and	cumbersome	to	use.
However,	writing	portable	applications	that	can	be	compiled	on	a	vast	number	of	different
systems	is	a	complex	task,	even	more	so	for	embedded	systems.	Autotools	relieves
developers	from	having	to	understand	the	details	of	the	many	different	systems	and	where
they	differ	but	requires	them	to	provide	a	potentially	long	list	of	configuration	settings.

A	software	package	that	has	been	created	with	Autotools	support	significantly
simplifies	the	task	of	building	the	package	on	different	systems.	Typically,	all	you	need	to
do	is	run	the	configuration	script	and	then	build	the	package.

A	large	number	of	open	source	packages	use	Autotools	for	configuration.	The
OpenEmbedded	build	system	provides	great	support	through	the	autotools	class,
which	in	most	cases	pretty	much	reduces	writing	a	recipe	to	providing	the	descriptive
metadata,	adding	source	URIs	and	license	information,	and	inheriting	the	autotools
class.	Listing	8-11	shows	a	recipe	that	builds	the	nano	editor	package.

Listing	8-11	Recipe	to	Build	the	Nano	Editor—nano_2.3.1.bb

Click	here	to	view	code	image

SUMMARY	=	“GNU	nano	-	an	enhanced	clone	of	the	Pico	text	editor”
DESCRIPTION	=	“GNU	nano	-	an	enhanced	clone	of	the	Pico	text	editor”

HOMEPAGE	=	“http://www.nano-editor.org”
BUGTRACKER	=	“https://savannah.gnu.org/bugs/?group=nano”

SECTION	=	“console/utils”
PRIORITY	=	“optional”

LICENSE	=	“GPLv3”
LIC_FILES_CHKSUM	=	“file://COPYING;md5=f27defe1e96c2e1ecd4e0c9be8967949”

DEPENDS	=	“ncurses”

PV_MAJ	=	“${@bb.data.getVar(‘PV’,d,1).split(‘.’)[0]}”
PV_MIN	=	“${@bb.data.getVar(‘PV’,d,1).split(‘.’)[1]}”

SRC_URI	=	“\
			http://www.nano-editor.org/dist/v${PV_MAJ}.${PV_MIN}/nano-${PV}.tar.gz”

SRC_URI[md5sum]	=	“af09f8828744b0ea0808d6c19a2b4bfd”
SRC_URI[sha256sum]	=	“\
			b7bace9a8e543b84736d6ef5ce5430305746efea3aacb24391f692efc6f3c8d3”
inherit	autotools	gettext
RDEPENDS_${PN}	=	“ncurses”

This	recipe	does	not	contain	any	special	settings	for	any	of	the	steps.	Everything	is
taken	care	of	by	the	autotools	class.	The	only	things	to	note	about	this	recipe	are	the
following:

	In	addition	to	autotools,	the	recipe	also	inherits	the	gettext	class.	This	class
facilitates	building	software	packages	with	GNU	gettext	Native	Language	Support
(NLS).

	Nano	is	a	console	application	that	uses	the	ncurses	library.	Hence,	the	recipe
declares	build	time	and	runtime	dependencies	on	it.

	To	make	recipes	easier	to	update	for	newer	versions	of	a	software	package,	it	is	good
advice	not	to	directly	write	version	numbers	into	SRC_URI.	Since	the	nano	editor’s
upstream	source	repository	uses	a	partial	version	number	in	its	path,	the	recipe	splits
the	PV	variable	into	its	portions	to	create	the	version	number.

To	build	the	nano	editor,	simply	create	the	recipe	shown	in	Listing	8-11	with	the	name
nano_2.3.1.bb	in	meta-mylayer/recipes-apps/nano,	and	launch	BitBake.

8.3.5	Externally	Built	Software	Package
In	some	cases,	you	may	need	the	build	system	to	include	a	software	package	that	has	been
built	by	some	other	means,	and	you	are	provided	with	a	package	that	contains	only
binaries,	configuration	files,	documentation,	and	so	forth.	Since	you	do	not	have	the
source	code,	you	cannot	use	a	regular	recipe	that	fetches	the	source	code	and	then	builds
it.

The	solution	is	to	write	a	recipe	that	fetches	the	binary	package,	unpacks	it,	skips	the
configure	and	compile	steps,	installs	the	package	components,	and	then	repackages	them
for	integration	with	the	root	filesystem	for	your	target	device.

Although	this	is	not	the	most	ideal	process	and	can	lead	to	compatibility	issues,	it	may
be	the	only	way	to	seamlessly	integrate	such	a	package.

To	integrate	externally	built	software	packages,	the	OpenEmbedded	build	system
provides	the	bin_package	class.	The	class	uses	the	default	do_fetch	and
do_unpack	tasks	to	fetch	and	unpack	it	into	the	S	directory.	It	skips	the
do_configure	and	do_compile	tasks	and	defines	a	do_install	task	that	simply
copies	the	files	from	the	S	to	the	D	directory.	After	copying,	it	creates	a	single	package	to
contain	all	files	by	setting	FILES_${PN}	=	"/".

Listing	8-12	shows	a	sample	recipe	using	bin_package.

Listing	8-12	Recipe	using	bin_package
Click	here	to	view	code	image

SUMMARY	=	“Package	the	Proprietary	Software”
DESCRIPTION	=	“A	sample	recipe	utilizing	the	bin_package	class	\
															to	package	the	externally	build	Proprietary	software	\
															package.”

LICENSE	=	“CLOSED”

SRC_URI	=	“file://proprietary-${PV}.rpm”

inherit	bin_package

The	bin_package	class	works	without	any	adjustments	if	the	original	software
package,	after	being	extracted	to	the	S	directory,	is	laid	out	exactly	as	it	should	be	laid	out
on	the	target.

If	your	software	package	requires	a	different	layout	on	your	target,	or	if	you	want	to
split	it	into	different	packages,	you	need	to	override	the	do_install	task	and	set	the
FILES	variable	(at	least	FILES_{PN}	but	eventually	others	from	the	PACKAGES	list)
accordingly.

8.4	Devtool
In	the	preceding	sections	of	this	chapter,	we	walked	through	the	process	of	writing	recipes
for	your	software	packages,	creating	a	layer	for	them,	including	the	layer	with	a	build
environment,	adding	your	package	to	an	image	target,	building	and	finally	deploying	your
image.	A	lot	of	these	steps	can	be	simplified	through	use	of	devtool.

Devtool	is	a	suite	of	tools	that	assist	you	in	round-trip	development	with	the
OpenEmbedded	build	system.	It	is	essentially	like	a	Swiss	army	knife,	providing	the	most
commonly	used	tools	in	a	single	package.	Using	the	--help	option	gives	you	a	list	of	the
devtool	subcommands:
Click	here	to	view	code	image

$	devtool	–help
usage:	devtool	[—basepath	BASEPATH]	[—bbpath	BBPATH]	[-d]	[-q]
															[—color	COLOR]	[-h]
															<subcommand>	…

OpenEmbedded	development	tool

optional	arguments:
		—basepath	BASEPATH		Base	directory	of	SDK	/	build	directory
		—bbpath	BBPATH						Explicitly	specify	the	BBPATH,	rather	than
																							getting	it
																							from	the	metadata
		-d,	—debug										Enable	debug	output
		-q,	—quiet										Print	only	errors
		—color	COLOR								Colorize	output	(where	COLOR	is	auto,	always,
																							never)
		-h,	—help											show	this	help	message	and	exit

subcommands:
		<subcommand>
				create-workspace			Set	up	a	workspace
				deploy-target						Deploy	recipe	output	files	to	live	target	machine
				undeploy-target				Undeploy	recipe	output	files	in	live	target	machine
				build-image								Build	image	including	workspace	recipe	packages
				add																Add	a	new	recipe
				modify													Modify	the	source	for	an	existing	recipe
				extract												Extract	the	source	for	an	existing	recipe
				sync															Synchronize	the	source	for	an	existing	recipe
				update-recipe						Apply	changes	from	external	source	tree	to	recipe
				status													Show	workspace	status
				reset														Remove	a	recipe	from	your	workspace
				search													Search	available	recipes
				upgrade												Upgrade	an	existing	recipe
				build														Build	a	recipe

Use	devtool	<subcommand>	—help	to	get	help	on	a	specific	command

8.4.1	Round-Trip	Development	Using	Devtool
Devtool	creates	and	maintains	a	workspace	layer	for	you,	which	it	automatically	integrates
with	your	current	build	environment.	Before	you	can	use	devtool	for	your	round-trip
development,	you	need	to	source	a	build	environment,	as	usual.

Creating	a	workspace	Layer

The	command
Click	here	to	view	code	image

$	devtool	create-workspace	[layerpath]

creates	a	new	workspace	layer	for	you	at	the	given	layerpath.	If	you	omit
layerpath,	devtool	creates	a	layer	called	workspace	at	the	current	location.	The
created	workspace	layer	includes	a	conf/layer.conf	file.	Devtool	automatically
adds	the	layer	to	the	conf/bblayers.conf	file	of	your	current	build	environment
unless	you	specify	the	--create-only	option.

You	have	to	use	the	create-workspace	command	only	if	you	explicitly	want	to
specify	layerpath,	as	other	devtool	commands	automatically	create	the	workspace
layer	if	one	does	not	already	exist	for	your	current	build	environment.

You	can	only	have	one	workspace	layer	maintained	by	devtool	at	a	time	for	the	same
build	environment.	If	you	use	the	create-workspace	command	again	with	a	build
environment	that	already	has	a	workspace,	then	devtool	creates	a	new	layer	and	modifies
conf/bblayers.conf	accordingly.	However,	it	does	not	delete	your	previous
workspace	layer.

The	file	conf/devtool.conf	contains	the	configuration	settings	for	devtool,	in
particular	the	path	to	the	workspace	layer.

Adding	a	New	Recipe	to	the	workspace	Layer

To	add	a	new	recipe	for	a	software	package	to	the	workspace	layer,	use	the	command
Click	here	to	view	code	image

$	devtool	add	<recipe-name>	<source-path>

where	recipe-name	is	the	name	of	the	recipe	and	source-path	is	the	path	to	the
source	of	the	software	package.	If	you	did	not	explicitly	create	a	workspace	layer,
devtool	will	implicitly	create	one	called	workspace	when	using	the	add	command.

Devtool	creates	the	recipe	inside	the	workspace	layer	as	recipes/<recipe-
name>/<recipe-name>.bb.	The	SRC_URI	variable	inside	the	recipe	is	empty,	as
devtool	creates	an	append/<recipe-name>.bbappend	file	with	EXTERNALSRC
set	to	the	source-path.	If	devtool	cannot	find	license	information	included	with	the
package	sources,	it	sets	LICENSE	=	"CLOSED"	and	LIC_FILES_CHKSUM	=	"",
which	allows	the	recipe	to	build	even	though	there	is	no	license	information.	Devtool	also
tries	to	figure	out	how	to	build	the	sources	and	set	up	the	recipe	accordingly.	For	software
packages	using	CMake	and	Autotools,	it	includes	the	respective	classes.	For	makefile-
based	software	packages,	it	sets	up	stubs	for	the	do_configure(),	do_compile(),
and	do_install()	tasks.	Although	devtool	produces	a	working	recipe	in	most	case,
you	will	probably	need	to	adjust	it	to	make	it	fully	operational.

If	you	can	access	the	package	sources	from	a	remote	location,	you	can	use

Click	here	to	view	code	image
$	devtool	add	<recipe-name>	<source-path>	-f	<source-uri>

to	fetch	the	sources	directly	from	<src-uri>	and	unpack	them	into	your	local
<source-path>.	For	example,
Click	here	to	view	code	image

$	devtool	add	nano	sources/nano	\
					-f	http://www.nano-editor.org/dist/v2.5/nano-2.5.1.tar.gz

fetches	the	nano-2.5.1.tar.gz	source	tarball	from	the	nano	editor	download	site
and	extracts	them	to	the	sources/nano	directory	where	it	initializes	a	Git	repository.	It
also	creates	the	recipe	nano.bb,	shown	in	Listing	8-13,	in
workspace/recipes/nano	(we	only	reformatted	the	content	of	the	recipe	to	make	it
fit	the	page	of	the	book).

Listing	8-13	Recipe	for	the	Nano	Editor	Created	with	Devtool
Click	here	to	view	code	image

#	Recipe	created	by	recipetool
#	This	is	the	basis	of	a	recipe	and	may	need	further	editing	in	order
#	to	be	fully	functional.
#	(Feel	free	to	remove	these	comments	when	editing.)
#
#	WARNING:	the	following	LICENSE	and	LIC_FILES_CHKSUM	values	are
#	best	guesses	-	it	is	your	responsibility	to	verify	that	the	values	are
#	complete	and	correct.
#
#	NOTE:	multiple	licenses	have	been	detected;	if	that	is	correct	you
#	should	separate	these	in	the	LICENSE	value	using	&	if	the	multiple
#	licenses	all	apply,	or	|	if	there
#	is	a	choice	between	the	multiple	licenses.	If	in	doubt,	check	the
#	accompanying	documentation	to	determine	which	situation	is	applicable.
LICENSE	=	“GPLv3	Unknown”
LIC_FILES_CHKSUM	=	”	\
					file://COPYING;md5=f27defe1e96c2e1ecd4e0c9be8967949	\
					file://COPYING.DOC;md5=ad1419ecc56e060eccf8184a87c4285f”

SRC_URI	=	“http://www.nano-editor.org/dist/v2.5/nano-2.5.1.tar.gz”
SRC_URI[md5sum]	=	“f25c7da9813ae5f1df7e5dd1072de4ce”
SRC_URI[sha256sum]	=
“e06fca01bf183f4d531aa65a28dffc0e2d10185239909eb3de797023f3453bde”

S	=	“${WORKDIR}/nano-2.5.1”

#	NOTE:	the	following	prog	dependencies	are	unknown,	ignoring:	makeinfo
#	NOTE:	the	following	library	dependencies	are	unknown,	ignoring:
#	ncursesw	ncursesw	ncurses	curses	curses	magic	z
#	(this	is	based	on	recipes	that	have	previously	been	built	and	packaged)
#	NOTE:	if	this	software	is	not	capable	of	being	built	in	a	separate
#	build	directory	from	the	source,	you	should	replace	autotools	with
#	autotools-brokensep	in	the	inherit	line
inherit	pkgconfig	gettext	autotools

#	Specify	any	options	you	want	to	pass	to	the	configure	script	using
#	EXTRA_OECONF:
EXTRA_OECONF	=	””

Note	that	the	variable	SRC_URI	is	set	to	the	URI	specified	with	the	-f	(--fetch)
option.	Nevertheless,	devtool	creates	the	append	file
workspace/append/nano.bbappend,	shown	in	Listing	8-14.

Listing	8-14	External	Source	nano.bbappend
Click	here	to	view	code	image

inherit	externalsrc
EXTERNALSRC	=	“/run/media/rstreif/YoctoDevelop/projects/kc/src/nano”

#	initial_rev:	c0516cb63fa0d376f81aec4e75a9c3cbd80823cb

The	append	file	overrides	the	SRC_URI	setting	of	the	recipe,	allowing	you	to	modify
the	sources	without	needing	to	change	the	recipe.

Building	the	Recipe

After	you	have	added	your	recipe,	reviewed	it,	and	eventually	made	some	adjustments,
you	can	build	it	using	devtool:

$	devtool	build	<recipe-name>

which	essentially	calls	bitbake	<recipe-name>	using	all	the	settings	from	your
build	environment,	including	the	parallelism	option	for	make.	You	can	disable	parallel
make	by	adding	the	-s	(--disable-parallel-make)	to	the	build	command.

Deploying	the	Package	to	a	Target	System

Now	you	can	deploy	your	freshly	built	package	to	a	target	system.	The	target	system	can
be	actual	hardware	or	QEMU.	The	only	requirement	is	that	the	target	system	must	be
running	a	Secure	Shell	(SSH)	server.	The	command
Click	here	to	view	code	image

$	devtool	deploy-target	<recipe-name>	[user@]target-host[:destdir]

transmits	all	files	installed	into	the	root	filesystem	by	the	do_install()	task.	You	can
specify	an	alternative	user	name	and	a	destination	directory	to	which	the	files	are	copied.

Several	options	modify	the	behavior	of	the	command:

	-n,	--dry-run:	This	option	lists	the	files	to	be	deployed	only	without	actually
copying	them	to	the	target	system.

	-s,	--show-status:	If	you	use	this	option,	the	command	will	display	status
and	progress	output.

	-c,	--no-host-check:	Skips	the	SSH	host	key	verification.

Removing	a	Package	from	a	Target	System

Similar	to	deploy-target,	you	can	use	the	command
Click	here	to	view	code	image

$	devtool	undploy-target	<recipe-name>	[user@]target-host

to	delete	files	deployed	with	deploy-target	from	the	target	system.	If	you	used
destdir	when	deploying,	devtool	remembers	it	and	removes	the	files	from	that
directory.

The	options	for	the	undeploy-target	command	are	the	same	as	for	the	deploy-
target	command.

Building	Images

With	devtool,	you	also	build	images	that	include	all	the	recipes	from	the	workspace
layer.	The	command
Click	here	to	view	code	image

$	devtool	build-image	<image-name>

extends	the	image	identified	by	<image-name>	with	the	recipes	from	the	workspace	by
adding	them	to	IMAGE_INSTALL_append,	and	then	starts	BitBake	to	build	the	image.

Displaying	Workspace	Information

The	command
$	devtool	status

prints	status	information	about	the	workspace	layer.

8.4.2	Workflow	for	Existing	Recipes
Commonly,	you	may	need	to	create	patches	for	software	packages	that	have	recipes
defined	in	another	layer.	To	accomplish	this	task,	you	typically	have	to	retrieve	the	source
code	of	the	package,	unpack	it	locally,	and	create	an	append	file	to	use	the	local	source
code.	After	you	make	changes	to	your	local	source	code,	you	need	to	create	a	patch,	which
you	then	add	to	the	recipe.	Devtool	provides	commands	that	greatly	assist	you	with	this
workflow	by	taking	care	of	the	tedious	tasks	for	managing	the	package	source	code	and
recipe.

Adding	an	Existing	Recipe	to	the	Workspace

The	command
Click	here	to	view	code	image

$	devtool	modify	-x	<recipe-name>	<source-path>

retrieves	the	source	code	for	the	package	built	by	the	recipe	<recipe-name>,	extracts	it
into	the	directory	specified	by	<source-path>,	and	sets	the	source	code	up	in	a	Git
repository.	The	command	does	not	copy	the	recipe	from	the	original	layer	to	your
workspace	layer	but	simply	creates	an	append	file	to	override	SRC_URI.

For	example,	if	you	run	the	command
Click	here	to	view	code	image

$	devtool	modify	-x	sqlite3	src/sqlite3

from	your	build	environment,	it	creates	a	source	repository	in

workspace/src/sqlite3	and	the	append	file
workspace/append/sqlite3.bbappend.

You	can	now	make	changes	to	the	SQLite3	source	code	and	build	the	package	with	the
changes	using

devtool	build	sqlite3

Updating	the	Recipe

Once	you	are	happy	with	your	changes,	you	commit	them	to	the	repository,	as	usual	with
Git:

$	git	add	.
$	git	commit	-s

Now	you	use	devtool	to	create	a	patch	from	your	commit	and	add	it	to	the	original
recipe:
Click	here	to	view	code	image

$	devtool	update-recipe	<recipe-name>

This	command	directly	updates	the	recipe	in	the	original	layer.	For	our	example	with
SQLite3,	this	means	that	devtool	adds	the	patch	to
poky/meta/recipes/sqlite/sqlite3	and	modifies	the	recipe	accordingly.

If	you	do	not	wish	to	modify	the	original	layer	but	rather	want	to	add	an	append	file	to
another	layer,	use	the	command	in	the	form
Click	here	to	view	code	image

$	devtool	update-recipe	<recipe-name>	-a	<layer-dir>

where	<layer-dir>	is	the	path	to	the	top-level	directory	of	the	layer	you	wish	to	add
the	append	file	to.

You	always	have	to	commit	your	changes	to	the	repository	first;	otherwise,	devtool
ignores	them	and	does	not	create	a	patch.	You	can	use	this	behavior	for	creating	a	series	of
patches	by	committing	changes	subsequently.

8.5	Summary
Writing	recipes	seems	hard	at	first	but	becomes	easier	with	practice.	There	are	literally
thousands	of	recipes	available	for	you	to	examine	and	learn	from	at	the	OpenEmbedded
website.	The	layer	index	and	the	search	function	make	it	easy	to	find	recipes	that	are
already	close	to	what	you	are	trying	to	accomplish.

In	this	chapter	we

	Explored	the	structure	of	recipes	and	discussed	the	typical	variables

	Explained	recipe	naming	and	formatting	conventions

	Provided	step-by-step	instructions	on	how	to	write	your	own	recipes

	Showed	examples	for	typical	recipes

	Explained	how	to	use	devtool	for	rapid	round-trip	development	and	to	comfortably

work	with	existing	recipes	and	the	software	packages	they	build

8.6	References
OpenEmbedded	Metadata	Layer	Index,
http://layers.openembedded.org/layerindex/branch/master/layers/

Yocto	Project	Documentation,	https://www.yoctoproject.org/documentation/current

http://layers.openembedded.org/layerindex/branch/master/layers/
https://www.yoctoproject.org/documentation/current

9.	Kernel	Recipes

In	This	Chapter

9.1	Kernel	Configuration

9.2	Kernel	Patches

9.3	Kernel	Recipes

9.4	Out-of-Tree	Modules

9.5	Device	Tree

9.6	Summary

9.7	References

An	embedded	Linux	project	would	not	be	an	embedded	Linux	project	without
customizing	the	Linux	kernel	to	fully	support	the	hardware.	Although	it	is	not	a
microkernel	architecture,1	the	Linux	kernel	is	modular.	Functionality	can	be	either
compiled	into	the	Linux	kernel	or	inserted	into	the	kernel	during	runtime	as	loadable
kernel	modules.	In	the	sense	of	modularity,	the	Linux	kernel	is	similar	to	a	microkernel
architecture.	However,	unlike	a	microkernel	in	which	device	drivers	and	other	kernel	code
that	is	not	part	of	the	kernel	core	are	executed	as	separate	but	privileged	processes,	module
and	device	driver	code	is	always	executed	within	the	kernel	context,	which	makes	the
Linux	kernel	a	monolithic	kernel.	Because	of	this	architecture,	Linux	modules	have	access
to	all	kernel	data	structures,	for	the	good	or	the	bad,	and	do	not	need	to	use	kernel
interprocess	communication	(IPC)	as	a	microkernel	must.	However,	IPC	is	available	for
Linux	kernel	modules.

1.	We	do	not	go	into	the	pros	and	cons	of	a	microkernel	architecture	versus	a	monolithic	kernel	architecture	here.
Linus	Torvalds	had	a	very	entertaining	debate	on	the	subject	with	Andrew	Tanenbaum,	the	inventor	of	the	Minix
OS:	https://groups.google.com/forum/?fromgroups=#!topic/comp.os.minix/wlhw16QWltI%5B1-25%5D.	While
the	debate	is	far	from	being	entirely	objective	and	based	on	facts,	it	provides	good	insight	into	the	advantages	and
disadvantages	of	both	architectures.

Whether	you	want	to	compile	kernel	functionality	into	the	kernel	or	make	it	runtime
loadable	depends	on	various	factors	you	need	to	consider	for	your	project:

	Availability	as	Kernel	Module:	If	functionality	is	provided	by	a	kernel	module,
you	have	the	choice	between	compiling	the	module	code	directly	into	the	kernel	or
compiling	it	as	a	loadable	module	that	can	be	loaded	and	unloaded	at	kernel	runtime.
If	you	choose	to	compile	a	kernel	module	into	the	kernel,	it	cannot	be	unloaded
again	during	runtime.	Some	functionality,	however,	due	to	its	technical	nature,	can
never	be	loaded	during	runtime.	If	your	project	requires	that	functionality,	you	have
to	compile	it	into	the	kernel.

	Kernel	Footprint:	Less	functionality	compiled	into	the	kernel	means	a	smaller
kernel	that	can	be	loaded	quickly	from	storage	media.

	Boot	Time:	A	smaller	kernel	with	fewer	drivers	compiled	into	the	kernel	means	less

https://groups.google.com/forum/?fromgroups=#!topic/comp.os.minix/wlhw16QWltI%5B1-25%5D

initialization	during	kernel	startup,	which	contributes	to	a	faster	boot	time.

	Hardware	Support	at	Startup:	Because	kernel	modules	are	inserted	into	the	Linux
kernel	after	the	kernel	has	launched	user	space,	all	hardware	support	that	needs	to	be
available	during	kernel	boot,	such	as	disks	and	eventually	network	hardware,	must
be	compiled	into	the	kernel.	Alternatively,	you	can	use	an	initial	ramdisk	(initrd)
image	to	probe	for	the	hardware,	as	most	Linux	desktop	and	server	distributions	do.
Using	initrd	keeps	the	kernel	more	universal,	but	probing	hardware	requires	more
time.

	Ability	to	Upgrade:	Hardware	drivers	may	need	upgrades	after	the	embedded
system	has	shipped.	If	a	device	driver	is	compiled	into	the	kernel,	the	entire	kernel
must	be	upgraded,	which	is	not	possible	without	rebooting	the	system.	If	a	device
driver	is	loaded	as	a	kernel	module,	the	old	module	can	be	unloaded	during	runtime
and	the	new	module	loaded	to	replace	it.

In	this	chapter,	we	explain	how	to	use	the	Linux	kernel’s	configuration	system	with	the
Yocto	Project	to	customize	the	kernel,	the	different	ways	of	building	the	kernel	with	kernel
recipes,	how	to	add	patches	to	the	kernel,	and	how	to	build	out-of-tree	kernel	modules.

9.1	Kernel	Configuration
The	Linux	kernel	provides	its	own	configuration	system,	commonly	called	kconfig.
Kconfig	is	essentially	a	configuration	database	organized	in	a	tree	structure.	All
configuration	options	are	consolidated	into	a	single	file,	.config,	in	the	top-level
directory	of	the	kernel	source	tree.	The	kernel’s	build	system	uses	that	file	to	propagate	the
settings	to	all	kernel	source	files.	The	dot	as	the	first	character	of	the	filename	makes	this
file	a	hidden	file	on	UNIX	systems.	You	have	to	use	ls	-a	to	actually	see	it	in	a
directory	listing.	Although	you	can	edit	that	file	directly	using	a	text	editor,	doing	so	is	not
recommended.	It	contains	more	than	5,500	configuration	settings	in	a	flat,	line-by-line
file,	which	may	be	one	of	the	reasons	the	kernel	developers	decided	to	make	.config	a
hidden	file.

The	.config	file	is	typically	created	automatically	either	from	a	default	platform
configuration	file	or	from	an	existing	configuration	for	a	particular	system.	If	you	want	to
edit	it,	the	Linux	kernel	configuration	system	provides	menu	editors	for	it.	These	editors
also	recognize	dependencies	and	interdependencies	of	configuration	settings.	If	you
choose	a	configuration	setting	that	depends	on	one	or	more	other	settings,	the	editor
automatically	selects	those	too	if	they	are	not	already	set.

9.1.1	Menu	Configuration
If	you	have	worked	with	the	Linux	kernel	before	and	built	it	for	a	native	environment,	you
are	most	likely	familiar	with	the	commands	make	menuconfig,	make	xconfig,	and
make	gconfig.	All	of	these	commands	launch	a	menu-based	hierarchical	editor	that
allows	browsing,	searching,	and	changing	of	configuration	options.

The	Yocto	Project’s	kernel	recipes	provide	the	functionality	of	make	menuconfig
by	invoking

Click	here	to	view	code	image
$	bitbake	-c	menuconfig	<kernel-recipe>

For	example,
Click	here	to	view	code	image

$	bitbake	-c	menuconfig	virtual/kernel

launches	the	menu	editor	for	the	current	kernel	dependent	on	the	machine	settings.

For	the	menu	editor	to	work,	a	valid	configuration	must	be	available.	Therefore,	you
must	have	built	the	kernel	at	least	once.	That	would	typically	be	the	case	if	you	first	built
an	entire	image	before	making	changes.	However,	if	you	do	have	a	new	kernel	recipe	and
do	not	wish	to	wait	for	the	kernel	to	build	entirely	before	you	can	modify	the
configuration	using	the	menu	editor,	you	can	use	the	kernel_configme	command	to
run	the	kernel	build	process	up	to	and	including	the	configuration	step	that	creates	the
.config	file:
Click	here	to	view	code	image

$	bitbake	-c	kernel_configme	virtual/kernel

If	you	are	using	a	graphical	desktop	environment	for	developing	with	the	Yocto	Project,
launching	the	menu	editor	opens	another	terminal	window.	The	terminal	class,	which
provides	the	code	for	launching	a	terminal	window,	attempts	to	find	a	suitable	terminal
program	based	on	the	configuration	of	your	system.	On	virtually	all	systems,	the
terminal	class	succeeds	and	presents	a	suitable	terminal	program.	If	the	menu	editor
does	not	look	correct,	or	if	you	prefer	to	use	a	different	terminal	type,	you	can	override	the
automatic	selection	by	explicitly	setting	the	variable	OE_TERMINAL	in
conf/local.conf	of	your	build	environment.

You	can	now	use	the	menu	editor	to	make	changes	to	the	kernel	configuration.	A	simple
example	that	can	easily	be	tested	with	the	QEMU	emulator	is	to	disable	symmetric
multiprocessing	(SMP).	The	Yocto	Project	kernel	configuration	for	QEMU	enables	this
feature	by	default.	From	the	submenu	Processor	type	and	features,	deselect	the	entry
Symmetric	multi-processing	support,	then	click	Save	and	Exit.

The	menu	editor	saves	the	changed	configuration	to	the	.config	file	inside	the	kernel
build	directory	of	the	build	environment.	To	apply	the	new	configuration,	you	have	to
compile	the	kernel:
Click	here	to	view	code	image

$	bitbake	-C	compile	virtual/kernel

The	capital	-C	invalidates	the	stamp	for	the	shared	state	cache	entry	for	the	specified
task	and	then	runs	the	default	task.	In	this	case,	it	forces	BitBake	to	build	the	kernel	again,
but	without	fetching	the	source	code	first.	Since	using	the	menu	editor	directly	modifies
the	.config	file	inside	the	build	directory,	fetching	the	kernel	sources	again,	which
includes	fetching	the	kernel	configuration,	would	overwrite	the	new	configuration.

You	can	now	test	the	new	configuration	by	launching	QEMU:
Click	here	to	view	code	image

$	runqemu	qemux86	qemuparams=”-smp	2”

The	runqemu	script	launches	QEMU	in	single-processor	mode.	Adding
qemuparams="-smp	2"	starts	QEMU	with	two	processor	cores.	After	QEMU	boots
your	Linux	system,	log	in	as	root	user	and	execute	from	the	command	line:
Click	here	to	view	code	image

#	cat	/proc/cpuinfo	|	grep	processor

Although	QEMU	provides	two	processor	cores,	only	one	processor	is	shown.	You	can
perform	the	test	again	by	re-enabling	SMP	using	the	menu	editor.	This	time,	the	command
shows	two	processors.

The	menu	editor	is	an	excellent	tool	to	quickly	test	new	kernel	configurations.
However,	since	the	modifications	to	the	kernel	configuration	are	written	to	the	.config
file	inside	the	kernel	build	environment,	those	changes	are	not	permanent.	If	you	fetch	the
kernel	source	code	again,	delete	the	build	environment,	or	use	the	cleanall	command,
your	changes	are	lost.

You	might	think	that	before	further	modifying	the	Linux	kernel	configuration,	you	want
to	set	CONFIG_LOCALVERSION2	to	a	custom	string	to	identify	your	modified	kernel.
However,	that	does	not	work	because	the	build	system	sets	CONFIG_LOCALVERSION
through	the	configuration	variable	LINUX_VERSION_EXTENSION.

2.	CONFIG_LOCALVERSION	is	the	string	that	the	command	uname	-r	prints	to	the	console.

9.1.2	Configuration	Fragments
Of	course,	you	do	not	want	to	manually	modify	the	kernel	configuration	with	the	menu
editor	every	time	you	rebuild	the	kernel.	For	that	purpose,	the	build	system	provides	a
mechanism	to	merge	partial	configuration,	referred	to	as	configuration	fragments,	into	the
.config	file	using	a	recipe.	Figure	9-1	illustrates	the	configuration	fragment	concept.

Figure	9-1	Configuration	fragments

Configuration	fragments	are	files	that	contain	one	or	more	lines	of	kernel	configuration
settings	as	you	find	them	in	the	.config	file—for	instance,	CONFIG_SMP=n.	You	can
then	simply	add	those	files	to	SRC_URI	of	the	kernel	recipe.	Since	the	kernel	recipe	often
is	provided	by	a	Yocto	Project,	OpenEmbedded,	or	board	support	package	(BSP)	layer,
rather	than	modifying	the	recipe	directly	inside	that	layer,	we	recommend	that	you	create
your	own	layer	and	use	an	append	file	to	the	kernel	recipe.

We	explained	creating	layers	in	Chapter	3,	“OpenEmbedded	Build	System.”	Using
$	yocto-layer	create	ypbook

from	inside	an	initialized	build	environment	creates	the	basic	layer	structure	for	you.	Add
your	new	layer	to	the	BBLAYERS	variable	in	conf/bblayers.conf	of	the	build
environment	(see	Listing	9-1).

Listing	9-1	<builddir>/conf/bblayers.conf
Click	here	to	view	code	image

#	LAYER_CONF_VERSION	is	increased	each	time	build/conf/bblayers.conf
#	changes	incompatibly
LCONF_VERSION	=	“6”

BBPATH	=	“${TOPDIR}”
BBFILES	?=	””

BBLAYERS	?=	”	\
		${HOME}/yocto/poky/meta	\
		${HOME}/yocto/poky/meta-yocto	\
		${HOME}/yocto/poky/meta-yocto-bsp	\
		${HOME}/yocto/build/meta-ypbook	\
		”
BBLAYERS_NON_REMOVABLE	?=	”	\
		${HOME}/yocto/poky/meta	\
		${HOME}/yocto/poky/meta-yocto	\
		”

Now	create	the	directory	for	the	kernel	append	file	and	a	subdirectory	in	it	for	the
configuration	fragment	file:
Click	here	to	view	code	image

$	mkdir	-p	recipes-kernel/linux
$	mkdir	-p	recipes-kernel/linux/files

Add	the	file	smp.cfg	and	the	kernel	append	file	to	the	directory	recipes-
kernel/linux,	as	shown	in	Listing	9-2.

Listing	9-2	Configuration	Fragments
Click	here	to	view	code	image

recipes-kernel/linux/files/smp.cfg:
#	Disable	SMP
CONFIG_SMP=n

recipes-kernel/linux/linux-yocto_3.19.bbappend:
#	Include	kernel	configuration	fragment
FILESEXTRAPATHS_prepend	:=	“${THISDIR}/files:”

SRC_URL	+=	“file://smp.cfg”

The	name	of	the	kernel	append	file	depends	on	the	kernel	version	used	by	the	build
system	when	building	virtual/kernel.	You	can	find	the	name	from	the	kernel	build	output.
In	our	example,	the	kernel	recipe	is	linux-yocto_3.19.bb.	Therefore,	the	append
file	we	create	is	linux-yocto_3.19.bbappend.	For	the	fetcher	to	be	able	to	find
the	file	smp.cfg,	the	path	to	it	needs	to	be	added	to	the	FILESEXTRAPATH	variable.	In
our	example,	we	simply	put	the	file	in	the	same	directory	with	the	kernel	append	file.	The
path	of	a	recipe	or	recipe	append	file	can	be	referenced	by	using	the	THISDIR	variable.

Now	you	can	rebuild	the	kernel	with
Click	here	to	view	code	image

$	bitbake	-C	fetch	virtual/kernel

This	time	we	explicitly	want	to	fetch	the	kernel	sources,	which	now	include	our
configuration	fragment.	After	BitBake	completes	building	the	kernel,	you	can	test	the
result	using	QEMU.

For	the	preceding	example,	we	manually	created	the	file	containing	the	configuration
fragment.	That	fragment	can	become	difficult	to	track	if	you	are	changing	many
configuration	options,	particularly	if	dependent	settings	are	enabled	automatically	by	the
menu	editor.	Although	the	menu	editor	adds	them	automatically	to	the	.config	file,	they
have	to	be	explicitly	carried	over	to	the	configuration	fragment.

To	facilitate	the	task	of	creating	configuration	fragments,	the	build	system	provides	the
diffconfig	command,	which	compares	the	old	to	the	new	configuration	and	creates
the	configuration	fragment	file.	After	editing	the	configuration	with	the	menu	editor,
execute
Click	here	to	view	code	image

$	bitbake	-C	diffconfig	virtual/kernel

The	command	places	the	configuration	fragment	into	${WORKDIR}.

After	you	have	created	your	configuration	fragment	and	added	it	to	your	recipe,	you	can
use	the	configuration	validation	of	the	kernel	tools	to	check	your	kernel	configuration:
Click	here	to	view	code	image

$	bitbake	-C	kernel_configcheck	-f	virtual/kernel

The	-C	option	invalidates	the	shared	state	cache	for	kernel_configcheck	to	force
running	it	even	if	BitBake	executed	it	before.	If	there	are	any	issues	with	your	kernel
configuration,	the	build	system	notifies	you	about	the	issues.

9.2	Kernel	Patches
Applying	patches	to	kernel	sources	with	kernel	recipes	is	no	different	from	applying
patches	with	recipes	for	regular	software	packages.	If	you	already	have	a	formatted	patch
file,	simply	provide	the	file	and	add	it	to	SRC_URI	of	the	append	file	to	the	kernel	recipe.

To	create	patches	yourself	from	modified	kernel	sources	inside	the	kernel	build
directory,	follow	these	steps	that	outline	the	workflow	for	a	new	kernel	driver	module.

1.	Change	to	the	kernel	source	directory.	Change	your	working	directory	to	the
kernel	source	directory.	The	kernel	source	directory	can	be	somewhat	hard	to	find.
However,	as	with	any	recipe,	the	variable	${S}	points	to	the	source	directory.	For
kernel	recipes,	${S}	is	set	to	${STAGING_KERNEL_DIR}.	To	find	the	kernel
source	directory,	use	the	command

Click	here	to	view	code	image
$	bitbake	-e	virtual/kernel	|	grep	STAGING_KERNEL_DIR

Then	use	the	output	to	change	to	the	directory.	Alternatively,	you	can	use
Click	here	to	view	code	image

$	bitbake	-c	devshell	virtual/kernel

which	opens	another	terminal	window	in	the	kernel	source	directory.

2.	Add/modify	kernel	source	files.	For	this	example,	we	add	a	simple	device	driver	to
the	kernel.	Edit/add	the	files,	as	follows:

Click	here	to	view	code	image
drivers/misc/Kconfig	(add	to	the	end	of	the	file):
config	YP_DRIVER
		tristate	“Yocto	Project	Test	Driver”
		help
					This	driver	does	nothing	but	print	a	message.

drivers/misc/Makefile	(add	to	the	end	of	the	file):
obj-$(CONFIG_YP_DRIVER)	+=	yp-driver.o

drivers/misc/yp-driver.c	(add	new	file):
#include	<linux/module.h>

static	int	__init	yocto_testmod_init(void)
{
								pr_info(“Hello	Kernel	from	the	Yocto	Project!”);
}

static	void	__exit	yocto_testmod_exit(void)
{
								pr_info(“Gone	fishing.	I’ll	be	back!”);
}

module_init(yocto_testmod_init);
module_exit(yocto_testmod_exit);

MODULE_AUTHOR(“Rudolf	Streif	<rudolf.streif@gmail.com”);
MODULE_DESCRIPTION(“Yocto	Project	Test	Driver”);
MODULE_LICENSE(“GPL”);

3.	Stage	and	commit	changes.	Yocto	Project	kernels	are	checked	out	from	Git
repositories.	Therefore,	you	can	simply	use	Git	to	create	the	patch:

Click	here	to	view	code	image
$	git	status
$	git	add	.

$	git	commit	-m	“Added	Yocto	Project	Driver”3

3.	Alternatively,	you	may	want	to	use	git	commit	-s	to	include	the	signed-off-by	message	into	the	patch.

4.	Create	the	patch	file.	Now	use	Git	again	to	create	from	the	top-level	directory	of

the	kernel	sources	to	create	the	patch	file
$	git	format-patch	-n	HEAD^

which	creates	the	file	0001-Added-Yocto-Project-Driver.patch	file.

5.	Move	the	patch	file	to	your	layer.	Copy	or	move	the	patch	file	0001-Added-
Yocto-Project-Driver.patch	to	the	recipes-kernel/linux/files
directory	of	the	layer	we	created	in	the	previous	step.

6.	Create	the	configuration	fragment.	Since	we	are	adding	a	new	driver,	we	need	to
enable	it	with	a	configuration	fragment:

Click	here	to	view	code	image
recipes-kernel/linux/files/yp-driver.cfg:
#	Enable	Yocto	Project	Driver
CONFIG_MISC_DEVICES=y
CONFIG_YP_DRIVER=y

7.	Add	the	configuration	fragment	and	patch	to	the	recipe.	Now	we	need	to	add
the	configuration	fragment	and	the	patch	to	the	recipe	append	file	we	created	in	the
previous	step.

Click	here	to	view	code	image
recipes-kernel/linux/linux-yocto_3.19.bbappend:
#	Include	kernel	configuration	fragment	and	patch
FILESEXTRAPATHS_prepend	:=	“${THISDIR}/files:”
SRC_URI	+=	“file://smp.cfg”
SRC_URI	+=	“file://yp-driver.cfg”
SRC_URL	+=	“file://0001-Added-Yocto-Project-Driver.patch”

8.	Build	the	kernel.	Build	the	kernel	with
Click	here	to	view	code	image

$	bitbake	-C	fetch	virtual/kernel

Now	you	can	verify	the	result	by	running	QEMU	and	looking	for	the	driver’s	startup
message	in	dmesg.	After	logging	on	as	root,	execute

#	dmesg	|	grep	“Hello	Kernel”

The	example	shows	how	you	can	directly	patch	the	kernel	sources	for	any	purpose.
However,	you	need	to	patch	the	kernel	sources	directly	for	modules	only	if	you	want	to
compile	them	into	the	kernel.	For	modules	that	can	be	loaded	during	runtime,	you	can	also
compile	the	module	out-of-tree.	We	explain	how	to	do	so	in	Section	9.4.

9.3	Kernel	Recipes
The	Poky	reference	distribution	specifies	how	to	build	the	Linux	kernel,	like	any	other
software	package,	with	recipes	that	provide	the	necessary	instructions.	The	complexities
of	building	and	packaging	the	Linux	kernel,	particularly	for	cross-targets,	are	hidden	by
the	kernel	classes.	The	class	kernel.bbclass	is	the	main	class,	which	inherits	from
various	other	classes.	Kernel	recipes	inherit	from	kernel,	which	reduces	developing
kernel	recipes	to	a	few	lines	of	code.

The	Yocto	Project	maintains	its	own	kernel	infrastructure	that	comprises	repositories	for

kernel	sources	and	metadata	such	as	configurations,	configuration	fragments,	and	patches.
All	of	the	Yocto	Project	kernels—that	is,	kernels	that	are	used	for	the	QEMU	machines—
and	BSPs	provided	with	Poky	are	built	from	that	kernel	repository.	Many	companies	are
using	the	Yocto	Project	kernel	repository	for	their	BSPs.
The	following	section	details	how	to	develop	recipes	for	building	the	Linux	kernel

using	any	kernel	tree.	Section	9.3.2	explains	the	Yocto	Project	kernel	infrastructure	and
how	you	can	use	it	for	your	projects.

9.3.1	Building	from	a	Linux	Kernel	Tree
There	are	various	reasons	you	may	not	be	able	to	use	the	Yocto	Project	kernel
infrastructure	and	one	of	its	kernel	versions	for	your	embedded	project.	Whatever	the
reason	is,	you	can	still	take	advantage	of	the	tooling	that	the	build	system	provides	for
building	the	Linux	kernel.

We	explain	the	process	of	building	from	an	upstream	Linux	kernel	tree	using	a	recent
kernel	version	directly	from	www.kernel.org.	The	mechanisms	described	apply	to	any
upstream	kernel	tree,	a	kernel	tree	that	you	may	have	received	from	a	hardware	provider,
or	one	that	you	are	maintaining	within	your	organization.	The	method	described	is	the
“traditional”	kernel	method	that	combines	kernel	sources	with	a	configuration	file,	as
shown	in	Figure	9-2.

http://www.kernel.org

Figure	9-2	Traditional	kernel	method

You	are	responsible	for	providing	a	kernel	configuration	that	matches	your	hardware
and	the	kernel	version.	The	kernel	tree	can	be	provided	as	a	tarball,	which	you	can
download	from	www.kernel.org,	or	the	kernel	tree	can	be	directly	checked	out	from	a	Git
repository.

Building	from	a	Linux	Kernel	Tarball

Building	from	a	tarball	is	the	classic	way	of	building	a	Linux	kernel.	This	method	has
been	supported	by	the	OpenEmbedded	build	system	from	the	beginning.	Many	custom
kernel	recipes	are	still	using	this	method.	Although	it	does	not	provide	features	such	as
configuration	fragments	as	the	newer	kernel	tooling	does,	many	developers	prefer	it
because	of	its	simplicity	and	because	it	is	very	close	to	what	kernel	developers	would
typically	use	without	the	Yocto	Project.	Listing	9-3	shows	a	recipe	that	builds	the	kernel
from	a	tarball	retrieved	from	www.kernel.org.

Listing	9-3	Linux	Kernel	from	Tarball	(linux-ypbook_4.2.bb)
Click	here	to	view	code	image

DESCRIPTION	=	“Linux	Kernel	from	Tarball”
SECTION	=	“kernel”
LICENSE	=	“GPLv2”

http://www.kernel.org
http://www.kernel.org

inherit	kernel

LIC_FILES_CHKSUM	=	“file://COPYING;md5=d7810fab7487fb0aad327b76f1be7cd7”

LINUX_VERSION	?=	“${PV}”
LINUX_RC	=	“rc1”

SRC_URI	=	\
				“https://www.kernel.org/pub/linux/kernel/v4.x/testing/	\
					linux-${LINUX_VERSION}-${LINUX_RC}.tar.xz”
SRC_URI	+=	“file://defconfig”

SRC_URI[md5sum]	=	“3e8331759af56ddd621528b2c7015ae1”
SRC_URI[sha256sum]	=	\
				“3c524ee0446b4ea8288708fa30acd28647317b9724f2d336052130e164c83f29”

S	=	“${WORKDIR}/linux-${LINUX_VERSION}-${PR}”

COMPATIBLE_MACHINE	=	“qemux86|qemux86-64”

Lines	in	the	listing	are	broken	for	space	and	readability.	In	particular,	SRC_URI	must
not	contain	any	spaces	or	line	breaks	within	the	URI	itself.	The	recipe	inherits	from	the
kernel	class,	which	provides	all	the	functionality	for	building	the	Linux	kernel	and
keeps	the	recipe	itself	rather	simple.	For	your	own	project,	you	may	have	to	adjust	the
following	variables:

	LIC_FILES_CHKSUM:	Name	of	the	license	file	and	MD5	checksum.	You	may
omit	the	checksum	on	your	first	attempt	to	build	the	recipe.	The	build	system	then
complains	about	the	missing	checksum	but	computes	it	for	you	to	copy	into	the
recipe.

	LINUX_VERSION:	The	version	number	of	the	Linux	kernel	that	the	recipe	is
building.

	LINUX_RC:	Linux	release	candidate.

	SRC_URI:	Specifies	the	path	to	the	Linux	kernel	tarball,	which	can	be	remote	or
local.	Additionally,	the	variable	must	specify	a	defconfig	file	containing	the
kernel	configuration.

	SRC_URI[md5sum],	SRC_URI[sha256sum]:	Checksums	for	remote
downloads.	You	may	omit	the	checksums	for	your	first	attempt	to	build	the	recipe.
The	build	system	then	complains	about	the	missing	checksums	but	computes	them
for	you	to	copy	into	the	recipe.

	S:	Directory	into	which	the	kernel	sources	are	unpacked.	It	must	reflect	the	name	of
the	source	package.

	COMPATIBLE_MACHINE:	A	list	of	names	for	machines	that	are	supported	by	this
kernel.	The	names	are	separated	by	a	pipe	(|)	symbol.

Save	this	recipe	into	recipes-kernel/linux	of	your	layer.	Also	add	a
defconfig	file	to	recipes-kernel/linux,	or	preferably,	to	recipes-
kernel/linux/linux-ypbook.	Doing	so	allows	you	to	separate	defconfig	files
for	different	kernels	from	each	other.

Before	you	can	start	building	the	kernel	with	your	new	kernel	recipe,	set
Click	here	to	view	code	image

PREFERRED_PROVIDER_virtual/kernel	?=	“linux-ypbook”

in	conf/local.conf	of	your	build	environment	to	tell	the	build	system	to	use	your
new	kernel	recipe	to	build	the	Linux	kernel.	Now	you	are	ready	to	launch	the	build	with

$	bitbake	linux-ypbook

After	the	build	completes,	test	your	new	kernel	with	QEMU.

Building	from	a	Linux	Kernel	Git	Repository

If	you	are	actively	developing	for	the	Linux	kernel,	you	are	probably	doing	so	using	Git.
After	all,	Git	was	created	by	Linus	Torvalds	to	support	the	development	process	of	the
Linux	kernel	community.	When	working	with	Git,	it	would	be	beneficial	to	be	able	to
build	the	Linux	kernel	directly	from	a	Git	repository	rather	than	from	a	tarball.	Listing	9-4
shows	a	sample	recipe	on	how	to	build	the	Linux	kernel	directly	from	Linus	Torvalds’s	Git
repository	at	www.kernel.org.

Listing	9-4	Linux	Kernel	from	Git	Repository	(linux-ypbook_git.bb)
Click	here	to	view	code	image

DESCRIPTION	=	“Linux	Kernel	from	kernel.org	Git	Repository”
SECTION	=	“kernel”
LICENSE	=	“GPLv2”

require	recipes-kernel/linux/linux-yocto.inc

LIC_FILES_CHKSUM	=	“file://COPYING;md5=d7810fab7487fb0aad327b76f1be7cd7”

LINUX_VERSION	?=	“4.2”
LINUX_VERSION_EXTENSION	?=	“-ypbook”
PV	=	“${LINUX_VERSION}+git${SRCPV}”

SRC_URI	=	\
				“git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git;\
					protocol=git;nocheckout=1”
SRC_URI	+=	“file://defconfig”

SRCREV	=	“d770e558e21961ad6cfdf0ff7df0eb5d7d4f0754”

COMPATIBLE_MACHINE	=	“qemux86|qemux86-64”

The	recipe	includes	linux-yocto.inc	from	meta/recipes-kernel/linux.
This	include	file	is	used	by	all	Yocto	Project	kernel	recipes	and	inherits	from	the	kernel
class	and	the	kernel-yocto	class.	In	addition	to	the	functionality	of	the	kernel	class,
the	kernel-yocto	class	provides	the	tooling	for	building	from	a	Git	repository	as	well
as	other	functionality	such	as	configuration	fragments.	Adjust	the	variables	of	the	recipe	to
meet	your	requirements:

	LIC_FILES_CHKSUM:	Name	of	the	license	file	and	MD5	checksum.	You	may
omit	the	checksum	on	your	first	attempt	to	build	the	recipe.	The	build	system	then
complains	about	the	missing	checksum	but	computes	it	for	you	to	copy	into	the

http://www.kernel.org

recipe.

	LINUX_VERSION:	The	version	number	of	the	Linux	kernel	that	the	recipe	is
building.

	PV:	A	string	concatenated	from	${LINUX_VERSION},	the	literal	+git,	and	the
${SRCPV}	variable,	which	contains	the	source	code	revision	maintained	by	the
source	repository.	This	default	setting	is	the	convention,	and	you	typically	do	not
have	to	modify	it	for	your	own	recipes.

	SRC_URI:	Specifies	the	URI	to	the	Git	repository	of	the	Linux	kernel	sources,
which	can	be	a	local	or	remote	repository.	Additionally,	the	variable	must	specify	a
defconfig	file	containing	the	kernel	configuration.

	SRCREV:	The	revision	of	the	kernel	sources.

	COMPATIBLE_MACHINE:	A	list	of	names	for	machines	that	are	supported	by	this
kernel.	The	names	are	separated	by	a	pipe	(|)	symbol.

You	store	and	build	this	recipe	the	same	as	you	do	the	recipe	for	building	from	a	tarball
of	the	previous	section.

Applying	Configuration	Settings	and	Patches

To	apply	kernel	configuration	settings,	you	add	them	to	the	defconfig	file	you	provide
with	the	kernel	recipe.	If	you	are	using	the	Yocto	Project	kernel	tooling	by	including
linux-yocto.inc	from	meta/recipes-kernel/linux,	you	can	use
configuration	fragments,	as	shown	in	Section	9.1.2.	Using	the	Yocto	Project	kernel	tooling
is	not	limited	to	recipes	building	from	Git	repositories.	You	can	use	it	with	recipes	that	are
building	from	Linux	kernel	tarballs,	too.	And	of	course,	you	can	use	the	menu	editor	to
test	configuration	changes	first.

Patches	are	applied	exactly	as	described	in	Section	9.2.

Using	In-Tree	Configuration	Files

A	kernel	recipe	that	inherits	from	the	kernel-yocto	class	can	utilize	a	defconfig
file	that	is	included	with	the	kernel	sources,	commonly	referred	to	as	in-tree,	instead	of
providing	a	defconfig	file	with	SRC_URI	+=	"file://defconfig",	referred	to
as	out-of-tree.	A	reason	for	doing	so	is	that	you	may	not	want	to	maintain	copies	of
defconfig	configuration	files	in	your	layer	but	rather	would	like	to	use	default
configuration	from	the	kernel	tree.	Configuration	fragments	then	allow	you	to	further
customize	the	kernel	configuration.

To	specify	an	in-tree	configuration	file,	add	the	following	line	to	your	kernel	recipe:
Click	here	to	view	code	image

KBUILD_DEFCONFIG_<KMACHINE>	?=	“<defconfig	file>”

where	you	replace	<KMACHINE>	with	the	name	of	the	kernel	machine	and
<defconfig	file>	with	the	name	of	the	defconfig	file	inside	the	kernel	tree.	For
example,

Click	here	to	view	code	image
KBUILD_DEFCONFIG_beaglebone	?=	“omap2plus_defconfig”

9.3.2	Building	from	Yocto	Project	Kernel	Repositories
The	Yocto	Project	maintains	its	own	kernel	infrastructure,	which	includes	repositories	for
kernel	sources	and	metadata	and	a	powerful	set	of	tools	that	assists	with	managing	kernel
sources	and	configuration	data.

In	the	previous	section,	we	demonstrated	how	to	customize	the	kernel	by	providing
defconfig,	configuration	fragments,	and	patches	with	the	recipe.	While	this	approach
works	well	and	is	flexible,	it	separates	the	kernel	sources	from	the	configuration,	making
maintenance	more	difficult.

Using	in-tree	configuration	solves	the	problem	for	defconfig	but	is	less	flexible,	as
only	the	default	configuration	can	be	provided	that	way.	Additional	configuration	and
patches	still	need	to	be	provided	with	the	recipe.	In-tree	configuration	also	requires
porting	the	configuration	to	each	new	version	of	the	Linux	kernel.

Another	problem	is	how	to	maintain	and	apply	different	kernel	configurations	and
patches	for	different	target	hardware	for	the	same	kernel	version	as	well	as	how	to	enable
kernel	features	and	add	patches	across	multiple	hardware	platforms.

An	ideal	solution	would	move	configuration	and	patches	close	to	the	kernel	sources
without	being	in-tree	and	provide	tooling	to	flexibly	choose	patches	and	configuration	for
a	large	variety	of	target	hardware.	With	the	Yocto	Project	kernel	infrastructure,	the	Yocto
Project	kernel	developers	have	devised	such	a	solution.

Yocto	Project	Kernel	Infrastructure

For	each	version	of	the	Linux	kernel	the	Yocto	Project	kernel	developers	adopt,	they
create	a	repository.	The	Yocto	Project	Git	server	hosts	the	repositories.4	Figure	9-3	depicts
the	basic	structure	of	a	Yocto	Project	kernel	repository.

4.	http://git.yoctoproject.org/

http://git.yoctoproject.org/

Figure	9-3	Yocto	Project	kernel	repository	structure

Each	repository	has	multiple	branches	for	the	kernel	sources	and	one	branch	for	the
metadata.	Kernel	source	branches	are	either	base	branches	or	BSP	branches.	The	base
branches	provide	common	functionality	that	is	shared	across	the	various	BSP	branches.
The	branches	shown	in	Figure	9-3	(we	omitted	some	of	the	BSP	branches	from	the	figure
for	clarity)	are	as	follows:

	Master	Branch:	The	master	branch	is	a	verbatim	clone	of	the	respective	branch
from	www.kernel.org.	This	branch	is	maintained	with	updates	from	www.kernel.org.
However,	it	remains	pristine	in	the	sense	that	it	does	not	contain	any	Yocto	Project

http://www.kernel.org
http://www.kernel.org

adaptations.	All	base	branches	are	derived	from	the	master	branch.

	Base	Branches:	Currently	there	are	three	base	branches	that	are	directly	derived
from	the	master.	The	base	branches	provide	the	foundation	for	the	BSP	branches.
Base	branches	typically	require	conflicting	configurations,	which	is	why	they	are
separated.

	Standard	Base	Branch	(standard/base):	This	base	branch	is	for	a	standard
kernel	configuration.

	Real-Time	Base	Branch	(standard/preempt-rt/base):	This	base	branch
is	for	real-time	kernels.	It	applies	the	PREEMPT-RT	patches	to	the	kernel	sources.

	Tiny	Base	Branch	(standard/tiny/base):	This	base	branch	configures	a
very	compact	Linux	kernel.

	BSP	Branches:	There	can	be	any	number	of	BSP	branches.	BSP	branches	are
derived	from	the	base	branches.

	Common	PC	(standard/common-pc):	BSP	branches	with	adaptations	for
32-bit	x86	architecture.	There	is	one	branch	derived	from	standard	base	and	one
derived	from	tiny	base.

	Common	PC	64	(standard/common-pc-64/base)5:	BSP	branch	with
adaptation	for	64-bit	x86	(x86_64)	architecture.

5.	In	the	author’s	opinion,	this	branch	is	named	incorrectly.	To	be	consistent	with	the	branch	naming	convention,	its
name	should	actually	be	standard/common-pc-64,	since	this	branch	is	not	a	base	branch	but	a	BSP	branch	for
x86_64	architecture.

	BeagleBone:	BSP	branch	for	the	BeagleBone	board.

	Rangeley:	BSP	branch	for	boards	based	on	the	Intel	Atom	Processor	C2000
product	family,	code-named	Rangeley.

	QEMU	PPC:	BSP	branches	with	adaptations	for	PowerPC	emulation.	There	is
one	branch	derived	from	standard	base	and	one	derived	from	real-time	base.

	QEMU	ARM	64:	BSP	branch	with	adaptions	for	ARM	64-bit	architecture
(ARMv8-A).

	Meta	Branch:	This	branch	contains	the	metadata	for	the	kernel	source	branches.
This	branch	is	not	derived	from	any	other	branch	but	complements	the	kernel	source
branches	by	providing	configuration	and	patches	for	them.	Since	this	branch	is
independent,	it	is	also	referred	to	as	an	orphan	branch.

The	naming	convention	of	the	kernel	source	branches	indicates	the	ancestry.	The	branch
name	of	a	BSP	branch	that	inherits	from	standard/base	begins	with	standard.
Therefore,	the	standard/preempt-rt/base	branch	inherits	from
standard/base.	So	does	standard/tiny/base.	If	the	Yocto	Project	kernel
developers	make	a	change	to	standard/base,	this	change	is	merged	into	all	branches
that	inherit	from	it.

Kernel	branches	and	data	from	the	meta	branch	are	combined	by	the	build	system	to
create	a	valid	kernel	configuration.	Figure	9-4	illustrates	the	principle.

Figure	9-4	Yocto	Project	kernel	infrastructure

Listing	9-5	shows	the	recipe	for	building	a	3.14	real-time	kernel.	We	chose	this	kernel
recipe	because	it	illustrates	well	how	kernel	sources	and	metadata	are	combined.

Listing	9-5	Combining	Kernel	Sources	and	Metadata	(linux-yocto-
rt_3.14.bb)
Click	here	to	view	code	image

KBRANCH	?=	“standard/preempt-rt/base”
KBRANCH_qemuppc	?=	“standard/preempt-rt/qemuppc”

require	recipes-kernel/linux/linux-yocto.inc

SRCREV_machine	?=	“3428de71031ede23682dd0842b9cfc23ae465f39”
SRCREV_machine_qemuppc	?=	“32c44a56a8218c3349f50d8151a10252d5e85dd1”
SRCREV_meta	?=	“a996d95104b72c422a56e7d9bc8615ec4219ac74”

SRC_URI	=	“git://git.yoctoproject.org/linux-yocto-3.14.git;	\
			bareclone=1;branch=${KBRANCH},meta;name=machine,meta”

LINUX_VERSION	?=	“3.14.36”

PV	=	“${LINUX_VERSION}+git${SRCPV}”

KMETA	=	“meta”
KCONF_BSP_AUDIT_LEVEL	=	“2”

LINUX_KERNEL_TYPE	=	“preempt-rt”

COMPATIBLE_MACHINE	=	“(qemux86|qemux86-64|qemuarm|qemuppc|qemumips)”

#	Functionality	flags

KERNEL_EXTRA_FEATURES	?=	“features/netfilter/netfilter.scc
features/taskstats/taskstats.scc”
KERNEL_FEATURES_append	=	”	${KERNEL_EXTRA_FEATURES}”
KERNEL_FEATURES_append_qemux86=”	cfg/sound.scc	cfg/paravirt_kvm.scc”
KERNEL_FEATURES_append_qemux86-64=”	cfg/sound.scc”

We	look	at	the	variables	in	logical	order	rather	than	the	order	they	appear	in	the	recipe:

	SRC_URI:	Specifies	the	URI	to	the	Yocto	Project	kernel	Git	repository,	in	this	case
linux-yocto-3.14.git.	Two	branches	are	checked	out	through	the	branch
parameter:	the	kernel	source	branch	and	the	metadata	branch.	The	name	parameter
assigns	the	name	machine	to	the	kernel	source	branch	and	the	name	meta	to	the
metadata	branch.

	KBRANCH:	Provides	the	branch	for	the	kernel	sources.	This	variable	is	local	to	the
recipe.	The	default	value	is	standard/preempt-rt/base,	which	is
conditionally	overridden	for	the	qemuppc	machine	with	standard/preempt-
rt/qemuppc.

	SRCREV:	Specifies	the	source	revisions	for	the	kernel	source	and	the	metadata
branches.

	LINUX_VERSION:	Sets	the	Linux	version	number.

	PV:	Sets	the	package	version	number.	PV	is	derived	by	concatenating
LINUX_VERSION	with	the	literal	+git	and	SRCPV.

	LINUX_KERNEL_TYPE:	Sets	the	type	of	the	kernel	to	be	built	according	to	the
base	kernel	branches:

	standard:	Setting	for	all	kernels	built	from	standard/base	and	kernel
branches	derived	from	it	other	than	the	real-time	and	tiny	kernels.
LINUX_KERNEL_TYPE	defaults	to	this	value	if	it	is	not	explicitly	set.

	preempt-rt:	Setting	for	all	real-time	kernels	built	from
standard/preempt-rt/base	and	kernel	branches	derived	from	it.

	tiny:	Setting	for	all	tiny	kernels	built	from	standard/tiny/base	and
kernel	branches	derived	from	it.

The	kernel	type	set	by	LINUX_KERNEL_TYPE	must	match	the	kernel	branch.	For
example,	you	must	not	use	LINUX_KERNEL_TYPE	=	"preempt-rt"	with
KBRANCH	=	"standard/base".

	KMETA:	Set	the	metadata	branch	name.	The	default	is	to	provide	the	metadata	in	its
own	orphan	branch	called	meta.	Alternatively,	the	metadata	can	reside	inside	the
kernel	source	tree	in	a	directory	called	meta.	In	this	case,	KMETA	is	set	to	an	empty
string.

	COMPATIBLE_MACHINE:	List	of	target	machine	names,	separated	by	the	pipe
character	(|),	that	this	kernel	can	be	used	with.

	KERNEL_FEATURES:	List	of	files	containing	kernel	feature	configurations.

	KCONF_BSP_AUDIT_LEVEL:	The	kernel-yocto	class	can	detect	and	report
incorrect	kernel	configurations.	This	variable	sets	what	type	of	configuration	errors
to	report:

	KCONF_BSP_AUDIT_LEVEL	=	“0”:	Do	not	report	any	configuration	errors.

	KCONF_BSP_AUDIT_LEVEL	=	“1”:	Report	configuration	settings	that	were
specified	but	not	included	in	the	final	kernel.

	KCONF_BSP_AUDIT_LEVEL	=	“2”:	In	addition	to	1,	report	hardware
settings	that	were	specified	in	non-hardware	configuration.

	KMACHINE:	The	name	of	the	hardware	machine	as	it	is	known	to	the	Linux	kernel.
Every	kernel	recipe	must	set	this	variable.	While	it	is	not	explicitly	set	in	the	recipe
example,	it	is	set	by	the	include	file	linux-yocto.inc	to	equal	the	MACHINE
variable,	which	is	the	name	the	machine	is	known	by	to	the	build	system.	In	most
cases	this	default	is	adequate.	In	cases	where	MACHINE	does	not	accurately
represent	the	machine	name	by	which	the	Linux	kernel	knows	the	machine,	the
KMACHINE	variable	provides	the	mapping	between	the	build	system	machine	name
and	the	kernel	machine	name.

For	instance,	you	provide	your	own	target	machine	configuration	and	call	it
excalibur.	The	build	system	refers	to	this	machine	by	its	name,	but	technically
excalibur	is	based	on	an	Intel	Core	i7	64-bit	CPU.	The	Linux	kernel	refers	to	this
machine	by	the	name	of	its	CPU:	intel-corei7-64.	To	tell	the	build	system	to	build	a
kernel	suitable	for	the	Intel	Core	i7	CPU	when	you	are	asking	it	to	build	for
excalibur,	add	KMACHINE_excalibur	=	"intel-corei7-64"	to	the	kernel
recipe.

Using	the	recipes	provided	with	the	build	system,	you	can	easily	create	your	own	kernel
recipes	that	build	Linux	kernels	from	the	Yocto	Project	kernel	repositories.	You	can	also
clone	the	Yocto	Project	kernel	repository	and	create	your	own	BSP	branch	that	inherits
from	one	of	the	base	branches	to	include	drivers	and	other	code	specific	to	your	machine.
This	approach	allows	you	to	benefit	from	the	maintenance	work	that	the	Yocto	Project
kernel	developers	are	doing	on	the	base	branches.	When	new	security	patches	or	other
updates	that	are	otherwise	important	for	the	particular	kernel	version	are	released	by
www.kernel.org,	the	Yocto	Project	kernel	developers	merge	them	into	the	base	branches
and	test	them.	You	can	then	cherry-pick	and	merge	them	into	your	own	BSP	branches.

Metadata	Syntax

The	data	contained	in	the	meta	branch	of	the	Yocto	Project	kernel	repositories	can	be
categorized	into	the	following	categories:

	Configuration	Fragment	Files:	Configuration	fragments	are	files	that	end	in	.cfg
and	contain	kernel	configuration	settings,	as	described	in	Section	9.1.2.

	Patch	Files:	Patch	files	ending	in	.patch	are	applied	to	the	kernel	sources,	as
described	in	Section	9.2.

	Description	Files:	Files	ending	in	.scc	describe	and	aggregate	configuration

http://www.kernel.org

fragments	and	patches.	Descriptions	may	also	include	other	descriptions.

Description	Files

Description	files	describe	and	aggregate	configurations	and	patches	and	how	they	are
included	with	the	build	of	the	Linux	kernel.	They	use	a	scripting	language	consisting	of
these	keywords:

	define:	Set	a	variable.

	kconf:	Apply	a	configuration	fragment.

	patch:	Apply	a	patch.

	include:	Include	another	SCC	file.

	if	[<condition>];	then	<block>	fi:	Conditionally	execute
<block>	dependent	on	the	evaluation	of	<condition>.	The	condition	can
contain	variables	that	are	set	by	other	SCC	files	which	include	that	file.

A	collection	description	consists	of	a	description	file	together	with	configuration
fragment	files	and	patch	files.	There	are	different	categories	of	collection	descriptions.

Configuration	Collection	Description

A	metadata	configuration	collection	description	consists	of	one	or	more	configuration	files
containing	the	Linux	kernel	configuration	parameters	together	with	a	configuration
description	file	that	describes	the	collection	of	configuration	fragments.	Listing	9-6	shows
a	configuration	collection	description	that	enables	extended	firmware	interface	(EFI)
support.

Listing	9-6	Configuration	Collection	Description
Click	here	to	view	code	image

cfg/efi.cfg:
			#	EFI	Support
			#	Dependencies
			CONFIG_PCI=y
			CONFIG_ACPI=y
			#	Enable	basic	EFI	support
			CONFIG_EFI=y
			CONFIG_EFI_STUB=y
			CONFIG_EFIVAR_FS=m

efi.scc:
			define	KFEATURE_DESCRIPTION	“Core	EFI	support”
			define	KFEATURE_COMPATIBILITY	arch
			kconf	hardware	efi.cfg

The	configuration	description	file	defines	two	variables:

	KFEATURE_DESCRIPTION:	A	short	description	that	user	tools	can	display	to
users

	KFEATURE_COMPATIBILITY:	Compatibility	of	the	configuration:

	board:	Compatible	with	specific	boards

	arch:	Compatible	with	specific	architectures

	all:	Compatible	with	all	boards	and	architectures

The	kconf	directive	is	used	to	include	the	actual	configuration	fragment.	The
hardware	keyword	marks	the	configuration	as	enabling	a	hardware	function,	as	opposed
to	the	non-hardware	keyword	for	general	configuration.	The	distinction	has	no	impact
on	the	kernel	build	but	is	for	the	kernel	configuration	validation	tools.

Patch	Collection	Description

Patch	collection	descriptions	consist	of	at	least	one	patch	file	together	with	an	SCC	file
describing	the	collection	of	patches.	If	the	patch	or	patches	provide	configurable	kernel
functionality,	the	collection	description	may	also	include	a	configuration	file	enabling
them.	Listing	9-7	shows	the	metadata	collection	description	for	a	patch	for	ARM
architecture.

Listing	9-7	Patch	Collection	Description
Click	here	to	view	code	image

patches/arm.scc:
			#	patches	are	for	everyone,	but	the	kconfig	data	is	just	for	ARM	builds.
			if	[“$KARCH”	=	“arm”];	then
						kconf	hardware	arm.cfg
						include	cfg/timer/hz_100.scc
			fi
			include	v7-A15/v7-A15.scc
			patch	arm-ARM-EABI-socketcall.patch
			patch	vexpress-Pass-LOADADDR-to-Makefile.patch

The	example	shows	how	the	patches	are	applied	regardless	of	the	architecture	but	are
enabled	only	if	the	build	architecture	(KARM)	is	set	to	arm.

Feature	Collection	Description

Feature	collection	descriptions	enable	complex	kernel	features	that	may	require	the
combination	of	many	different	configurations	and	patches	and	the	inclusion	of	other
collection	descriptions.	Listing	9-8	shows	a	feature	collection	description	enabling	a
fictitious	kernel	test	framework	feature.

Listing	9-8	Feature	Collection	Description
Click	here	to	view	code	image

features/testframework.scc:
			define	KFEATURE_DESCRIPTION	“Enable	Kernel	Test	Framework”

			patch	0001-test-framework-core.patch
			patch	0002-test-framework-proc.patch

			include	cfg/testframework-deps.scc
			kconfig	non-hardware	testframework.scc

Features	provide	a	higher-level	aggregation	to	enable	certain	functionality.	In	your
kernel	recipes,	you	would	typically	enable	a	feature	described	by	a	feature	collection
description	by	adding	the	relative	path	and	name	of	the	SCC	file	to	the
KERNEL_FEATURES	variable.

Kernel	Type	Collection	Description

Kernel	type	collection	descriptions	aggregate	default	configurations,	patches,	and	features
for	the	three	different	kernel	types:	standard,	preempt-rt,	and	tiny.	A	kernel	type	collection
description	is	essentially	a	feature	collection	description.

Kernel	type	collection	descriptions	are	for	separation	purposes	only.	There	is	no	link
between	LINUX_KERNEL_TYPE	and	these	descriptions.	To	use	them,	a	BSP	collection
description	must	explicitly	include	them.

BSP	Collection	Description

A	BSP	collection	description	aggregates	configurations,	patches,	and	features	as	required
by	a	particular	hardware	platform.	Listing	9-9	shows	the	BSP	collection	description	for
Intel’s	MinnowBoard	for	the	standard	kernel	type.

Listing	9-9	BSP	Collection	Description
Click	here	to	view	code	image

bsp/minnow/minnow-standard.scc:
			define	KMACHINE	minnow
			define	KTYPE	standard
			define	KARCH	i386

			include	ktypes/standard
			include	minnow.scc

			#	Extra	minnow	configs	above	the	minimal	defined	in	minnow.scc
			include	cfg/efi-ext.scc
			include	features/media/media-all.scc
			include	features/sound/snd_hda_intel.scc

			#	The	following	should	really	be	in	standard.scc
			#	USB	live-image	support
			include	cfg/usb-mass-storage.scc
			include	cfg/boot-live.scc

			#	Basic	profiling
			include	features/latencytop/latencytop.scc
			include	features/profiling/profiling.scc

			#	Requested	drivers	that	don’t	have	an	existing	scc
			kconf	hardware	minnow-drivers-extra.cfg

All	BSP	collection	descriptions	must	define	KMACHINE,	KTYPE,	and	KARCH	for	the
build	system	to	identify	the	collection	description	suitable	for	the	requirements	defined	by
a	kernel	recipe.

Kernel	recipes	express	their	requirements	by	setting	the	KMACHINE	and	KTYPE
variables.	The	build	system	matches	KMACHINE	and	KTYPE	of	the	BSP	collection

description	to	KMACHINE	and	LINUX_KERNEL_TYPE	set	by	the	kernel	recipe
respectively	to	find	the	BSP	collection	that	provides	the	proper	configuration	for	the
kernel	required	by	the	recipe.

Metadata	Organization

The	metadata	can	be	provided	in-recipe	space	or	in-tree.	In-recipe	space	provisioning
means	that	collection	descriptions,	configuration	fragments,	and	patches	are	provided	with
the	recipe.	In-tree	provisioning	means	that	the	metadata	is	provided	in	a	branch,	typically
meta,	of	the	kernel	repository.

In-Recipe	Space	Metadata

For	in-recipe	space	provisioning,	you	place	the	files	inside	a	directory	hierarchy	below
FILESEXTRAPATHS,	as	shown	in	Listing	9-10.

Listing	9-10	In-Recipe	Space	Metadata
Click	here	to	view	code	image

meta-mylayer
	recipes-kernel

				 	linux
								 	linux-custom
								 			 	bsp-standard.scc
								 			 	bsp.cfg
								 			 	standard.cfg
								 	linux-custom_4.2.bb

To	make	the	recipe	aware	of	the	configuration	collection,	you	have	to	include	the	SCC
file	into	SRC_URI	by	adding
Click	here	to	view	code	image

SRC_URI	+=	“file://bsp-standard.scc”

Since	the	name	of	the	kernel	recipe	in	the	example	is	linux-custom_4.2.bb	and
FILESEXTRAPATH	is	automatically	set	to	include	${THISDIR}/${PN},	BitBake
finds	the	collection	description.

In-Tree	Metadata

In-tree	metadata	is	stored	inside	the	metadata	branch,	typically	meta,	that	is	part	of	the
kernel	repository,	as	shown	by	Listing	9-11.

Listing	9-11	In-Tree	Metadata

meta
	cfg

				 	kernel-cache
								 	bsp-standard.scc
								 	bsp.cfg
								 	standard.cfg

The	path	meta/cfg/kernel-cache	is	expected	by	the	kernel	tools	and	therefore

mandatory.	Below	the	kernel-cache	directory,	the	metadata	can	be	organized	in	any
directory	hierarchy,	as	is	the	case	with	the	meta	branch	of	the	Yocto	Project	Kernel
repositories.	The	structure	of	the	meta	branch	of	the	Yocto	Project	Kernel	repositories	is
shown	in	Listing	9-12.
Listing	9-12	Yocto	Project	Kernel	Repository	meta	Branch
Click	here	to	view	code	image

meta
	cfg2

				 	kernel-cache
								 	00-README
								 	arch
								 			 	arm
								 			 	mips
								 			 	omap
								 			 	powerpc
								 			 	x86
								 	backports
								 	bsp
								 			 	arm-versatile-926ejs
								 			 	beagleboard
								 			 	beaglebone
								 			 	common-pc-64
								 			 	common-pc
								 			 	…
								 	cfg
								 			 	…
								 	features
								 			 	amt
								 			 	aufs
								 			 	bfq
								 			 	blktrace
								 			 	bluetooth
								 			 	…
								 	ktypes
								 			 	base
								 			 	preempt-rt
								 			 	standard
								 			 	tiny
								 	kver
								 	patches
								 			 	boot
								 			 	build
								 			 	debug
								 			 	drivers
								 			 	exports
								 			 	misc
								 			 	net
								 			 	patches.scc
								 	scripts
								 	staging

Collection	descriptions,	configuration	fragments,	and	patches	are	organized	into	the
subdirectories:

	arch:	Feature	collection	descriptions	for	architectures

	backports:	Patch	collection	descriptions	for	patches	that	back-port	functionality
from	newer	kernel	versions

	bsp:	BSP	collection	descriptions

	cfg:	Configuration	collection	descriptions

	features:	Feature	collection	descriptions	enabling	non-hardware	features

	ktypes:	Kernel	type	collection	descriptions

	patches:	Patch	collection	descriptions

	staging:	Staging	patches

The	scripts	directory	contains	tooling	scripts,	and	the	kver	file	contains	the	kernel
version.

To	apply	in-tree	metadata	when	building	the	Linux	kernel	with	a	kernel	recipe,	you
have	to	add	the	collection	description	file	to	the	KERNEL_FEATURES	variable	including
its	relative	path.	For	example,	to	add	the	AUFS	(Another	Union	File	System)	feature	use
Click	here	to	view	code	image

KERNEL_FEATURES_append	=	”	features/aufs/aufs.cfg”

The	variable	KERNEL_FEATURES	contains	a	space-delimited	list	of	collection
description	files.	Since	_append	does	not	add	a	space,	you	have	add	it	explicitly.	Do	not
assign	a	list	of	collection	descriptions	directly	to	KERNEL_FEATURES,	as	the	build
system	populates	it	with	its	own	list.

We	explained	earlier	that	the	metadata	branch	is	an	orphan	branch	inside	a	kernel
repository.	An	orphaned	branch	is	a	branch	that	is	not	related	to	any	other	branches	of	the
repository.	If	you	want	to	use	your	own	kernel	source	repository	with	your	own	metadata
branch,	you	have	to	create	an	orphan	branch	inside	the	repository:
Click	here	to	view	code	image

$	cd	<kernel	repo>
$	git	checkout	—orphan	meta
$	git	rm	-rf	.
$	git	commit	–allow-empty	-m	“Create	orphan	meta	branch”
$	mkdir	-p	meta/cfg/kernel-cache

You	can	now	start	adding	metadata	files	to	the	new	metadata	branch.	After	adding	and
modifying	files,	you	must	commit	them	to	the	repository.	Once	you	commit	them,	you
need	to	adjust	SRCREV_meta	in	your	kernel	recipe	to	the	new	commit	hash;	otherwise,
the	build	system	fetches	an	older	version.	Forgetting	to	do	so	is	a	common	mistake	leading
to	frustration.

Metadata	Application

The	build	system	gathers	the	correct	metadata	list	by

	Matching	KMACHINE	and	KTYPE	of	the	BSP	collection	description	to	KMACHINE
and	LINUX_KERNEL_TYPE	set	by	the	kernel	recipe	respectively	to	find	the	BSP
collection	with	all	its	includes

	Including	any	collection	descriptions	found	in	SRC_URI

	Evaluating	the	variable	KERNEL_FEATURES

From	this	information,	the	kernel	tools	then	create	a	consolidated	.config	file	for	the
kernel	configuration	and	a	combined	list	of	patches	to	be	applied	to	the	kernel	sources.

Long-Term	Support	Initiative	(LTSI)	Kernels

The	Yocto	Project	kernel	developers	pick	the	Linux	kernels	from	upstream
www.kernel.org	based	on	a	variety	of	criteria.	One	of	them	is	long-term	support.
Typically,	www.kernel.org	releases	a	new	kernel	about	every	90	days.	Once	a	new	kernel
version	has	been	released,	the	previous	version	it	replaces	no	longer	receives	any	updates.
That	can	be	problematic	for	embedded	systems	that	may	need	patches	for	security	and
other	selected	improvements	but	cannot	be	upgraded	to	newer	kernel	versions.

To	address	this	issue,	a	couple	of	companies	have	created	the	Long-Term	Support
Initiative	(LTSI)	under	the	auspices	of	the	Linux	Foundation.6	LTSI	picks	certain	Linux
kernel	versions	and	maintains	them	with	patches	and	ports	cherry-picked	features	from
newer	kernel	versions	into	them	for	a	period	of	two	years	from	the	original	kernel	release
date.

6.	http://ltsi.linuxfoundation.org/what-is-ltsi

The	Yocto	Project	has	teamed	up	with	LTSI,	and	the	Yocto	Project	kernel	developers
always	select	LTSI	kernels	for	the	Yocto	Project	kernels.	Every	LTSI	kernel	does
eventually	become	a	Yocto	Project	kernel.	However,	not	every	Yocto	Project	kernel	is	an
LTSI	kernel,	since	the	Yocto	Project	kernel	developers	typically	select	additional	kernel
versions	between	the	LTSI	releases.

If	you	choose	a	Yocto	Project	kernel	that	is	also	an	LTSI,	you	receive	the	benefit	of	a
kernel	that	is	maintained	for	up	to	three	years	from	its	original	release	date.

9.4	Out-of-Tree	Modules
The	easiest	way	to	build	kernel	modules	is,	of	course,	in-tree.	The	module’s	source	code
has	been	integrated	into	the	Linux	kernel	source	tree,	and	it	becomes	just	a	matter	of
enabling	the	module	through	a	configuration	parameter,	as	long	as	the	module	is	set	up
correctly	for	the	kernel’s	kconfig	configuration	facilities.

However,	that	is	not	always	an	option.	You	may	have	received	the	module’s	source	code
as	a	source	package,	which	is	not	uncommon	with	device	drivers	provided	by	hardware
vendors.	Even	for	your	own	modules,	you	may	choose	to	build	them	out-of-tree	rather
than	integrating	their	source	code	into	the	Linux	kernel	source	tree.	For	that	purpose,	the
build	system	provides	the	module	class,	which	contains	most	of	the	logic	for	building
out-of-tree	modules.7

7.	Nevertheless,	if	possible,	always	try	to	submit	your	kernel	modules	upstream	to	the	Linux	kernel	sources.	Once
upstream,	your	module	gets	“automatically”	maintained	by	the	kernel	community	from	kernel	version	to	kernel
version.

http://www.kernel.org
http://www.kernel.org
http://ltsi.linuxfoundation.org/what-is-ltsi

9.4.1	Developing	a	Kernel	Module
If	you	do	write	your	own	kernel	module,	you	are	of	course	in	charge	of	the	source	files.
This	allows	you	to	write	the	makefile,	so	that	the	module	class	can	use	it	directly	without
any	modifications	to	the	compilation	and	installation	functions	in	the	recipe.

The	Yocto	Project	provides	a	simple	example	for	a	module	consisting	of	one	C	source
file,	a	license	file,	and	the	makefile	together	with	a	corresponding	recipe	to	build	it.	You
can	find	this	example	at
Click	here	to	view	code	image

poky/meta-skeleton/recipes-kernel/hello-mod

The	recipe	is	straightforward.	We	replicated	it	in	Listing	9-13	for	your	convenience.

Listing	9-13	Module	Recipe	(hello-mod_0.1.bb)
Click	here	to	view	code	image

SUMMARY	=	“Example	of	how	to	build	an	external	Linux	kernel	module”
LICENSE	=	“GPLv2”
LIC_FILES_CHKSUM	=	“file://COPYING;md5=12f884d2ae1ff87c09e5b7ccc2c4ca7e”

inherit	module

PR	=	“r0”
PV	=	“0.1”

SRC_URI	=	“file://Makefile	\
											file://hello.c	\
											file://COPYING	\
										”

S	=	“${WORKDIR}”

#	The	inherit	of	module.bbclass	will	automatically	name	module	packages
#	with	“kernel-module-”	prefix	as	required	by	the	oe-core	build
#	environment.

As	you	do	for	any	recipe,	you	have	to	provide	SUMMARY,	LICENSE,
LIC_FILES_CHKSUM,	and	SRC_URI.	For	the	example,	the	latter	simply	includes	the
three	files,	which	are	provided	in-recipe	space.	Of	course,	if	you	have	a	more	complex
module,	you	would	structure	and	package	the	source	files.	The	example	also	sets	PV,
which,	strictly	speaking,	is	redundant	because	the	build	system	derives	it	from	the	name	of
the	recipe	file.	The	recipe	inherits	the	build	logic	from	the	module	class	and	also	sets	S	to
${WORKDIR},	as	the	fetcher	directly	copies	the	source	files	there.

That	is	all	there	is	to	the	recipe,	because	the	makefile,	replicated	in	Listing	9-14,
adheres	to	the	build	target	and	parameter	conventions	of	the	module	class.

Listing	9-14	Module	Makefile	(Makefile)
Click	here	to	view	code	image

obj-m	:=	hello.o

SRC	:=	$(shell	pwd)

all:
								$(MAKE)	-C	$(KERNEL_SRC)	M=$(SRC)

modules_install:
								$(MAKE)	-C	$(KERNEL_SRC)	M=$(SRC)	modules_install

clean:
								rm	-f	*.o	*~	core	.depend	.*.cmd	*.ko	*.mod.c
								rm	-f	Module.markers	Module.symvers	modules.order
								rm	-rf	.tmp_versions	Modules.symvers

This	is	a	typical,	albeit	simple,	Linux	kernel	module	makefile.	The	module	class
expects	a	default	target	(all)	and	an	install	target	named	modules_install.	Kernel
modules	must	be	built	from	within	the	kernel	source	tree.	Hence,	the	variable
KERNEL_SRC	is	passed	with	the	-C	parameter.	The	module	class	sets	KERNEL_SRC	to
STAGING_KERNEL_DIR,	which	contains	the	location	where	the	build	system	keeps	the
kernel	sources.	The	parameter	M8	tells	the	kernel	build	system	that	an	out-of-tree	kernel
module	is	being	built.	M	must	be	set	to	the	module’s	source	directory.

8.	In	makefiles	of	older	kernel	modules,	you	may	also	find	the	variable	SUBDIRS,	which	is	kept	for	backwards
compatibility.

Listing	9-15	Module	Class	(poky/meta/classes/module.bbclass)
Click	here	to	view	code	image

DEPENDS	+=	“virtual/kernel”

inherit	module-base	kernel-module-split

addtask	make_scripts	after	do_patch	before	do_compile
do_make_scripts[lockfiles]	=	“${TMPDIR}/kernel-scripts.lock”
do_make_scripts[deptask]	=	“do_populate_sysroot”

module_do_compile()	{
								unset	CFLAGS	CPPFLAGS	CXXFLAGS	LDFLAGS
								oe_runmake	KERNEL_PATH=${STAGING_KERNEL_DIR}			\
																			KERNEL_SRC=${STAGING_KERNEL_DIR}				\
																			KERNEL_VERSION=${KERNEL_VERSION}				\
																			CC=”${KERNEL_CC}”	LD=”${KERNEL_LD}”	\
																			AR=”${KERNEL_AR}”	\
																			${MAKE_TARGETS}
}

module_do_install()	{
								unset	CFLAGS	CPPFLAGS	CXXFLAGS	LDFLAGS
								oe_runmake	DEPMOD=echo	INSTALL_MOD_PATH=”${D}”	\
																			KERNEL_SRC=${STAGING_KERNEL_DIR}	\
																			CC=”${KERNEL_CC}”	LD=”${KERNEL_LD}”	\
																			modules_install
}

EXPORT_FUNCTIONS	do_compile	do_install

#	add	all	splitted	modules	to	PN	RDEPENDS,	PN	can	be	empty	now
KERNEL_MODULES_META_PACKAGE	=	“${PN}”
FILES_${PN}	=	””
ALLOW_EMPTY_${PN}	=	“1”

We	replicated	the	module	class	in	Listing	9-15	because	understanding	the	class	helps
when	writing	kernel	modules	and	their	recipes.

	The	class	sets	virtual/kernel	as	a	build	dependency,	which	ensures	that	the
kernel	has	been	built	before	the	build	system	attempts	to	build	the	module.

	It	inherits	from	module-base,	which	defines	a	make_scripts	task	to	build	the
kernel	scripts	before	building	the	module.	It	adds	that	task	after	the	patch	task	and
before	the	compile	task.	The	Linux	kernel	source	tree	contains	several	tools	that
are	built	for	the	host	system.	Some	modules	require	these	tools;	however,
STAGING_KERNEL_DIR	does	not	contain	the	binary	versions	of	these	tools.	The
build	system	removes	the	binaries	from	STAGING_KERNEL_DIR	before	packaging
the	kernel	sources	for	the	target.	The	reason	is	that	tools	built	for	the	host	system	do
not	apply	to	the	target,	which	of	course	means	that	the	tools	have	to	be	built	again
for	building	modules	after	the	kernel	has	been	packaged.

	The	kernel-module-split	class	takes	care	of	the	packaging	of	the	kernel
module.	The	main	package	is	prefixed	with	kernel-module-.	For	our	hello-mod
example,	kernel-module-hello-mod	package	contains	the	actual	kernel
module	binary.

	Besides	KERNEL_SRC	the	class	passes	KERNEL_PATH	to	the	makefile	in	the
module_do_compile	task.	Passing	both	variables	takes	care	of	the	two	variable
names	for	the	kernel	source	directory	most	commonly	used	in	module	makefiles.
The	class	also	passes	the	commands	for	the	compiler	(CC),	the	linker	(LD),	and	the
archiver	(AR)	from	the	variables	KERNEL_CC,	KERNEL_LD,	and	KERNEL_AR,
which	of	course	contain	the	proper	cross-toolchain	versions	for	the	target
architecture.

	When	running	the	module_do_install	task,	the	class	passes	DEPMOD=echo
to	the	makefile.	Since	virtually	all	modules	are	intended	to	be	built	and	installed	on	a
host	system,	the	install	target	typically	calls	the	depmod	utility	to	create	the	symbol
maps.	That,	of	course,	is	not	appropriate	when	building	a	module	on	a	host	system
for	a	different	target	system.	Hence,	depmod	is	replaced	with	echo,	which	simply
produces	a	log	output.

When	using	the	Yocto	Project	to	build	a	third-party	module,	you	may	have	to	override
the	module_do_compile	and/or	the	module_do_install	tasks	to	match	the
parameters.

9.4.2	Creating	a	Recipe	for	a	Third-Party	Module
Typically,	out-of-tree	kernel	modules	are	delivered	with	a	makefile	for	building	the
module	natively;	that	is,	for	the	build	system.	A	look	at	the	makefile	can	tell	you	if	and
how	you	need	to	adapt	the	recipe	to	build	the	kernel	module.	Here	are	some	items	to
watch	for:

	Kernel	Source	Directory:	To	make	the	process	simple	for	users,	module	developers

commonly	build	logic	into	the	makefile	to	automatically	detect	the	location	of	the
kernel	sources.	This	works	fine	when	building	for	the	host	system	but	does	not	work
for	a	Yocto	Project	build	environment.	Hence,	you	need	to	look	for	a	variable	that	is
used	for	the	kernel	source	directory,	such	as	KSRC,	KERNEL_PATH,	or
KERNEL_SRC,	and	eventually	assign	it	in	your	recipe.

	Build	Targets:	Most	kernel	module	makefiles	define	a	default	build	target	that
compiles	the	module.	This	target	is	invoked	if	no	target	is	explicitly	passed	to	the
makefile,	which	is	the	default	for	the	module_do_compile	task.	This	works	just
fine	for	most	cases.

	Install	Target:	The	module	class	expects	the	install	target	to	be
modules_install,	which	is	kernel	development	convention.	However,	many
modules	just	use	install.

	Subdirectory	Structure:	If	the	makefile	is	not	located	on	the	top-level	directory	of
the	module	source	package	but	in	a	subdirectory	containing	the	sources,	you	have	to
adjust	the	S	variable	accordingly.

	License	File:	The	build	system	expects	the	license	file	on	the	top-level	directory	of
the	module	source	package.	If	that	is	not	the	case,	your	recipe	has	to	copy	it	there.
Add	a	do_configure_prepend	to	your	recipe	for	copying	the	license	file.

Listing	9-16	shows	the	recipe	to	build	the	Linux	driver	for	the	Intel	PCI-E	40	Gigabit
Network	Connections9	as	an	example.

9.	You	can	find	the	source	package	for	the	driver	at	https://downloadcenter.intel.com/download/24411/Network-
Adapter-Driver-for-PCI-E-40-Gigabit-Network-Connections-under-Linux-.

Listing	9-16	Recipe	for	Intel	PCI-E	40	Linux	Driver
Click	here	to	view	code	image

SUMMARY	=	“Base	Driver	for	the	Intel(R)	XL710	Ethernet	Controller	Family”

LICENSE	=	“GPLv2”
LIC_FILES_CHKSUM		=	“file://COPYING;md5=d181af11d575d88127d52226700b0888”

inherit	module

PR								=	“r0”

#	Point	SRC_URI	to	SDK	tarball
SRC_URI	=		“file://${TOPDIR}/../i40e-1.2.46.tar.gz”

do_configure_prepend()	{
				#	license	file	is	expected	to	be	in	${S}
				cp	${WORKDIR}/${P}/COPYING	${S}
}

module_do_compile()	{
								unset	CFLAGS	CPPFLAGS	CXXFLAGS	LDFLAGS
								oe_runmake	KSRC=${STAGING_KERNEL_DIR}			\
																			BUILD_KERNEL=${KERNEL_VERSION}				\
																			KVER=${KERNEL_VERSION}				\
											INSTALL_MOD_PATH=”${D}”	\
																			CC=”${KERNEL_CC}”	LD=”${KERNEL_LD}”	\

https://downloadcenter.intel.com/download/24411/Network-Adapter-Driver-for-PCI-E-40-Gigabit-Network-Connections-under-Linux-

																			AR=”${KERNEL_AR}”	\
																			${MAKE_TARGETS}
}

module_do_install()	{
								unset	CFLAGS	CPPFLAGS	CXXFLAGS	LDFLAGS
								oe_runmake	DEPMOD=echo	INSTALL_MOD_PATH=”${D}”	\
																			BUILD_KERNEL=${KERNEL_VERSION}				\
																			KSRC=${STAGING_KERNEL_DIR}	\
																			KVER=${KERNEL_VERSION}				\
																			CC=”${KERNEL_CC}”	LD=”${KERNEL_LD}”	\
																			install
}

S	=	“${WORKDIR}/${P}/src”

For	many	modules,	you	can	adjust	the	defaults	from	the	module	class	in	your	recipe	to
build	the	module.	This	is	the	preferred	method,	as	you	do	not	have	to	patch	the	module
source	code.	However,	there	may	be	modules	for	which	you	have	to	provide	patches	to	be
able	to	build	the	module.	For	such	modules,	provide	the	patches	in-recipe	space	and	add
them	to	SRC_URI.

9.4.3	Including	the	Module	with	the	Root	Filesystem
The	final	step	is	to	include	the	module	with	the	root	filesystem	image	for	the	target.	The
vast	majority	of	modules	are	for	hardware	drivers,	which	of	course	means	that	including
them	into	the	root	filesystem	is	only	valuable	if	the	target	hardware	is	accordingly
equipped.	For	this	purpose,	the	build	system	provides	the	following	variables,	which	are
typically	set	in	a	machine	configuration	file:10

10.	We	discuss	machine	configurations	in	the	following	chapter	when	we	discuss	Yocto	Project	board	support
packages.

	MACHINE_ESSENTIAL_EXTRA_RDEPENDS:	A	list	of	machine-specific	packages
that	are	required	for	the	image	to	build.	Any	module	packages	you	are	adding	to	this
variable	have	to	be	built	before	the	build	system	can	create	the	image.	Because	it	is	a
machine-essential	variable,	packages	in	the	list	are	considered	essential	for	the
machine	to	boot.	The	variable	is	evaluated	by	all	images	that	are	based	on
packagegroup-core-boot.

	MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS:	A	list	of	machine-specific
packages	recommended	for	the	machine,	similar	to	the	previous	variable,	but	the
build	process	does	not	depend	on	them.	That	means	even	if	the	packages	in	this	list
are	not	present,	the	image	builds	successfully.	Packages	in	this	list	are	also	machine
essential,	which	means	they	are	required	for	the	machine	to	boot.	What	sounds	like	a
contradiction	makes	sense	for	modules	that	may	be	compiled	into	the	Linux	kernel
rather	than	be	provided	as	module	packages.

	MACHINE_EXTRA_RDEPENDS:	A	list	of	machine-specific	packages	required	for
the	image	to	build.	However,	compared	to
MACHINE_ESSENTIAL_EXTRA_RDEPENDS,	these	packages	are	not	essential	for
the	machine	to	boot.	The	variable	is	evaluated	by	all	images	that	are	based	on

packagegroup-base.

	MACHINE_EXTRA_RRECOMMENDS:	A	list	of	machine-specific	packages
recommended	for	the	machine	but	not	essential	to	boot	the	machine.

For	example,	add
Click	here	to	view	code	image

MACHINE_EXTRA_RDEPENDS	+=	“kernel-module-<module	name>”

to	your	machine	definition	file	to	include	the	kernel	module	in	your	image.

You	may	wonder	whether	you	could	add	the	module	to	the	IMAGE_INSTALL	variable
in	the	image	recipe.	That	is,	of	course,	possible	but	only	recommended	if	the	module	is	not
dependent	on	machine-specific	hardware	features.

9.4.4	Module	Autoloading
The	build	system	can	configure	automatic	but	static	module	loading	using
/etc/modules-load.d	and	/etc/modprobe.d	on	your	target	system.	While	it	is
usually	a	better	idea	that	you	rely	on	automatic	module	loading	provided	by	udev	on	the
basis	of	hardware	identification	and	similar	triggers,	there	may	be	use	cases	for	which
static	module	loading	at	boot	time	makes	sense.

When	using	systemd	and	systemd-modules-load.service,	the	variable
KERNEL_MODULE_AUTOLOAD	specifies	a	list	of	modules	that	need	to	be	loaded	at	boot
time:
Click	here	to	view	code	image

KERNEL_MODULE_AUTOLOAD	+=	“module1	module2	module3”

For	each	module	listed,	the	build	system	creates	a	file	with	the	name	of	the	module	and
ending	in	.conf	in	/etc/modules-load.d	containing	the	name	of	the	module	to
load.	The	lexicographical	order	of	the	files	determines	the	load	order	of	the	modules.

To	provide	configuration	parameters	for	modules	through	/etc/modprobe.d,	you
use	the	variables	KERNEL_MODULE_PROBECONF	and
module_conf_<module_name>.	Like	KERNEL_MODULE_AUTOLOAD,
KERNEL_MODULE_PROBECONF	is	simply	a	list	of	module	names.	For	each	item	in
KERNEL_MODULE_PROBECONF,	the	build	system	expects	a
module_conf_<module_name>	variable,	which	specifies	the	module	configuration
as	expected	by	modprobe.	For	example,	for	a	fictitious	module	named	foofighter	that
requires	two	configuration	variables,	use
Click	here	to	view	code	image

KERNEL_MODULE_PROBECONF	+=	“foofighter”
Module_conf_foofighter	=	“options	foofighter	foo=1	bar=2”

You	typically	place	these	settings	in	the	recipe	for	your	module.

9.5	Device	Tree
Simply	put,	device	tree	is	a	data	structure	describing	a	hardware	platform.	Rather	than
hardcoding	every	detail	of	devices	and	their	configuration,	such	as	I/O	addresses,	memory
address	space,	interrupts,	and	more,	into	the	kernel	sources,	a	data	structure	is	passed	to
the	kernel	at	boot	time.	The	device	tree	compiler	(DTC)	compiles	device	trees	from	their
human-readable	hierarchical	format	into	a	binary	format	commonly	referred	to	as	flattened
device	tree	(FTD).

The	OpenEmbedded	build	system	provides	support	for	building	the	FTD	from	device
tree	source	files	using	the	DTC.	Device	tree	source	files	end	in	.dts.	Files	containing	the
FTB	end	in	.dtb.	In	this	section,	we	explain	how	to	build	device	trees	for	a	given
platform	or	machine	with	the	build	system.11

11.	If	you	are	looking	for	information	on	how	device	trees	are	structured	and	how	to	develop	a	device	tree	for	your
platform,	refer	to	www.devicetree.org	and	http://elinux.org/Device_Tree.

Device	trees	are	platform	or	machine	specific,	as	they	describe	the	hardware
configuration	of	the	platform.	They	are	built	as	part	of	a	kernel	recipe.	For	this	to	work,
the	kernel	recipe	must	include	either
Click	here	to	view	code	image

require	recipes-kernel/linux/linux-dtb.inc

or
Click	here	to	view	code	image

require	recipes-kernel/linux/linux-yocto.inc

as	the	latter	includes	the	former.

Now	you	have	to	tell	the	build	system	what	device	tree	to	build	for	your	platform	by
setting	the	variable	KERNEL_DEVICETREE	to	the	name	of	the	FTD	for	your	platform.
For	example,
Click	here	to	view	code	image

KERNEL_DEVICETREE	=	“am335x-bone.dtb	am335x-boneblack.dtb”

instructs	the	build	system	to	generate	the	FTD	files	for	the	BeagleBone	(White)	and
BeagleBone	Black.	The	best	place	for	this	variable	is	the	machine	configuration	file,
which	contains	all	the	machine-specific	settings.

9.6	Summary
In	this	chapter,	we	focused	on	building	the	Linux	kernel	and	kernel	modules	with	the
Yocto	Project.

	With	menu	configuration	and	configuration	fragments,	the	build	system	provides
tooling	that	allows	for	fast	round-trip	testing	and	integration	of	kernel	configuration.

	Patches	to	the	kernel	source	code	are	applied	in	exactly	the	same	way	as	for	any
other	software	package.

	In	its	simplest	form,	the	Linux	kernel	can	be	built	directly	from	kernel	tree	sources,
either	from	source	tarballs	or	Git	repositories,	by	providing	in-recipe	space	or	in-tree

http://www.devicetree.org
http://elinux.org/Device_Tree

configuration.

	The	Yocto	Project	maintains	its	own	Linux	kernel	infrastructure	consisting	of
repositories	containing	the	kernel	sources	as	well	as	configuration	metadata	and
patches.	The	Yocto	Project	kernel	tooling	allows	for	flexible	configuration	using
metadata	features.

	The	Yocto	Project	kernel	infrastructure	provides	maintained	kernel	sources	for	the
three	base	configurations—standard,	real-time,	and	tiny—from	which	specific
branches	for	BSPs	can	be	derived.

	The	Yocto	Project	adopts	LTSI	kernels	providing	continuous	support	for	multiple
years,	which	is	particularly	beneficial	for	embedded	projects.

	Through	the	module	class,	the	build	system	supports	convenient	building	of	out-
of-tree	kernel	modules.

9.7	References
Linux	Kernel	Build	System,	Documentation/kbuild/kbuild.txt

Yocto	Project	Linux	Kernel	Development	Manual,	www.yoctoproject.org/docs/1.8/kernel-
dev/kernel-dev.html

http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html

10.	Board	Support	Packages

In	This	Chapter

10.1	Yocto	Project	BSP	Philosophy

10.2	Building	with	a	BSP

10.3	Inside	a	Yocto	Project	BSP

10.4	Creating	a	Yocto	Project	BSP

10.5	Tuning

10.6	Creating	Bootable	Media	Images

10.7	Summary

10.8	References

The	preceding	chapters	laid	the	foundation	for	building	custom	a	Linux	system	with	the
Yocto	Project	tools.	We	used	the	software	system	emulator	QEMU	for	testing.	In	this
chapter,	we	take	it	one	step	further	and	demonstrate	how	the	build	system	supports
creating	Linux	kernel	and	root	filesystem	images	for	actual	hardware.

Hardware	support	is	provided	by	board	support	packages	(BSPs).	If	you	are	familiar
with	embedded	system	development,	you	have	most	likely	heard	the	term	BSP	before.
However,	regardless	of	having	the	same	name,	Yocto	Project	BSPs	are	substantially
different	from	the,	let’s	say,	more	traditional	BSP	for	the	typical	embedded	system.

We	begin	by	explaining	the	philosophy	behind	Yocto	Project	BSPs	and	why	Yocto
Project	BSPs	are	different	from	traditional	BSPs.	Then	we	use	a	BSP	to	build	a	system	for
an	embedded	evaluation	board,	put	that	system	on	that	board,	and	finally	boot	the	board.
At	the	end	of	this	chapter,	we	outline	how	you	can	create	a	Yocto	Project	BSP	for	your
own	hardware.

10.1	Yocto	Project	BSP	Philosophy
In	general,	a	BSP	is	a	specific	adaptation	of	a	given	operating	system	for	given	hardware,
such	as	an	embedded	device	board.	BSPs	are	typically	provided	by	semiconductor	and
board	vendors	to	their	customers	so	that	the	customers	can	build,	load,	and	run	the
operating	system	on	the	vendor’s	hardware.

Traditional	BSPs	typically	comprise	these	items:

	Documentation:	We	put	documentation	first	because	any	BSP	should	contain
documentation	that	describes	the	content	of	the	BSP,	provides	information	on	the
specific	hardware	the	BSP	supports,	and	includes	instructions	on	how	to	use	the	BSP
to	build	the	operating	system	for	the	hardware,	to	transfer	the	operating	system
image	to	the	hardware,	and	to	boot	the	hardware.	In	addition,	documentation	may
include	information	on	how	you	can	adapt	the	BSP	to	hardware	that	is	similar	to	the
reference	hardware	the	BSP	supports.

	Development	Tools:	Commonly,	the	vendors	include	at	least	a	toolchain	with
compiler,	assembler,	linker,	and	archiver.	The	toolchain	matches	the	supported
device	and	the	source	code.	Some	BSPs	may	even	include	a	software	development
kit	(SDK)	and	eventually	an	integrated	development	environment	(IDE),	such	as
Eclipse,	which	make	development	for	the	target	hardware	even	more	convenient.

	Operating	System	Source	Code	and	Binaries:	Some	BSPs	go	as	far	as	to	include
the	entire	source	code	for	the	operating	system	if	the	operating	system	is	open
source.	If	it	is	proprietary,	only	source	code	necessary	to	compile	device	drivers	and
application	software,	such	as	header	files	and	statically	linked	libraries,	may	be
included.	All	other	operating	system	files	are	provided	as	binaries.	Since	operating
system	sources	and	binaries	are	potentially	large,	it	is	common	that	the	provided
development	tools	use	the	vendor’s	repositories	and	download	sites	to	obtain	the
source	code	and	binaries	as	necessary	when	building	the	system.

	Source	Code	Patches:	If	the	hardware	targeted	by	the	BSP	requires	special	device
drivers,	configuration,	or	other	modules	on	top	of	the	base	operating	system
software	packages,	the	BSP	may	provide	them.	Alternatively,	it	is	not	uncommon
that	the	vendor	has	already	patched	the	operating	system	sources	so	that	the	BSP
does	not	need	to	include	any	patches.

	Filesystem	Images:	A	BSP	may	also	include	entire	filesystem	images	for	the
supported	hardware,	which	is	very	convenient,	as	it	helps	in	bringing	up	the	target
and	provides	a	reference	when	building	your	own	system.

A	BSP	that	includes	everything	from	documentation	to	filesystem	images	makes	it	very
convenient	for	users	to	get	started	with	the	BSP	quickly,	as	most	of	the	dependencies	are
resolved	by	what	is	contained	in	the	BSP.	However,	long-term	maintenance	can	sometimes
become	a	challenge,	particularly	if	the	vendor	does	not	provide	regular	updates.	We	still
see	many	vendor	BSPs	for	system-on-chips	(SoC)	and	development	boards	that	use	Linux
kernel	version	2.6.

This	becomes	a	problem	if	an	embedded	project	wants	to	utilize	one	of	those	SoCs
together	with	other	hardware	that	is	supported	only	by	newer	kernel	versions.	If	the	SoC
vendor	does	not	provide	an	update	for	the	BSP	for	a	later	Linux	kernel,	you	as	a	system
engineer	face	the	task	of	either	porting	the	BSP	to	a	newer	kernel	version	or	back-porting
device	support	into	the	older	kernel	version	supported	by	the	BSP.	Both	approaches	have
potential	pitfalls.

Porting	the	BSP	to	a	later	Linux	kernel	version	may	become	rather	difficult	for	a	BSP
with	an	unknown	history:	When	did	the	vendor	branch	the	upstream	sources?	What
modifications	have	been	applied?

Back-porting	a	device	driver,	on	the	other	hand,	may	be	impossible	if	the	device	driver
relies	on	features	that	are	only	available	in	the	newest	Linux	kernels.

The	Yocto	Project	takes	a	different	approach	for	BSPs:

	Yocto	Project	BSPs	are	not	standalone	like	the	traditional	BSPs.	They	rely	on	the
base	metadata	layers	such	as	OpenEmbedded	Core	(meta)	and	possibly	other
layers.

	Yocto	Project	BSPs	do	not	include	a	build	system	or	any	development	tools.	They
are	provided	by	the	Yocto	Project	itself	and	created	during	the	build	process.

	Yocto	Project	BSPs	do	not	include	any	source	code	other	than	recipes	and	eventually
patches.

	Yocto	Project	BSPs	are	concerned	only	with	components	that	are	specific	to	the
particular	hardware.

Essentially,	a	Yocto	Project	BSP	is	nothing	but	a	specialized	metadata	layer	that
includes	additions	and	modifications	to	the	core	layers	for	the	support	of	the	target
hardware.	All	Yocto	Project	BSPs	depend	at	least	on	the	OE	Core	metadata	layer.

Yocto	Project	BSPs	limit	the	maintenance	of	the	BSP	to	the	packages	the	BSP	adds	and
the	ones	for	the	underlying	layers	that	it	modifies.	All	other	maintenance	work	lies	with
the	underlying	layers.	This	approach,	of	course,	means	that	a	specific	version	of	a	Yocto
Project	BSP	is	bound	to	the	particular	versions	of	the	underlying	layers	it	depends	on.	If
an	underlying	layer	changes—for	example,	if	the	meta	layer	drops	the	support	for	a
particular	kernel	version—then	the	BSP	must	be	adapted.	However,	this	maintenance
work	is	typically	much	less	than	maintaining	a	traditional	BSP.

Maintenance	effort	for	Yocto	Project	BSPs	is	further	reduced	by	the	Poky	build
system’s	dependency	handling.	Most	packages	are	not	dependent	on	the	particular	target
hardware.	The	dependency	handling	provided	by	conditional	variable	overrides	ensures
that	recipes	building	packages	dependent	on	the	hardware,	such	as	the	Linux	kernel,
receive	the	proper	information	about	the	target	hardware	and	its	architecture.

10.1.1	BSP	Dependency	Handling
The	BSP	dependency	handling	of	the	build	system	not	only	eases	maintenance	effort	but
also	enables	BSPs	to	easily	be	exchanged	for	each	other,	almost	literally	by	changing	a
single	line	in	a	configuration	file.	This	is	a	huge	benefit	for	system	builders	like	you.	It
enables	you	to	build	exactly	the	same	root	filesystem	for	one	board	today	and	for	another
one	that	may	even	use	an	SoC	with	a	completely	different	architecture	the	next	day.	We
refer	to	this	feature	as	the	orthogonality	of	Yocto	Project	BSPs.	Although	the	term	is	not
entirely	correct	in	the	mathematical	sense	of	orthogonal,1	users	can	swap	one	BSP	for	the
next	without	worrying	about	any	changes	to	the	rest	of	the	build	system.

1.	Orthogonal	in	mathematics	means	that	two	dimensions	are	entirely	independent	from	each	other.	That	is	not	true,
of	course,	for	the	build	system,	as	target-dependent	variable	settings	provided	by	a	BSP	override	the	standard
settings	of	the	build	system.	From	a	user’s	point	of	view,	without	looking	at	the	details	of	the	BSP,	it	looks	as	if
BSP	and	build	system	were	independent.

It	is	worth	it	to	have	a	quick	look	at	how	the	build	system	handles	target-specific
dependencies,	as	they	can	commonly	be	found	in	recipes	that	are	dependent	on	the
hardware	configuration.

In	Chapter	4,	“BitBake	Build	Engine,”	Section	4.4.2,	we	discussed	BitBake’s
conditional	variable	assignment	mechanism	using	the	variable	OVERRIDES.	This
mechanism	is	the	backbone	of	the	build	system’s	dependency	handling	for	BSPs.	The
variable	OVERRIDES	contains	a	comma-delimited	list	of	override	conditions	with
increasing	priority	from	left	to	right.	The	Poky	reference	distribution	sets	the	variable	to

this	expression:2

2.	You	can	obtain	this	information	by	executing	bitbake	-e	core-image-minimal	|	grep	OVERRIDES
in	your	build	environment.

Click	here	to	view	code	image
OVERRIDES=”${TARGET_OS}:${TRANSLATED_TARGET_ARCH}:build-${BUILD_OS}:	\
				pn-${PN}:${MACHINEOVERRIDES}:${DISTROOVERRIDES}:	\
				${CLASSOVERRIDE}:forcevariable”

For	a	particular	target,	the	variables	inside	the	expression	are	expanded	accordingly.	For
example,	for	an	64-bit	X86	Qemu	target,
Click	here	to	view	code	image

OVERRIDES=“linux:x86-64:build-linux:pn-core-image-minimal:	\
				qemuall:qemux86-64:poky:class-target:forcevariable:libc-glibc”

the	BSP-specific	settings	are	provided	by	the	variable	MACHINEOVERRIDES,	which	for
the	example	expands	to	qemuall:qemux86-64.

Essentially,	there	are	two	settings:	qemuall	and	qemux86-64.	The	former	provides
an	override	for	all	QEMU	machines,	while	the	latter	provides	it	specifically	for	the	64-bit
x86	emulation.	The	latter	has	higher	priority,	as	it	is	listed	after	the	former.	If	a	particular
variable	requires	a	machine-dependent	setting,	it	is	just	a	matter	of	appending	the	machine
override	to	the	variable.	For	example,
Click	here	to	view	code	image

KERNEL_FEATURES_append_qemux86-64=”	cfg/sound.scc”

adds	a	configuration	description	to	KERNEL_FEATURES	if	the	target	build	is	for
qemux86-64.

BSPs	frequently	use	conditional	variable	assignments	like	the	preceding	one	in	recipes
and	append	files	to	tweak	the	recipe	for	the	particular	target.

For	the	remaining	sections	of	this	chapter,	unless	we	explicitly	state	otherwise,	we	refer
to	the	Yocto	Project	Board	Support	Package	(Yocto	Project	BSP)	simply	as	BSP	to	make
the	text	more	legible.

10.2	Building	with	a	BSP
A	BSP	simply	is	a	metadata	layer	that	contains	a	machine	definition	in	the	form	of	a
configuration	file	with	the	name	of	the	machine	ending	in	.conf.	Machine	configuration
files	are	located	inside	the	conf/machine	subdirectory	of	the	BSP	layer.	To	use	a	BSP,
you	have	to	add	it	to	the	BBLAYERS	variable	in	the	conf/bblayers.conf	file	of
your	build	environment.	You	then	have	to	set	the	MACHINE	variable	inside	the
conf/local.conf	file	of	your	build	environment	to	the	name	of	the	machine	you
want	to	build	for.

Technically,	we	have	implicitly	been	using	a	BSP	for	our	qemux86	builds	throughout
the	preceding	chapters.	You	can	find	the	machine	definitions	for	qemux86	in	the	OE	Core
metadata	layer	of	your	build	system	at
poky/meta/conf/machine/qemux86.conf.	The	OE	Core	metadata	layer
provides	machine	definitions	for	a	variety	of	emulated	machines	for	different

architectures:	qemuarm,	qemuarm64,	qemumips,	qemumips64,	qemuppc,	qemux86,	and
qemux86-64.	Providing	machine	definitions	essentially	qualifies	the	layer	as	a	BSP	layer.

The	Yocto	Project	also	includes	its	own	BSP	layer	for	actual	hardware	machines:
meta-yocto-bsp.	This	layer	is	by	default	included	in	BBLAYERS	of	every	build
environment	created	with	oe-init-build-env.	It	provides	machine	definitions	for
the	Texas	Instruments	BeagleBone3	board,	the	Ubiquity	Networks	EdgeRouter,4	the
Freescale	MPC8351E-RDB	Reference	Platform,5	and	generic	32-bit	and	64-bit	x86
platforms.

3.	http://beagleboard.org/bone

4.	https://www.ubnt.com/edgemax/edgerouter

5.	http://www.nxp.com/files/32bit/doc/fact_sheet/MPC8315ERDBFS.pdf

Building	for	any	of	these	target	platforms	is	simple.	The	file	conf/local.conf
already	contains	the	MACHINE	settings	for	them.	You	just	need	to	uncomment	the	one	you
wish	to	build	for.

Of	course,	this	is	only	a	very	limited	list	of	hardware	platforms.	The	Yocto	Project
metadata	includes	them	for	convenience	and	test	purposes.	There	are	many	other	BSPs
available	from	SoC,	board	vendors,	and	the	community	for	a	large	variety	of	hardware.
We	look	into	the	details	of	how	to	find	and	utilize	external	BSPs	in	Section	10.2.2.

10.2.1	Building	for	the	BeagleBone
The	BeagleBone	is	a	development	board	based	on	the	Texas	Instruments	AM335x	ARM
Cortex-A8	SoC.	Hardware	and	software	are	open	designs,	created	and	supported	by	the
BeagleBoard.org	Foundation,6	a	US-based	nonprofit	organization	with	the	goal	“to
provide	education	in	and	promotion	of	the	design	and	use	of	open-source	software	and
hardware	in	embedded	computing.”

6.	http://beagleboard.org/about

There	are	multiple	variants	of	the	BeagleBone,	the	original	BeagleBone	(White),	the
BeagleBone	Black,	and	now	the	BeagleBone	Green.	They	can	easily	be	distinguished	by
the	respective	colors	of	their	printed	circuit	boards	(PCBs).	The	BeagleBone	Black	uses	a
more	powerful	version	of	the	AM3358	SoC	with	1	GHz	of	clock	speed,	provides	512	MB
of	RAM	(twice	the	RAM	of	the	original	BeagleBone),	and	also	offers	2	GB	(4	GB	on	the
revision	C	model)	of	on-board	embedded	multimedia	card	(eMMC)	storage.	In	addition,
the	BeagleBone	Black	costs	only	a	little	more	than	half	the	price	of	the	original	board.
However,	the	Black	version	does	not	have	a	USB-to-serial	converter	for	the	system
console	on	board.	The	serial	system	console	is	necessary	to	interact	with	the	system	when
running	a	Yocto	Project	build,	as	the	boards	do	not	have	a	display.7	The	BeagleBone
Green	is	based	on	the	BeagleBone	Black	but	removes	the	onboard	high-definition
multimedia	interface	(HDMI)	connector	to	make	room	for	two	connectors	carrying	I2C
signals	to	easily	interface	with	Grove	sensors	offered	by	Seeed	Studios.8

7.	It	is	not	uncommon	for	embedded	systems	to	have	no	display,	as	they	may	be	used	for	purposes	that	do	not	require
a	display,	such	as	in	industrial	control.	Although	a	display	can	be	added	to	the	BeagleBone	(via	a	cape	or	HDMI),
the	designers	decided	not	to	do	so	but	to	leave	the	hardware	architecture	open	and	extensible.

http://beagleboard.org/bone
https://www.ubnt.com/edgemax/edgerouter
http://www.nxp.com/files/32bit/doc/fact_sheet/MPC8315ERDBFS.pdf
http://BeagleBoard.org
http://beagleboard.org/about

8.	www.seeedstudio.com/wiki/Grove_System

Building	the	BeagleBone	Images

To	build	a	Linux	system	for	the	BeagleBone	with	the	OpenEmbedded	build	system,
simply	uncomment	the	line

MACHINE	=	“beaglebone”

in	conf/local.conf	of	your	build	environment	(and	eventually	comment	out	any
other	MACHINE	settings	you	have	used	previously).	It	does	not	matter	that	you	have	used
the	same	build	environment	before	for	building	systems	for	a	qemux86,	a	machine	that	is
based	on	x86	architecture.	However,	if	you	prefer	to	keeps	things	separate,	you	can	of
course	create	a	new	build	environment	by	sourcing	oe-init-build-env.	If	you	do,
make	sure	that	you	set	DL_DIR	and	SSTATE_DIR	to	the	directories	you	previously	used.
It	saves	you	a	lot	of	time	downloading	shared	source	packages	and	re-creating	build
artifacts	that	are	shared	between	the	architectures.

Now	start	your	build	with
Click	here	to	view	code	image

$	bitbake	-k	core-image-minimal

Once	the	build	completes,	you	can	find	the	images	for	the	bootloader,	Linux	kernel,	and
root	filesystem	in	the	tmp/deploy/images/beaglebone	subdirectory	inside	your
build	environment.	The	Poky	build	system	neatly	separates	the	images	for	different
machines	into	their	own	directories	so	that	they	cannot	get	mixed	up.

Now	what	do	you	do	with	these	images?

Understanding	the	BeagleBone	Boot	Process

To	be	able	to	boot	the	target	hardware,	you	need	to	understand	how	your	target	hardware,
in	our	case	the	BeagleBone,	boots	its	operating	system.	The	BeagleBone	boots	from	its
external	SD	card	in	a	specific	way.	You	can	find	this	information	on	BeagleBone.org.	We
summarize	it	here:

1.	After	power-on-reset	(POR),	the	BeagleBone’s	SoC	loads	and	runs	a	stage	0
bootloader	from	its	on-board	ROM.

2.	The	stage	0	bootloader	accesses	a	file	called	MLO,	which	must	be	located	in	the	first
sectors	of	the	first	partition	on	the	SD	card.	MLO	is	a	stage	1	bootloader	that	is
provided	by	U-Boot’s	secondary	program	loader	(SPL)	functionality.

3.	The	U-Boot	SPL	MLO	configures	the	off-chip	memory	of	the	BeagleBone	and	then
loads	the	file	u-boot.img,	which	is	the	full	U-Boot	bootloader.	U-Boot	is	the
stage	2	bootloader	in	this	process.

4.	U-Boot	then	loads	the	Linux	kernel	image	into	memory	and	passes	control	on	to	the
Linux	kernel.	U-Boot	by	default	expects	the	kernel	image	uImage	in	the	/boot
directory	of	the	second	partition	on	the	SD	card.	The	second	partition	contains	a
Linux	ext3	filesystem	with	the	entire	root	filesystem	for	the	BeagleBone.

5.	The	Linux	kernel	then	begins	its	boot	process,	mounts	the	root	filesystem	as

http://www.seeedstudio.com/wiki/Grove_System
http://BeagleBone.org

instructed	by	the	kernel	command	line	provided	by	the	bootloader,	and	finally
launches	the	first	user	space	process.

The	SD	card	requires	a	specific	layout	with	two	partitions:	a	small	FAT	boot	partition
and	a	Linux	partition	containing	the	root	filesystem.	The	Linux	partition	for	the	root
filesystem	can	be	any	file	system	supported	by	Linux,	such	as	ext3	and	ext4.	The	file
README.hardware	in	the	top	directory	of	the	Poky	build	system	describes	how	to
create	the	partitions	and	format	them.

Creating	a	Boot	SD	Card

You	can	accomplish	partitioning	and	formatting	an	SD	card	for	booting	the	BeagleBone
manually	by	following	the	instructions	and	using	the	commands	fdisk,	mkfs.vfat,
and	mkfs.ext3.	However,	automating	the	process	with	a	little	script	is	much	more
convenient.	Listing	10.1	shows	a	script	for	partitioning	and	formatting	an	SD	card	for	the
BeagleBone.

Listing	10-1	Script	for	Partitioning	and	Formatting	a	BeagleBone	SD	Card
Click	here	to	view	code	image

#	(c)	bbonesd.sh,	2015,	Rudolf	J	Streif
#!/bin/sh

echo	“Partitioning	and	formatting	SD	card	for	BeagleBone”

#	test	for	the	most	common	problems
test	“$(id	-u)”	!=	“0”	\
				&&	echo	“You	need	to	be	‘root’	to	run	this	script.”	\
				&&	exit	1
test	-z	“$1”	&&	\
				echo	“No	disk	device	specified.”	\
				&&	exit	1
test	“$1”	=	“/dev/sda”	\
				&&	echo	“OOPS	-	System	disk	specified:	${1}”	\
				&&	exit	1

#	be	sure	before	continuing
echo	“Are	you	sure	that	you	want	to	format	${1}?	Type	YES	to	proceed.”
read	RESPONSE
test	“$RESPONSE”	!=	“YES”	&&	echo	“Exiting.”	&&	exit	1

#	now	do	the	job
DRIVE=$1
if	[-b	“$DRIVE”]	;	then
								dd	if=/dev/zero	of=$DRIVE	bs=1024	count=1024
								SIZE=`fdisk	-l	$DRIVE	|	grep	Disk	|	awk	‘{print	$5}’`
								echo	DISK	SIZE	-	$SIZE	bytes
								CYLINDERS=`echo	$SIZE/255/63/512	|	bc`
								echo	CYLINDERS	-	$CYLINDERS
								{
																echo	,9,0x0C,*
																echo	,200,0x83,-
																echo	,,0x83,-
								}	|	sfdisk	-D	-H	255	-S	63	-C	$CYLINDERS	$DRIVE
								if	[[$1	==	‘/dev/sd’*]]	;	then
																mkfs.vfat	-F	32	-n	“beagboot”	${DRIVE}1
																mkfs.ext3	-L	“beagroot”	${DRIVE}2

								else
																mkfs.vfat	-F	32	-n	“beagboot”	${DRIVE}p1
																mkfs.ext3	-L	“beagroot”	${DRIVE}p2
								fi
fi
echo	Done.

After	you	insert	an	SD	card	into	your	development	system,	determine	the	device	with
the	dmesg	command:
Click	here	to	view	code	image

$	dmesg
[4389.803854]	sd	9:0:0:1:	[sdf]	15278080	512-byte	logical	blocks:	\
				(7.82	GB/7.28	GiB)
[4389.822434]		sdf:	sdf1

In	this	example,	the	SD	card	has	been	recognized	as	/dev/sdf,	so	you	need	to	invoke
the	script	with

$	sudo	./bbonesd.sh	/dev/sdf

The	script	works	with	SD	cards	recognized	as	SCSI	drives	(/dev/sd*,	typically,	when
connected	via	a	USB	card	reader)	and	also	with	SD	recognized	as	memory	block	devices
(/dev/mmcblk*,	typically,	when	inserted	into	a	card	slot	of	a	computer).

Now	that	we	partitioned	and	formatted	the	SD	card,	we	need	to	copy	the	bootloader	and
root	filesystem	to	their	respective	partitions.	The	following	assumes	that	the	boot	partition
is	mounted	on	/media/beagboot	and	the	root	partition	is	mounted	on
/media/beagroot.	If	your	system	mounts	them	to	different	mount	points,	you	need	to
make	adjustments	accordingly.	From	the	top-level	directory	of	your	build	environment,
change	to	the	directory	with	the	images	for	the	Beaglebone:
Click	here	to	view	code	image

$	cd	tmp/deploy/images/beaglebone

Copy	the	bootloader	files	to	the	boot	partition:
Click	here	to	view	code	image

$	sudo	cp	MLO	/media/beagboot
$	sudo	cp	u-boot.img	/media/beagboot

Extract	the	root	filesystem	and	kernel	modules	into	the	root	partition:
Click	here	to	view	code	image

$	tar	x	-C	/media/beagroot	-f	core-image-minimal.tar.bz2
$	tar	x	-C	/medai/beagroot	-f	modules-beaglebone.tgz

Copy	the	kernel	image	and	device	tree	files	to	the	/boot	directory	of	the	root	partition:
Click	here	to	view	code	image

$	cp	zImage	/media/beagroot/boot
$	cp	zImage-am335x-bone.dtb	/media/beagroot/boot/am335x-bone.dtb
$	cp	zImage-am335x-boneblack.dtb	/media/beagroot/boot/am335x-boneblack.dtb

Copying	and	extracting	the	files	may	take	a	while.	Even	when	the	last	command
returns,	the	process	may	not	yet	be	completed,	as	Linux	provides	write	buffers	for	disk
operations.	Use

$	sync

to	flush	all	the	buffers	and	wait	for	the	command	to	return	before	unmounting	and
removing	the	SD	card.	If	you	use	umount	from	the	command	line,	it	waits	for	the
filesystem	buffers	to	be	flushed	before	unmounting,	as	sync	is	called	by	umount	before
the	filesystem	is	actually	unmounted.

Now	you	are	ready	to	boot	your	BeagleBone	board.

Booting	the	BeagleBone

To	boot	your	BeagleBone	board	and	to	follow	its	boot	process,	you	need	to	provide	power
for	it	and	connect	its	console	serial	port	to	your	development	system.	If	you	call	the
original	BeagleBone	(White)	your	own,	booting	is	very	straightforward.	If	you	own	a
BeagleBone	Black,	you	need	to	take	a	couple	of	extra	steps.

Connecting	the	BeagleBone	(White)

To	connect	a	BeagleBone	(White)	to	your	development	computer,	you	need	a	USB	cable
with	a	USB	A	plug	on	one	end	and	a	mini	USB	plug	on	the	other.	The	former	plugs	into
your	development	computer,	and	the	latter	plugs	into	the	mini	USB	port	on	the	underside
of	the	BeagleBone	(White).	The	USB	cable	provides	power	as	well	as	the	serial
connection	between	the	BeagleBone’s	console	port	and	your	development	system.	Since
the	BeagleBone	(White)	ships	with	the	USB	cable,	there	is	no	additional	hardware
required.

Before	you	connect	the	board,	insert	the	SD	card	into	the	SD	card	slot	of	the
BeagleBone	(White).

Connecting	the	BeagleBone	Black

Connecting	the	BeagleBone	Black	is	a	little	bit	more	difficult	because	this	board	does	not
have	a	built-in	serial-to-USB	converter.	You	need	an	external	serial-to-USB	converter
cable,	which	is	not	provided	with	the	BeagleBone	Black.	These	cables	are	commonly
referred	to	as	FTDI	cables	after	the	company	Future	Technology	Devices	International
Ltd.	that	produces	the	converter	chips	and	the	cables.

The	BeagleBone	Black	has	a	6-pin,	single-in-line	0.1-inch	pitch	connector	on	its	top
side.	This	is	the	connector	for	its	serial	console	port.	To	connect	to	it,	you	need	a	serial-to-
USB	converter	cable	with	a	USB	A	connector	on	one	end	and	the	6-way,	single-in-line
connector	on	the	other.	You	also	need	to	pay	attention	to	the	signal	levels	of	the
BeagleBone	Black’s	serial	console	port,	which	are	3.3V.	There	are	also	cables	for	5V
signal	levels.	Using	a	5V	cable	with	the	BeagleBone	could	damage	your	board’s	CPU.	The
correct	cable	is	an	FTDI	TTL-232R-3V3.	You	can	find	it	on	FTDI’s	website.9	Most
component	distributors	carry	these	cables.

9.	www.ftdichip.com/Products/Cables/USBTTLSerial.htm

To	connect	the	cable	to	the	board,	set	it	topside-up	with	the	Ethernet	and	5V	power
connectors	to	the	left.	The	black	wire	of	the	cable’s	connector	goes	to	the	leftmost	pin	of
the	board’s	connector.	That	pin	is	also	marked	with	a	little	white	dot	on	the	board.

http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm

The	serial-to-USB	converter	cable	does	not	provide	power	to	the	BeagleBone.	You	can
either	connect	a	5V	power	supply	capable	of	providing	at	least	1.2A	(or	6W)	to	the	barrel
connector,	or	you	can	use	a	USB	A	to	mini	USB	cable.	In	most	cases,	the	latter	may	be
easier	because	the	BeagleBone	Black	ships	with	such	a	cable.	The	USB	cable	connects	to
the	mini	USB	port	on	the	bottom	side	of	the	BeagleBone	Black.

Setting	Up	a	Terminal	Emulator

To	interact	with	the	BeagleBone	via	serial	connection,	you	need	a	terminal	emulation
program.	There	are	a	couple	of	choices	for	Linux.	We	recommend	Minicom.	Virtually	any
Linux	distribution	provides	Minicom	through	its	package	repository.	If	it	is	not	yet
installed	on	your	system,	install	it	using	your	distribution’s	package	manager.

All	current	Linux	systems	recognize	the	FTDI	serial-to-USB	converters	as	ttyUSB
devices.	After	you	plug	your	BeagleBone	into	a	USB	port	of	your	development	computer,
the	device	node	/dev/ttyUSB010	is	created	by	the	Linux	kernel.	The	Linux	kernel
protects	device	nodes	from	access	by	regular	users.	The	/dev/ttyUSB	devices	are
owned	by	root	but	also	typically	belong	to	the	dialout	user	group.	For	Minicom	to	be	able
to	access	the	device	while	running	under	your	user	account,	you	need	to	add	yourself	to
the	dialout	user	group:
10.	Unless	you	have	more	than	one	serial-to-USB	converter	connected	to	your	development	system,	in	which	case

there	are	multiple	/dev/ttyUSB	devices,	and	you	have	to	find	out	which	one	connects	to	your	BeagleBone.

Click	here	to	view	code	image
$	sudo	usermod	-a	-G	dialout	<username>

where	you	replace	<username>	with	your	actual	user	name.	You	need	to	log	out	and	log
in	again	for	the	change	to	take	effect.

Now	connect	your	BeagleBone	to	your	computer	and	launch	Minicom	in	setup	mode:11

11.	Running	Minicom	in	setup	mode	requires	root	privileges.
$	sudo	minicom	-s

At	this	point,	you	should	see	Minicom’s	setup	menu.	Select	the	Serial	port	setup	menu
option	and	change	the	settings:

	Serial	Device	to	/dev/ttyUSB0

	Bps/Par/Bits	to	115200	8N1

	Hardware	Flow	Control	to	No	(if	necessary)

	Software	Flow	Control	to	No	(if	necessary)

Exit	from	the	Serial	port	setup	menu	by	pressing	Enter,	and	then	select	Save	as	dfl	from
the	main	setup	menu.	Finally,	exit	from	Minicom.

Now	launch	Minicom	again	with
$	sudo	minicom	-o	-w

The	-o	option	tells	Minicom	not	to	send	any	modem	initialization	strings	to	your
BeagleBone,	and	the	-w	option	turns	on	line	wrap	for	long	lines.

Now	you	are	connected	to	the	console	of	your	BeagleBone.	If	your	board	is	a
BeagleBone	(White),	it	probably	has	already	booted.	If	you	hit	Enter	on	your	keyboard,
you	should	see	a	Linux	login	prompt	similar	to	this	one:
Click	here	to	view	code	image

Poky	(Yocto	Project	Reference	Distro)	1.8+snapshot-20150720	beaglebone	\
				/dev/ttyO0
beaglebone	login:

If	your	board	is	a	BeagleBone	Black,	you	may	just	see	the	U-Boot	prompt	when	you	hit
Enter.	The	reason	for	this	is	that	the	BeagleBone	Black	has	internal	eMMC	storage,	while
the	BeagleBone	(White)	does	not.	By	default,	the	BeagleBone	Black	boots	first	from	its
internal	eMMC.	To	temporarily	tell	it	to	boot	from	the	SD	card,	follow	these	steps:

	Unplug	power	from	the	board	(mini-USB	or	5V	barrel	connector	depending	on	what
you	are	using).

	Press	and	hold	the	USER/BOOT	button	on	the	board	(the	small	button	to	the	upper-
right	on	the	top	side	of	the	board	when	Ethernet	and	5V	power	connector	are	facing
to	the	left).

	Plug	in	power	again	while	still	holding	the	USER/BOOT	button	until	the	first
messages	from	U-Boot	appear	in	your	Minicom	window.	You	can	then	release	the
button.

Your	BeagleBone	boots	and	eventually	shows	the	Linux	login	prompt.

You	can	permanently	change	the	boot	order	from	internal	eMMC	to	SD	card	by	issuing
these	commands	from	the	U-Boot	command	prompt:

mmc	dev	1
mmc	erase	0	512

This	erases	the	content	from	internal	eMMC.

From	the	Linux	command	prompt,	you	can	log	in	to	your	system	running	on	the
BeagleBone.

Congratulations,	you	have	successfully	created	a	Yocto	Project	image	for	an	embedded
board	and	used	it	to	boot	the	board.

10.2.2	External	Yocto	Project	BSP
The	Internet	of	Things	and	the	Maker	Movement	are	driving	the	demand	for	inexpensive
computer	hardware.	Professional	developers	and	hobbyists12	alike	are	looking	for
development	boards	that	they	can	use	for	designs	and	prototypes	and	integrate	with	their
projects.	A	steadily	increasing	number	of	boards	is	available	built	around	a	large	variety	of
SoCs.	The	vast	majority	uses	silicon	that	is	based	on	ARM	architecture,	but	x86,	x86_64,
xScale,	and	PowerPC	can	also	be	found.	The	Raspberry	Pi	has	set	a	new	benchmark	for	a
low-cost	embedded	computer	capable	of	running	a	full	Linux	OS	stack.	Other	boards	have
followed	suit,	and	many	of	them	set	you	back	only	as	much	as	a	good	dinner	in	a	decent
restaurant.
12.	We	do	not	distinguish	professional	developers	and	hobbyists	based	on	their	skills	but	rather	whether	they	are

working	on	embedded	systems	as	part	of	their	job	or	as	a	hobby.

Popular	Development	Boards

Table	10-1	shows,	in	alphabetical	order,	some	of	the	more	popular	development	boards
capable	of	running	Linux.	They	all	provide	various	low-speed	I/O	interfaces	that	are
readily	accessible	via	pin	headers.	For	some	of	them,	expansion	boards	are	available	that
directly	plug	on	to	the	headers.	Expansion	boards	offer	anything	from	parallel	I/O	with
LED	status	and	relays	to	analog-to-digital	(ADC)	and	digital-to-analog	(DAC)	converters
to	stepper	motor	drivers	for	robotic	applications	and	much	more.

Table	10-1	Popular	Development	Boards

The	table	presents	only	a	small	selection	of	development	boards	at	the	time	of	the
writing	of	this	book.	With	every	new	generation	of	SoC,	new	boards	come	to	the	market
almost	simultaneously.

Finding	the	Yocto	Project	BSP	for	Your	Board

Once	you	have	decided	on	the	board	for	your	next	development	project,	where	do	you	find
development	boards	supported	by	Yocto	Project	BSP?	A	good	starting	point	is	the	website
for	the	board	itself.	In	many	cases,	you	can	find	links	to	the	Yocto	Project	or	to	a
community	providing	hardware	support.

The	Yocto	Project	maintains	a	searchable	BSP13	page	on	its	website	with	an	overview
of	the	boards	and	BSPs	that	are	hosted	on	Yocto	Project	repositories.	These	BSPs	are
provided	by	organizations,	commercial	and	open	source,	that	support	the	Yocto	Project
through	resources	and	development	work.14

13.	https://www.yoctoproject.org/downloads/bsps

14.	The	word	free	in	free	and	open	source	software	(FOSS)	pertains	to	freedom,	not	to	cost.	Organizations	seeking
Yocto	Project	Compatible	certification	support	the	project	with	resources	for	development	and	infrastructure.

Some	are	listed	as	Yocto	Project	Compatible,	a	status	that	functions	as	a	recognition	by
the	Yocto	Project	of	organizations	who	support	the	project.	Yocto	Project	Compatible	does
not	imply	that	layers	without	that	status	are	incompatible,	only	that	those	layers	listed	as

https://www.yoctoproject.org/downloads/bsps

Yocto	Project	Compatible	have	gone	through	a	vetting	process	and	are	supported	by	a
Yocto	Project	member	organization.

The	Yocto	Project	Git	repository15	hosts	many	BSP	layers,	including	ones	that	are	not
officially	Yocto	Project	certified.	The	list	of	BSP	layers	includes	the	following:
15.	http://git.yoctoproject.org

	meta-fsl-arm:	BSP	layer	for	Freescale	platforms	using	SoC	based	on	ARM
architecture.

	meta-fsl-ppc:	BSP	layer	for	Freescale	platforms	using	SoC	based	on	PowerPC
architecture.

	meta-intel:	Compound	BSP	layer	for	Intel	platforms	based	on	x86	and	x86_64
architectures.	This	layer	contains	multiple	sublayers	for	the	actual	platforms.

	meta-intel-galileo:	BSP	layer	for	Intel	Galileo	platform	support.

	meta-intel-quark:	BSP	layer	for	Intel	Quark	platform	support.

	meta-minnow:	BSP	layer	for	the	original	MinnowBoard	(not	the	MinnowBoard
Max,	which	is	supported	by	meta-intel).

	meta-raspberrypi:	BSP	layer	for	Raspberry	Pi	1	and	Raspberry	Pi	2	devices.

	meta-renesas:	BSP	layer	for	Renesas	devices.

	meta-ti:	BSP	layer	for	Texas	Instruments	devices,	including	extended	hardware
support	for	the	BeagleBone	that	is	not	provided	by	meta-yocto-bsp.

	meta-xilinx:	BSP	layer	for	Xilinx	devices.

	meta-zynq:	BSP	layer	for	Zynq	devices.

And	last	but	not	least,	the	OpenEmbedded	website16	provides	a	searchable	layer	index
that	includes	many	BSPs	provided	by	various	communities.	The	search	function	allows
searching	by	machine	name	and	lists	layers	that	provide	support	for	that	machine.
Sometimes,	multiple	BSP	layers	for	the	same	machine	are	available,	which	may	differ	in
the	level	of	support	they	are	providing	for	the	board.
16.	http://openembedded.org/wiki/Main_Page

Building	with	an	External	Yocto	Project	BSP

Yocto	Project	BSPs	are	layers,	and	building	with	them	is	as	easy	as	1-2-3:

1.	Include	the	BSP	layer	with	your	build	environment	by	adding	its	path	to	the
BBLAYERS	variable	in	conf/bblayers.conf.

2.	Assign	the	machine	from	the	BSP	you	want	to	build	for	to	the	MACHINE	variable	in
conf/local.conf.

3.	Choose	an	image	target	and	start	your	build—for	instance,	bitbake	-k	core-
image-minimal.	It	is	good	advice	to	start	with	a	small	image,	just	capable	of
booting	to	the	console	command	line,	such	as	core-image-minimal	or	core-

http://git.yoctoproject.org
http://openembedded.org/wiki/Main_Page

image-base.	If	that	works,	you	can	test	a	larger	image	such	as	core-image-
sato	or	start	building	your	own	custom	image	recipe.	Some	BSPs	contain	their
own	image	targets,	which	are	a	good	starting	point	too.

When	using	Yocto	Project	BSPs,	you	need	to	pay	attention	that	the	BSP	version
matches	the	version	of	the	OpenEmbedded	build	system.	BSPs	commonly	extend	recipes
from	the	core	layers	of	OE	Core	with	bbappend	files.	If	the	versions	do	not	match,	there
is	a	chance	that	versions	of	individual	recipes	that	are	extended	by	the	BSP	do	not	match
the	versions	found	in	the	core	layers.	If	that	happens,	BitBake	issues	an	error	message	for
the	individual	recipe,	but	the	root	cause	is	not	always	obvious.

The	Yocto	Project	developers	use	code	names	for	the	major	releases:	Dora	for	1.5,
Daisy	for	1.6,	Dizzy	for	1.7,	Fido	for	1.8,	and	Jethro	for	2.0.	Although	you	can	download
tarballs	for	the	releases	from	the	Yocto	Project	website,17	we	recommend	that	you	check
out	the	releases	from	the	Yocto	Project	Git	repository.	Using	the	Git	repository	makes	it
easy	to	keep	track	of	the	versions	and	even	switch	between	versions.	For	example,	if	you
are	looking	to	use	the	meta-ti	layer	instead	meta-yocto-bsp	to	build	for	the
BeagleBone	simply	clone	the	matching	branches	from	the	poky	and	meta-ti
repositories:
17.	https://www.yoctoproject.org/downloads

Click	here	to	view	code	image
$	git	clone	git://git.yoctoproject.org/poky	-b	fido
$	git	clone	git://git.yoctoproject.org/meta-ti	-b	fido

There	is	another	thing	you	should	be	aware	of:	while	BSPs	typically	do	not	interfere
with	each	other,	there	are	BSPs,	such	as	meta-yocto-bsp	and	meta-ti,	that	have	an
overlap	in	machine	definitions	(in	this	case	beaglebone).	To	avoid	the	conflict,	you
must	include	only	one	or	the	other	BSP	layer	with	BBLAYERS.	In	general,	it	is	good
advice	to	include	only	one	BSP	layer	with	a	build	environment	at	the	same	time.

10.3	Inside	a	Yocto	Project	BSP
Yocto	Project	BSPs	are	specialized	BitBake	layers.	As	such,	they	follow	the	conventions
for	layers,	as	discussed	in	Chapter	3,	but	also	include	items	that	are	characteristic	for	BSP
layers.	Listing	10-2	depicts	the	generic	BSP	layer	layout.

Listing	10-2	Yocto	Project	BSP	Layer	Layout
Click	here	to	view	code	image

meta-<bspname>
	LICENSE
	MAINTAINERS
	README
	README.sources
	binary

			 	<bootable-image-1>
			 	<bootable-image-2>
			 	…
			 	<bootable-image-n>
	conf

			 	layer.conf

https://www.yoctoproject.org/downloads

			 	machine

			 			 	<machine-1>.conf
			 			 	<machine-2>.conf
			 			 	…
			 			 	<machine-m>.conf
	classes

			 	class-<1>.bbclass
			 	class-<2>.bbclass
			 	…
			 	class<m>.bbclass
	recipes-bsp

			 	formfactor

			 			 	formfactor_0.0.bbappend
			 			 	formfactor

			 							 	machine-1

			 							 			 	machconfig
			 							 	machine-2

			 							 			 	machconfig
			 							 	…
			 							 	machine-m

			 											 	machconfig
			 	<package	a>

			 			 	<package	a>_<version	1>.bb
			 			 	<package	a>_<version	2>.bb
			 	<package	b>

			 			 	<package	b>_<version	1>.bb
			 			 	<package	b>_<version	2>.bb
			 	…
			 	<package	z>

	recipes-core
			 	images

			 			 	core-image-1.bb
			 			 	core-image-2.bb
			 			 	…
			 			 	core-image-n.bb
			 	…
	recipes-graphics

			 	<package	a>

			 			 	<package	a>_<version	1>.bb
			 			 	<package	a>_<version	2>.bb
			 	<package	b>

			 			 	<package	b>_<version	1>.bb
			 			 	<package	b>_<version	2>.bb
			 	…
			 	<package	z>

	recipes-kernel
			 	linux

			 			 	linux-yocto_<version	1>.bbappend
			 			 	linux-yocto_<version	2>.bbappend
	recipes-<category	x>

				 	…

The	majority	of	this	structure	is	pure	convention.	However,	the	build	system	expects
certain	directories	and	files	to	be	named	specifically	and	in	specific	locations.	Like	any
layer,	the	top-level	directory	of	the	layer	is	named	meta-<layername>,	where
layername	is	the	name	of	the	BSP.

10.3.1	License	Files
License	files	are	located	at	the	top-level	directory	of	the	BSP.	They	can	have	any	name,
but	names	such	as	LICENSE,	EULA,	and	COPYING	typically	are	used.

License	files	are	optional	in	the	sense	that	the	build	system	does	not	look	for	them	and
enforce	their	presence.	Nevertheless,	we	strongly	recommend	that	you	provide	a	license
file	when	writing	your	own	BSP.	Providing	a	license	file	gives	users	of	your	BSP	certainty
on	what	they	can	and	cannot	do	with	the	BSP.

10.3.2	Maintainers	File
The	maintainers	file	contains	information	on	who	the	developers	are	who	are	responsible
for	maintaining	the	BSP.	This	file	is	optional,	and	maintainer	information	commonly	is
included	in	the	top-level	README	file.	If	a	BSP	has	multiple,	possibly	many,	maintainers,
it	makes	good	sense	to	provide	this	information	in	a	separate	file.

10.3.3	README	File
A	Yocto	Project–compliant	BSP	must	include	a	README	file	in	the	top-level	directory	of
the	BSP.	This	file	should,	at	a	minimum,	include	the	following	information:

	A	section	describing	the	BSP	and	the	hardware	that	it	targets.

	A	section	detailing	all	the	dependencies	for	this	BSP	layer.	Typically,	these	are	other
layers	such	as	meta	and	meta-yocto.	Virtually	all	BSPs	depend	on	the	OE	Core
metadata	layer	meta.	Although	it	seems	somewhat	obvious,	it	is	good	practice	to
include	it	in	the	list	of	dependencies.

	A	section	providing	guidelines	for	asking	questions,	reporting	bugs,	and	submitting
patches.	This	information	makes	it	easier	for	both	users	and	maintainers	to
communicate	and	collaborate.

	If	not	provided	by	a	separate	file,	a	section	about	the	developers	maintaining	the
BSP.

	Instructions	on	how	to	use	the	BSP	to	build	binary	images	for	the	target	hardware.

	Instructions	on	how	images	built	with	the	BSP	can	be	installed	on	the	target
hardware	and	how	to	boot	the	target	hardware.

	Instructions	on	how	to	use	prebuilt	binary	images	contained	in	the	binary
directory	of	the	BSP	if	such	images	are	provided	by	the	BSP.

	A	section	containing	information	on	any	known	bugs	or	issues	that	users	of	the	BSP
should	be	aware	of	when	using	the	BSP.

The	more	detailed	the	information	inside	the	README	file	is,	the	easier	it	is	for	users	of
the	BSP	to	successfully	include	the	BSP	with	their	projects	and	use	the	target	hardware.

10.3.4	README.sources	File
This	file	provides	information	on	where	users	can	find	the	source	files	that	are	used	to
build	the	bootable	images	in	the	binary	directory.	Commonly,	these	are	the	metadata	layers
that	have	been	used	to	create	the	images.	This	seems	redundant	with	the	dependency
information	in	the	README	file.	However,	it	is	not,	as	the	build	environment	used	to	build
the	images	may	have	included	other	optional	but	not	required	layers.

10.3.5	Prebuilt	Binaries
A	BSP	may	include	prebuilt	bootable	image	binaries	in	the	binary	subdirectory.	While
including	bootable	images	is	optional,	it	assists	users	of	the	BSP	in	bringing	up	the	target
hardware	with	a	known	good	image.	Together	with	the	information	in	the
README.sources	file,	users	can	more	easily	debug	issues	that	they	may	have	with
images	they	built	themselves	by	comparing	them	to	the	prebuilt	ones.	Of	course,	adding
prebuilt	image	binaries	can	increase	the	size	of	the	BSP	tremendously.

10.3.6	Layer	Configuration	File
Like	any	layer,	a	BSP	must	include	the	layer	configuration	file	conf/layer.conf.	For
a	BSP,	this	file	is	no	different	from	a	layer	configuration	file	used	by	a	regular	layer.	The
boilerplate	file	is	shown	in	Listing	10-3.

Listing	10-3	Layer	Configuration	File	for	a	BSP
Click	here	to	view	code	image

	#	We	have	a	conf	and	classes	directory,	add	to	BBPATH
BBPATH	.=	“:${LAYERDIR}”

#	We	have	a	recipes	directory,	add	to	BBFILES
BBFILES	+=	“${LAYERDIR}/recipes-*/*/*.bb	\
												${LAYERDIR}/recipes-*/*/*.bbappend”

BBFILE_COLLECTIONS	+=	“bsp”
BBFILE_PATTERN_bsp	=	“^${LAYERDIR}/”
BBFILE_PRIORITY_bsp	=	“6”

LAYERDEPENDS_bsp	=	“<deplayer>”

To	use	this	boilerplate,	you	have	to	substitute	bsp	for	the	actual	name	of	the	layer
(without	meta-).	If	the	BSP	layer	depends	on	other	layers,	such	as	a	common	layer	used
for	multiple	BSPs,	the	layer	configuration	file	sets	the	LAYERDEPENDS_bsp	variable	to
a	space-delimited	list	of	layers.

10.3.7	Machine	Configuration	Files
The	machine	configuration	file	is	what	distinguishes	a	BSP	layer	from	a	regular	layer.	A
BSP	layer	contains	at	least	one	but	can	have	any	number	of	machine	configuration	files	in
the	conf/machine	subdirectory	for	the	different	hardware	targets	supported	by	the
BSP.	Machine	configuration	files	are	named	<machinename>.conf.	You	select	your
desired	machine	target	by	setting	the	MACHINE	variable	in	conf/local.conf	of	your
build	environment	to	the	name	of	the	machine	configuration	file	without	the	.conf
ending.

Machine	configuration	files	include	settings	to	select	and	configure	software	packages
that	are	built	by	recipes	contained	in	the	BSP	or	in	other	metadata	layers	in	general.	A
typical	example	is	the	Linux	kernel	type	and	version	that	the	BSP	uses	for	the	particular
machine.	The	machine	configuration	file	contains	settings	for
PREFERRED_PROVIDER_virtual/kernel	and
PREFERRED_VERSION_virtual/kernel	to	select	kernel	type	and	version
respectively.

Machine	configuration	files	commonly	also	include	tuning	parameters	for	the	particular
CPU	architecture	the	target	hardware	is	using.	Those	parameters	and	other	parameters	that
are	shared	between	multiple	machines	are	typically	separated	into	their	own	files.	These
files	are	included	in	the	machine	configuration	file	by	the	require	directive.

10.3.8	Classes
A	BSP	may	contain	custom	classes	in	the	classes	subdirectory.	Frequently	these	are
image	classes	that	assemble	the	bootable	binary	images	in	a	certain	way	the	target
hardware	expects	them.	Such	image	classes	and	the	images	that	they	build	make	it	easier
to	create	bootable	media	from	the	images.

10.3.9	Recipe	Files
Any	BSP	contains	a	number	of	recipe	files	to	either	build	software	packages	specific	to
the	BSP	and/or	to	extend	recipes	for	packages	from	other	layers	using	.bbappend	files.
Recipe	files	of	a	BSP	are	organized	in	recipes-<category>/<package>
subdirectories	exactly	the	same	way	as	in	any	other	metadata	layer.	Following	are	the
more	common	recipes	you	find	in	BSP	layers:

	BSP-Specific	Recipe	Files	(recipes-bsp):	Miscellaneous	recipes	specific	for
the	BSP.	Commonly,	you	find	bootloader	and	formfactor	metadata	files	in	a
directory	structure	beneath	recipes-bsp.

Formfactor	files	provide	information	to	the	build	system	regarding	whether	the
target	machines	use	keyboard,	touchscreen,	mouse,	and	so	on.

	Core	Support	Files	(recipes-core):	In	the	directory	recipes-core	you
typically	find	recipes	for	binary	images	for	the	target	hardware	as	well	as
adaptations	to	other	core	recipes	such	as	init-scripts,	systemd,	udev,	and	more.

	Display	Support	Files	(recipes-graphics):	In	the	directory	recipes-

graphics	you	find	recipes	related	to	display	support	if	the	target	hardware	of	the
BSP	has	specific	graphics	requirements.	Typically,	these	are	configuration	recipes
for	the	X11	server	or	the	Wayland/Weston	compositor.

	Linux	Kernel	(recipes-kernel):	The	directory	recipes-kernel	and	its
subdirectories	contain	recipes	and	configuration	files	pertaining	to	the	Linux	kernel.
Commonly,	these	are	.bbappend	files	to	add	kernel	configuration	fragments	to
kernel	recipes	in	the	meta	core	layer	and/or	kernel	patches.	Some	BSPs	provide
their	own	kernel	recipes,	which	build	the	Linux	kernel	from	their	own	repositories.
We	discussed	Linux	kernel	configuration	and	the	various	parameter	settings	at
length	in	Chapter	9,	“Kernel	Recipes.”

	Other	Recipes	(recipes-*):	A	BSP	may	add	its	own	recipes	and/or	extend
recipes	from	other	layers	as	required	by	the	target	hardware.	These	you	can	find	in
their	respective	recipe	subdirectories	inside	the	BSP	layer.

It	entirely	depends	on	the	BSP	and	the	target	hardware	it	supports	which	recipes	it
provides.

10.4	Creating	a	Yocto	Project	BSP
If	you	are	developing	your	own	hardware,	you	want	to	create	a	Yocto	Project	BSP	to
provide	full	support	for	it.	Principally,	you	can	take	one	of	the	following	three	approaches
for	creating	a	Yocto	Project	BSP:

	Create	Manually:	You	can	start	by	creating	an	empty	layer	using	the	yocto-
layer	script	and	then	populate	directories	and	files	for	your	BSP	manually.

	Copy	from	Existing	BSP	Layer:	If	the	hardware	that	your	BSP	targets	is	similar	to
hardware	from	another	BSP,	you	can	copy	that	layer	and	make	adjustments	to	meet
the	requirements	of	your	target	hardware.

	Use	the	Yocto	Project	BSP	Tools:	The	Yocto	Project	provides	a	couple	of	tools	that
simplify	the	task	of	creating	a	BSP.	They	are	interactive	and	allow	setting	common
BSP	parameters	by	responding	to	a	series	of	questions.	The	tools	then	create	a
skeleton	for	your	BSP,	and	you	then	can	fill	in	the	missing	details.

Creating	a	BSP	manually	from	scratch	is	the	most	tedious	approach,	as	it	requires	you
to	add	files	and	directories	yourself.	In	virtually	all	cases,	using	the	Yocto	Project	BSP
tools	is	the	better	option	because	it	allows	you	to	interactively	tailor	your	BSP	layer.
Copying	from	an	existing	BSP	is	a	good	alternative	if	your	target	hardware	is	close	to	the
hardware	supported	by	that	BSP.	You	could	also	extend	the	other	BSP	and	make	it	a
dependency	for	your	BSP.	That	approach	avoids	duplication	but	requires	you	to	maintain
your	BSP	when	changes	are	made	to	the	other	BSP	your	BSP	depends	on.

10.4.1	Yocto	Project	BSP	Tools
There	are	two	tools	to	assist	you	with	creating	a	Yocto	Project	BSP:	yocto-bsp	and
yocto-kernel.	The	former,	you	guessed	it,	assists	in	creating	the	BSP	layer,	and	the
latter	assists	in	configuring	the	Linux	kernel.	Both	tools	have	several	subcommands.
Invoking	the	tool	without	specifying	the	subcommand	results	in	printing	the	help	message
with	the	list	of	available	subcommands.

The	tools	are	located	in	the	poky/scripts	directory	of	the	Poky	reference
distribution.	You	have	to	source	the	oe-init-build-env	script	to	use	the	tools.
However,	you	do	not	have	to	create	your	BSP	inside	your	build	environment.	Once	you
have	sourced	the	script,	you	change	directories	to	where	you	would	like	to	set	up	your
BSP.

The	yocto-bsp	Tool

Invoking	yocto-bsp	or	yocto-bsp	help	provides	you	with	information	about	the
available	subcommands:
Click	here	to	view	code	image

$	yocto-bsp

ERROR:root:No	subcommand	specified,	exiting
Usage:

	Create	a	customized	Yocto	BSP	layer.

	usage:	yocto-bsp	[—version]	[—help]	COMMAND	[ARGS]

	Current	‘yocto-bsp’	commands	are:
				create												Create	a	new	Yocto	BSP
				list														List	available	values	for	options	and	BSP	properties

	See	‘yocto-bsp	help	COMMAND’	for	more	information	on	a	specific	command.

Options:
		—version				show	program’s	version	number	and	exit
		-h,	—help			show	this	help	message	and	exit
		-D,	—debug		output	debug	information

The	tool	has	two	subcommands:	create	and	list.	Invoking	the	tool	with	yocto-
bsp	<subcommand>	--help	prints	further	information	on	the	particular
subcommand.

Subcommand	yocto-bsp	list

The	subcommand	yocto-bsp	list	shows	information	only.	Currently,	that	is
information	on	the	supported	kernel	architectures:

$	yocto-bsp	list	karch

Architectures	available:
				i386
				mips64
				arm
				powerpc
				mips

				x86_64
				qemu

For	each	kernel	architecture,	there	are	several	properties	available	that	the	tool	sets
when	creating	the	BSP.	For	instance,
Click	here	to	view	code	image

$	yocto-bsp	list	x86_64	properties

shows	a	list	of	all	properties	in	JSON	format	available	for	x86_64	architecture.	When	you
are	creating	a	BSP	for	x86_64,	the	tool	interactively	walks	through	these	properties	asking
you	for	the	setting	it	should	apply.

You	can	dump	the	output	of	the	list	subcommand	into	a	file	by	specifying	the	-o
<filename>	or	--outfile	<filename>	parameters:
Click	here	to	view	code	image

$	yocto-bsp	list	x86_64	properties	-o	x84_64.prop

The	dump	in	the	file	is	also	in	JSON	format.

Subcommand	yocto-bsp	create

You	create	a	BSP	by	invoking	yocto-bsp	create	<bsp-name>	<karch>,	where
you	replace	<bsp-name>	with	the	name	for	your	BSP	(without	meta-)	and	<karch>
with	the	desired	kernel	architecture.	The	subcommand	accepts	several	optional
parameters:

	-o	<outdir>	or	—outdir	<outdir>:	Without	this	parameter,	the	tool	creates
the	BSP	in	the	current	directory	with	the	name	<bsp-name>.	To	create	it	in	a
different	directory,	use	the	-o	or	--outfile	option.	Unfortunately,	if	you	use	one
of	these	options,	you	have	to	provide	the	entire	path	of	the	BSP	and	not	just	the	base
path,	as	the	tool	does	not	use	<bsp-name>	in	that	case.

	-i	<properties-file>	or	—infile	<properties-file>:	These
parameters	cause	the	tool	to	read	the	settings	for	the	various	properties	from	a	file
rather	than	interactively	asking	for	them.	The	file	must	be	in	JSON	format.

	-c	codedump	or	—codedump:	Rather	than	running	the	BSP	creation,	dump	the
code	to	the	file	bspgen.out.	Use	this	option	if	you	like	to	know	what	the	tool
does	to	create	the	BSP	without	actually	creating	it.

	-s	or	–skip-git-check:	These	parameters	check	for	access	to	a	remote	Git
repository.	Provide	this	option	to	spare	a	little	time	when	creating	the	BSP.

We	walk	through	the	generation	of	a	BSP	in	Section	10.4.2.

The	yocto-kernel	Tool

The	yocto-kernel	tool	provides	functionality	for	listing,	adding,	and	removing
configuration	settings,	features,	and	patches	to	the	BSP’s	kernel	recipe.	It	interactively
creates	the	kernel	configuration	fragment,	feature,	and	patch	collections	discussed	in
Chapter	9.	Like	the	yocto-bsp	tool,	the	yocto-kernel	tool	has	a	list	of
subcommands	that	you	can	print	with	the	--help	option:
Click	here	to	view	code	image

$	yocto-kernel	—help
Usage:

	Modify	and	list	Yocto	BSP	kernel	config	items	and	patches.

	usage:	yocto-kernel	[—version]	[—help]	COMMAND	[ARGS]

	Current	‘yocto-kernel’	commands	are:
			config	list							List	the	modifiable	set	of	bare	kernel	config	options
																					for	a	BSP
			config	add								Add	or	modify	bare	kernel	config	options	for	a	BSP
			config	rm									Remove	bare	kernel	config	options	from	a	BSP
			patch	list								List	the	patches	associated	with	a	BSP
			patch	add									Patch	the	Yocto	kernel	for	a	BSP
			patch	rm										Remove	patches	from	a	BSP
			feature	list						List	the	features	used	by	a	BSP
			feature	add							Have	a	BSP	use	a	feature
			feature	rm								Have	a	BSP	stop	using	a	feature
			features	list					List	the	features	available	to	BSPs
			feature	describe		Describe	a	particular	feature
			feature	create				Create	a	new	BSP-local	feature
			feature	destroy			Remove	a	BSP-local	feature

	See	‘yocto-kernel	help	COMMAND’	for	more	information	on	a	specific
	command.

Options:
		—version				show	program’s	version	number	and	exit
		-h,	—help			show	this	help	message	and	exit
		-D,	—debug		output	debug	information

To	use	the	yocto-kernel	tool,	you	must	have	sourced	your	build	environment.	Then
execute	the	command	from	within	the	build	environment.	The	majority	of	the
subcommands	take	the	name	of	a	BSP	as	parameter.	This	BSP	must	be	included	in	the
BBLAYERS	variable	of	conf/bblayers.conf	in	your	build	environment.

Managing	Linux	Kernel	Configuration	Options

The	config	subcommands	allow	simple	management	of	the	kernel	configuration
options:

	yocto-kernel	config	list	<bsp>:	List	all	configuration	fragments	for
the	Linux	kernel	used	by	the	BSP	<bsp>.

	yocto-kernel	config	add	<bsp>	CONFIG_<parameter>=[y|n|m]:
Add	a	configuration	fragment	that	modifies	the	kernel	configuration	option
<parameter>:

	y	(yes):	Turn	the	parameter	on.

	n	(no):	Turn	the	parameter	off.

	m	(module):	Build	the	kernel	module	(applicable	only	to	kernel	modules).

	yocto-kernel	config	rm	<bsp>	CONFIG_<parameter>:	Remove	the
configuration	fragment	for	the	kernel	configuration	option	<parameter>.

You	can	provide	more	than	one	configuration	item	for	the	config	add	and	config
rm	subcommannds.

Managing	Kernel	Patches

You	can	manage	patches	for	your	BSP	using	the	patch	subcommands:

	yocto-kernel	patch	list	<bsp>:	List	all	patches	for	the	Linux	kernel
used	by	the	BSP	<bsp>.

	yocto-kernel	patch	add	<bsp>	/path/to/patchfile.patch:
Copy	the	patch	patchfile.patch	from	the	provided	path	to	recipes-
kernel/linux/files	inside	the	BSP	layer	<bsp>,	and	add	it	to	SRC_URI	of
the	kernel	recipe.

	yocto-kernel	patch	rm	<bsp>	patchfile.patch:	Remove	the	patch
patchfile.patch	from	recipes-kernel/linux/files	inside	the	BSP
<bsp>,	and	remove	it	from	SRC_URI	of	the	kernel	recipe.

You	can	provide	more	than	one	patch	for	patch	add	and	patch	rm	subcommands
at	a	time.

Managing	Kernel	Features

Similar	to	kernel	configuration	options	and	patches,	you	can	manage	features	with	the
feature	subcommands:

	yocto-kernel	features	list	<bsp>:	Lists	all	the	kernel	features	that	are
locally	available	to	the	BSP	<bsp>.	These	are	feature	files	ending	in	.scc	that	are
in	the	BSP	in	recipes-kernel/linux/files.

	yocto-kernel	feature	list	<bsp>:	List	all	kernel	features	currently
used	by	the	BSP	<bsp>.

	yocto-kernel	feature	create	<bsp>	featurefile.scc
“Feature	Description”\capabilities	CONFI_parameter=

[y|n|m]	/path/to/patchfile.patch:	Create	a	new	local	feature	for	the
BSP	<bsp>	named	featurefile.scc	using	"Feature	Description"	as
the	description,	and	add	the	kernel	configuration	parameters	and	patches	listed	after
capabilities.

	yocto-kernel	feature	add	<bsp>	featurefile.scc:	Add	the	local
feature	featurefile.scc	to	the	kernel	feature	list	of	the	BSP	<bsp>.	The

feature	must	have	previously	been	created	with	yocto-kernel	feature
create.

	yocto-kernel	feature	rm	<bsp>:	Remove	one	or	more	features	from	the
list	of	kernel	features	of	the	BSP	<bsp>.	The	tool	lists	the	features	and	then
prompts	for	the	ones	to	be	removed.	This	command	does	not	delete	the	feature	from
BSP,	it	just	removes	it	from	the	kernel’s	feature	inclusion	list.

	yocto-kernel	feature	destroy	<bsp>	featurefile.scc:	Delete
the	feature	from	the	local	list	of	features	of	the	BSP	<bsp>.	This	command	does
delete	the	feature	file,	configuration	fragments,	and	patches	from	the	BSP.

The	feature	subcommand	is	a	convenient	way	of	managing	the	features	included
with	the	kernel	without	manually	modifying	the	feature	files	and	modifying	SRC_URI	of
the	recipe.

10.4.2	Creating	a	BSP	with	the	Yocto	Project	BSP	Tools
Now	it	is	time	to	put	it	all	together	and	use	the	Yocto	Project	BSP	tools	to	create	a	basic
BSP.	Our	BSP	is	for	an	information	kiosk	device.	The	device	uses	an	Intel	Core	i7	CPU,
has	HDMI	graphics	output	on	board,	and	is	connected	to	a	multitouch	touchscreen	for	a
great	user	experience.	As	a	test	platform	for	our	device,	we	use	the	MinnowBoard	Max
and	connect	a	multitouch	touchscreen	with	HDMI	and	USB	inputs	to	it.	We	also	want	our
BSP	to	identify	itself	with	an	entry	in	the	kernel	log	when	starting	up.	For	that	purpose,	we
developed	a	simple	device	driver,	which	is	essentially	the	same	as	the	one	shown	in
Chapter	9,	Listing	9-3.	We	just	changed	the	message	texts	to	“Yocto	Project	Book	Kiosk
BSP:	init”	and	“Yocto	Project	Book	BSP:	exit.”	Simply	follow	the	steps	from	Section	9.2
to	create	the	patch.

The	following	steps	outline	the	workflow	to	create	your	BSP,	which	we	call
ypbkiosk:

1.	Initialize	the	build	environment.	To	create	a	BSP	with	the	Yocto	Project	BSP
tools,	you	need	a	build	environment:

Click	here	to	view	code	image
$	source	/path/to/poky/oe-init-build-env	kiosk

Set	the	build	environment	variables	DL_DIR	and	SSTATE_DIR	in
conf/local.conf.

2.	Create	the	BSP	layer.	For	the	sake	of	simplicity,	we	create	our	new	BSP	layer
inside	the	build	environment.	The	command

Click	here	to	view	code	image
$	yocto-bsp	create	ypbkiosk	x86_64

starts	the	interactive	process	to	create	a	BSP	layer	called	ypbkiosk	for	a	machine
ypbkiosk	with	x86_64	architecture.	The	tool	now	asks	a	couple	of	questions
about	the	features	we	want	to	use	for	our	BSP:

	Would	you	like	to	use	the	default	(3.19)	kernel?	(y/n)	[default:	y]	y

	Do	you	need	a	new	machine	branch	for	this	BSP	(the	alternative	is	to	re-use	an
existing	branch)?	(y/n)	[default:	y]	n

	Please	choose	a	machine	branch	to	base	this	BSP	on:	[default:	standard/common-
pc-64/base]	7	(or	Enter	for	default)

	Do	you	need	SMP	support?	(y/n)	[default:	y]	y	(or	Enter	for	default)

	Which	machine	tuning	would	you	like	to	use?	[default:	tune_core2]	2	(Corei7
tuning	optimization)

	Do	you	need	support	for	X?	(y/n)	[default:	y]	y	(or	Enter	for	default)

	Please	select	an	xserver	for	this	machine:	[default:	xserver_i915]	4	(fbdev
xserver	support)

	Does	your	BSP	have	a	touchscreen?	(y/n)	[default:	n]	y

	Does	your	BSP	have	a	keyboard?	(y/n)	[default:	y]	y	(or	Enter	for	default)

After	you	respond	to	the	last	question,	the	BSP	tool	sets	up	the	BSP	and	exits	with
New	x86_64	BSP	created	in	meta-ypbkiosk.

3.	Enable	the	touchscreen	driver.	For	our	kiosk	BSP,	we	need	the	multitouch
touchscreen	driver	enabled	in	the	Linux	kernel.	The	driver’s	configuration	setting	is
CONFIG_HID_MULTITOUCH.	We	use	the	Yocto	Project	kernel	tool	to	add	a
configuration	fragment	that	enables	the	driver:

Click	here	to	view	code	image
$	yocto-kernel	config	add	ypbkiosk
CONFIG_HID_MULTITOUCH=y
Added	item:
								CONFIG_HID_MULTITOUCH=y

The	tool	adds	the	setting	to	ypbkiosk-user-config.cfg	in	meta-
ypbkiosk/recipes-kernel/linux/files.

4.	Add	the	BSP	driver	patch.	We	are	adding	the	BSP	driver	patch	as	a	feature.	The
feature	applies	the	patch	and	also	adds	the	configuration	setting	to	enable	it:

Click	here	to	view	code	image
$	yocto-kernel	feature	create	ypbkiosk	ypbbspmsg.scc	\
	“Yocto	Project	Book	BSP	Message”	capabilities	\
	CONFIG_YP_DRIVER=y	0001-Yocto-Project-Book-Kiosk-BSP-Message.patch
Added	feature:
			features/ypbbspmsg.scc
$	yocto-kernel	feature	add	ypbkiosk	features/ypbbspmsg.scc
Added	features:
	features/ypbbspmsg.scc

The	first	command,	yocto-kernel	feature	create,	creates	the	feature	and
adds	it	to	the	BSP.	However,	it	is	not	yet	included	with	the	kernel	build,	which	is
accomplished	by	the	second	command,	yocto-kernel	feature	add.

5.	Build	the	image.	Now	that	we	have	created	the	BSP	with	the	desired	kernel
configuration,	we	can	start	building	the	image:
$	bitbake	-k	core-image-sato

We	are	using	the	core-image-sato	image	target,	which	provides	us	with	a
graphical	user	interface	for	testing.

6.	Copy	the	image	to	a	bootable	medium.	We	are	using	the	MinnowBoard	Max	as
the	test	target	system	for	our	kiosk.	The	board	boots	from	a	USB	memory	stick.
Copy	the	image	to	the	memory	stick:

Click	here	to	view	code	image
$	dd	if=tmp/deploy/images/ypbkiosk/core-image-sato-ypbkiosk.hddimg	\
					of=/dev/<usbstickdevice>

You	need	to	replace	<usbstickdevice>	with	the	name	of	the	device	node,
which	you	can	find	with	the	dmesg	command	after	plugging	the	USB	stick	into
your	development	system.

7.	Boot	the	target.	The	MinnowBoard	Max	has	a	UEFI	BIOS	with	a	shell.	After	you
plug	the	USB	memory	stick	into	the	board	and	turn	it	on,	the	MinnowBoard	Max
launches	the	shell.	The	filesystem	on	the	memory	stick	is	recognized	as	fs0.	At	the
shell	prompt,	enter	fs0:,	and	at	the	next	prompt,	bootx64.	The	MinnowBoard
Max	should	then	boot	into	the	Sato	user	interface.	If	you	have	a	touchscreen
connected	to	your	board,	you	should	be	able	to	use	it.	You	can	also	open	a	terminal
and	look	for	the	BSP	message.

The	two	Yocto	Project	BSP	tools	yocto-bsp	and	yocto-kernel	provide	a
straightforward	way	to	create	BSP	layers.	With	only	a	few	interactive	steps,	they	set	up	the
core	framework	with	the	necessary	directories	and	files	for	a	basic	BSP	that	you	then	can
further	customize.	Managing	kernel	configuration	options,	patches,	and	features	becomes
a	simple	task	with	the	yocto-kernel	tool.	There	is	no	need	to	modify	recipes	and	other
files	manually.

10.5	Tuning
If	you	examine	the	machine	configuration	file	ypbkiosk.conf	we	created	in	the
previous	section,	notice	the	following	two	lines:
Click	here	to	view	code	image

DEFAULTTUNE	=	“corei7-64”
require	conf/machine/include/tune-corei7.inc

The	first	line	selects	the	CPU	architecture	and	application	binary	interface	(ABI)	tune
used	by	the	build	system.	The	second	line	provides	the	detailed	toolchain	settings,	such	as
GCC	compiler	flags,	for	the	particular	tune.

CPU	architectures	may	provide	backwards	compatibility,	meaning	that	you	could
potentially	use	the	tune	for	an	earlier	version	of	the	architecture	with	a	CPU	using	a	newer
generation	of	the	architecture,	which	is	what	you	want	to	create	a	kernel	that	runs	on
multiple	architectures.	However,	by	doing	so	you	are	not,	of	course,	getting	the	benefits	of
the	extended	instruction	set	and	functionality	of	the	newer	architecture	generation.	This
hierarchy	of	CPU	architecture	generations	is	reflected	by	the	hierarchy	of	the	tuning	files.
It	is	particularly	visible	with	Intel	x86	architecture:

	tune-corei7.inc:	Tunes	for	the	Intel	Core	i7	CPU	generation	with	64-bit

extensions	and	MMX,	SSE,	SSE2,	SSE3,	SSSE3,	SSE4.1,	and	SSE4.2	instruction
set	support.	Based	on	tune-core2.

	tune-core2.inc:	Tunes	for	the	Intel	Core2	CPU	generation	with	64-bit
extensions	and	MMX,	SSE,	SSE2,	SSE3,	and	SSSE3	instruction	set	support.	Based
on	tune-586.

	tune-i586.inc:	Tunes	that	enable	Intel	i586	specific	processor	optimization.
Based	on	arch-x86.

	arch-x86:	Core	architecture	definitions	for	Intel	x86	32-bit,	x86	64-bit,	and	x32
architectures.

You	can	find	the	tune	files	in	the	conf/machine	directory	and	subdirectories	thereof
of	the	OE	Core	metadata	layer	meta.

The	DEFAULT_TUNE	variable	selects	the	TUNE_FEATURES	for	a	particular	CPU
architecture.	The	build	system	uses	DEFAULT_TUNE	and	TUNE_FEATURES	to
determine	the	settings	for	the	following:

	TUNE_ARCH:	The	canonical	architecture	for	the	GNU	toolchain	for	a	specific	CPU
architecture.	TUNE_ARCH	is	closely	related	to	TARGET_ARCH,	as	the	BitBake
configuration	file	(meta/conf/bitbake.conf)	assigns	TARGET_ARCH	=
"${TUNE_ARCH}".

	TUNE_PKGARCH:	The	package	architecture	as	it	is	known	to	the	packaging	system
to	define	the	correct	architecture,	ABI,	and	tuning	of	the	output	packages.

	TUNE_ASARGS:	Assembler	flags	for	the	particular	tuning	architecture.

	TUNE_CCARGS:	Compiler	flags	for	the	particular	tuning	architecture.

	TUNE_LDARGS:	Linker	flags	for	the	particular	tuning	architecture.

The	build	system	validates	the	tuning	settings	for	their	compatibility,	particularly	for
conflicting	ABI	settings.

Each	tune	is	added	to	the	list	of	available	tunes	represented	by	the	variable
AVAILTUNES.	You	can	use	the	command
Click	here	to	view	code	image

$	bitbake	-e	|	grep	AVAILTUNES

to	obtain	the	list	for	your	current	configuration.	For	example,	with	the	settings	provided	by
our	ypbkioks.conf	machine	configuration,	you	will	see:
Click	here	to	view	code	image

$	bitbake	-e		|	grep	AVAILTUNES
#	$AVAILTUNES	[10	operations]
AVAILTUNES=”	x86	x86-64	x86-64-x32	i586	core2-32	core2-64	core2-64-x32	\
													corei7-32	corei7-64	corei7-64-x32”

In	detail:

	x86:	Intel	x86	32-bit	architecture	with	32-bit	ABI

	x86-86:	Intel	x86	64-bit	architecture	with	64-bit	ABI

	x86-64-x32:	Intel	x86	64-bit	architecture	with	32-bit	ABI

	i586:	Intel	i586	32-bit	architecture	with	32-bit	ABI

	core2-32:	Intel	Core2	32-bit	architecture	with	32-bit	ABI

	core2-64:	Intel	Core2	64-bit	architecture	with	64-bit	ABI

	core2-64-x32:	Intel	Core2	64-bit	architecture	with	32-bit	ABI

	corei7-32:	Intel	Core	i7	32-bit	architecture	with	32-bit	ABI

	corei7-64:	Intel	Core	i7	64-bit	architecture	with	64-bit	ABI

	corei7-64-x32:	Intel	Core	i7	64-bit	architecture	with	32-bit	ABI

Tunes	for	other	CPU	architectures	provide	similar	configurations	for	CPU	architecture
and	ABI.

10.6	Creating	Bootable	Media	Images
Images	created	by	the	OpenEmbedded	build	system	cannot	always	be	used	directly	on
storage	media	to	create	a	bootable	system.	We	saw	that	when	we	created	our	first	image
for	the	BeagleBone.	Additional	steps	were	necessary	to	partition	and	format	the	SD	card
and	then	copy	files	and	images	to	the	various	partitions.	Boot	images	depend	on	the	target
platform	as	well	as	on	the	storage	hardware	and	media	used.	An	SD	may	require	a
different	image	format	than	an	HDD.	To	facilitate	the	process	of	creating	bootable	images
that	can	be	transferred	directly	to	storage	media,	the	OpenEmbedded	build	system
provides	the	OpenEmbedded	Image	Creator	(wic).18

18.	You	may	ask	why	the	tool	is	called	wic	instead	of	oeic	(OpenEmbedded	Image	Creator).	Try	saying	the	diphthong
oeic	quickly	and	you	will	notice	that	it	sounds	more	like	wic.

The	wic	tool	creates	bootable	images	from	the	artifacts	created	by	the	build	system.	For
the	wic	command	to	work	correctly,	it	has	to	be	run	from	within	the	context	of	a	build
environment,	as	usual,	sourced	by	oe-init-build-env.

wic	uses	kickstart	files	ending	in	.wks	that	instruct	the	tool	what	images	to	create	and
how	to	create	them.	A	set	of	kickstart	files	ships	with	the	build	system.	To	obtain	a	list	of
the	built-in	images,	use

$	wic	list	images

wic	is	intended	to	be	extensible.	The	wic	kickstart	files	describe	the	steps	necessary	to
create	the	disk	image.	The	wic	source	plugins	contain	the	code	that	wic	executes	for	the
various	steps.	To	list	the	available	source	plugins,	use

$	wic	list	source-plugins

We	show	how	kickstart	files	and	source	plugins	play	together	when	we	look	at	kickstart
files	in	more	detail.

wic	has	two	operational	modes:

	Raw	Mode:	You	have	to	specify	the	parameters	required	by	the	kickstart	file	at	the

wic	command	line.

	Cooked	Mode:	wic	uses	the	current	MACHINE	setting	of	your	build	environment	to
determine	the	options.

Raw	mode	provides	more	flexibility	and	gives	you	more	control	over	the	image	creation
process,	while	Cooked	mode	is	easier	to	use.	Both	modes	are	essentially	invoked	the	same
way:
Click	here	to	view	code	image

$	wic	create	<kickstart_file>	[options]

The	options	determine	whether	wic	runs	in	Raw	mode	or	Cooked	mode.	We	explain	the
two	modes	and	what	options	you	can	use	with	either	one	of	them	in	the	next	two	sections.
If	you	are	using	a	kickstart	file	from	the	list	shown	by	wic	list	images,	you	do	not
have	to	provide	the	.wks	extension.

Before	you	can	put	wic	to	use,	you	need	to	build	a	couple	of	tools	for	your	development
host	using	the	build	system:
Click	here	to	view	code	image

$	bitbake	parted-native	dosfstools-native	mtools-native

You	do	not	need	to	run	wic	as	root.	As	a	matter	of	fact,	you	should	not.	wic	does	not
write	any	storage	media:	it	creates	images	for	them,	which	you	can	then	copy	to	the
media.

10.6.1	Creating	an	Image	with	Cooked	Mode
In	Cooked	mode,	only	two	parameters	are	required	to	create	an	image	with	wic:
Click	here	to	view	code	image

$	wic	create	<kickstart_file>	-e	<image_target>	[options]

where

	<kickstart_file>	is	the	OpenEmbedded	kickstart	file.	You	can	use	one	of	the
canned	kickstart	files	that	are	provided	with	wic,	or	you	can	provide	your	own.

	<image_target>	is	the	name	of	the	build	system	image	target,	such	as	core-
image-base	or	core-image-sato	or	any	of	your	own	images.

All	other	settings	are	determined	by	wic	from	the	build	environment,	in	general,	and	the
MACHINE	setting	in	conf/local.conf	in	particular.

With	Cooked	mode,	these	additional	options	are	available:

	-o	PATH,	—outdir=PATH:	The	path	to	the	location	of	the	final	image.

	-c	COMPRESSOR,	—compress-with=COMPRESSOR:	The	compression	utility
to	use	to	compress	the	final	image.	wic	supports	gzip,	bzip2,	and	xz	as
COMPRESSOR.

	-f	IMAGE,	—build-rootfs=IMAGE:	Use	BitBake	IMAGE	to	build	the	root
filesystem	image	before	creating	the	media	image.

	-D,	—debug:	Display	detailed	debug	information	about	the	creation	process.	It
shows	the	exact	command	sequence	and	helps	troubleshooting	problems.

	-s,	—skip-build-check:	Skip	the	build	check	step,	which	is	a	simple	sanity
checker	to	verify	whether	the	build	environment	has	been	sourced	correctly.

For	example,
Click	here	to	view	code	image

$	wic	create	bootimg-efi	-e	core-image-base

creates	an	image	to	boot	with	an	extended	firmware	interface	(EFI)	BIOS	that	can	be
transferred	directly	to	a	bootable	media.

A	fair	warning:	just	because	you	can	create	an	image	with	wic	using	a	kickstart	file	does
not	automatically	mean	that	this	image	will	boot	on	your	target	system.	You	need	to	make
sure	that	you	choose	the	right	kickstart	file	that	matches	your	target	system.	If	in	the
preceding	example	the	machine	configuration	were	MACHINE	=	"beaglebone",	wic
would	indeed	create	an	image	with	a	boot	partition	for	EFI.	However,	it	would	not	boot	on
a	BeagleBone	board,	since	the	BeagleBone	does	not	have	an	EFI	BIOS.

10.6.2	Creating	an	Image	with	Raw	Mode
When	using	wic	in	Raw	mode,	you	have	to	provide	the	necessary	parameters	on	the
command	line:
Click	here	to	view	code	image

$	wic	create	<kickstart_file>	[options]

where	<kickstart_file>	is	the	OpenEmbedded	kickstart	file,	which	can	be	one	of
the	kickstart	files	provided	with	wic	or	one	that	you	created	yourself.	The	options	are	as
follows:

	-r	ROOTFSDIR,	—rootfs-dir=ROOTFSDIR:	The	path	to	the	root	filesystem
for	the	target	on	the	development	host.

	-b	BOOTIMGDIR,	—bootimg-dir=BOOTIMGDIR:	The	path	to	bootloader
artifacts,	such	as	the	EFI	or	syslinux	directories	or	U-Boot	files.

	-k	KERNELDIR,	—kernel-dir=KERNEL_DIR:	The	path	to	the	Linux	kernel.

	-n	NATIVE_SYSROOT,	—native-sysroot=NATIVE_SYSROOT:	The	path	to
the	native	tools	such	as	parted,	the	DOS	filesystem	tools,	and	so	on.	These	can	be
the	tools	built	by	the	OpenEmbedded	build	system	or	tools	provided	by	your
development	host.

	-o	PATH,	—outdir=PATH:	The	path	to	the	location	of	the	final	image.

	-c	COMPRESSOR,	—compress-with=COMPRESSOR:	The	compression	utility
to	use	to	compress	the	final	image.	wic	supports	gzip,	bzip2,	and	xz	as
COMPRESSOR.

	-f	IMAGE,	—build-rootfs=IMAGE:	Use	BitBake	IMAGE	to	build	the	root
filesystem	image	before	creating	the	media	image.

	-D,	—debug:	Display	detailed	debug	information	about	the	creation	process.	It
shows	the	exact	command	sequence	and	helps	troubleshooting	problems.

In	its	simplest	form,	you	have	to	call	wic	in	Raw	mode,	as	follows:
Click	here	to	view	code	image

$	wic	create	bootimg-efi	-r	<ROOTFSDIR>	-b	<BOOTIMGDIR>	-k	<KERNELDIR>

The	example	assumes	that	you	have	filesystem	tools	installed	on	your	development	host.

When	using	Cooked	mode	with	the	-e	<image_target>	option,	wic	automatically
determines	the	various	options	from	the	build	environment	by	running	bitbake	-e
<image_target>:

	-r,	--rootfs-dir:	IMAGE_ROOTFS

	-k,	--kernel-dir:	STAGING_KERNEL_DIR

	-n,—native-sysroot:	STAGING_DIR_NATIVE

	-b,	--bootimg-dir:	Empty;	the	source	plugins	for	the	various	bootloaders
need	to	determine	this.

Unless	you	are	using	the	-f	(--build-rootfs)	option,	you	do	not	have	to	source
a	build	environment	in	Raw	mode.

10.6.3	Kickstart	Files
As	we	saw,	the	command

$	wic	list	images

provides	a	list	of	the	available	kickstart	files.	The	actual	kickstart	files	are	located	in
poky/scripts/lib/wic/canned-wks.

Listing	10-4	shows	a	kickstart	file	for	creating	an	image	with	a	vfat	boot	partition	and
an	ext4	root	filesystem	partition	for	an	SD	card	suitable	for	the	BeagleBone.

Listing	10-4	SD	Card	Image	(sdimage-bootpart.wks)
Click	here	to	view	code	image

#	short-description:	Create	SD	card	image	with	a	boot	partition
#	long-description:	Creates	a	partitioned	SD	card	image.	Boot	files
#	are	located	in	the	first	vfat	partition.

part	/boot	—source	bootimg-partition	—ondisk	mmcblk	—fstype=vfat
					—label	boot	—active	—align	4	—size	16
part	/	—source	rootfs	—ondisk	mmcblk	—fstype=ext4	—label	root
					—align	4

The	part	directive	instructs	wic	to	create	a	partition.	The	first	parameter	is	the	mount
point	of	the	partition—in	this	kickstart	file,	/boot	for	the	boot	partition	and	/	for	the	root
filesystem.	The	source	parameter	specifies	the	source	plugin	to	use	to	create	the
partition,	bootimg-partition	for	the	boot	partition	and	rootfs	for	the	root
filesystem	partition.	The	remaining	parameters	determine	the	partition	characteristics,

which	we	explain	in	detail	shortly.

Listing	10-5	shows	a	kickstart	file	to	create	an	image	for	booting	a	system	with	a	legacy
PC	BIOS.

Listing	10-5	Legacy	PC	BIOS	Boot	Image	(directdisk.wks)
Click	here	to	view	code	image

#	short-description:	Create	a	‘pcbios’	direct	disk	image
#	long-description:	Creates	a	partitioned	legacy	BIOS	disk	image	that	the
#	user	can	directly	dd	to	boot	media.

part	/boot	—source	bootimg-pcbios	—ondisk	sda	—label	boot	–active	\
					—align	1024
part	/	—source	rootfs	—ondisk	sda	—fstype=ext4	—label	platform	\
					—align	1024

bootloader	—timeout=0	—append=“rootwait	rootfstype=ext4	\
																																	video=vesafb	vga=0x318	console=tty0”

In	this	example,	the	boot	partition	uses	the	source	plugin	bootimg-pcbios,	which
creates	a	Syslinux	boot	partition.	The	bootloader	directive	instructs	Syslinux	to	boot
the	kernel	immediately	(--timeout=0)	and	to	pass	the	parameters	specified	by
append	to	the	Linux	kernel.

Listing	10-6	shows	an	example	of	a	kickstart	file	creating	an	image	for	booting	a	system
with	EFI	BIOS.

Listing	10-6	EFI	BIOS	Boot	Image	(mkefidisk.wks)
Click	here	to	view	code	image

#	short-description:	Create	an	EFI	disk	image
#	long-description:	Creates	a	partitioned	EFI	disk	image	that	the	user
#	can	directly	dd	to	boot	media.

part	/boot	—source	bootimg-efi	—sourceparams=“loader=grub-efi”	\
					—ondisk	sda	—label	msdos	—active	—align	1024

part	/	—source	rootfs	—ondisk	sda	—fstype=ext4	—label	platform	\
					—align	1024

part	swap	—ondisk	sda	—size	44	—label	swap1	—fstype=swap

bootloader	—timeout=10	—append=“rootwait	rootfstype=ext4	\
				console=ttyPCH0,115200	console=tty0	vmalloc=256MB	\
				snd-hda-intel.enable_msi=0”

In	this	example,	the	boot	partition	is	created	using	the	bootimg-efi	source	plugin
using	the	EFI	Grub	bootloader.	In	addition	to	the	boot	and	root	filesystem	partitions,	a
swap	partition	is	created.	The	bootloader	directive	instructs	Grub	to	wait	for	10	seconds
(timeout=10)	before	booting	the	Linux	kernel	and	to	pass	the	parameters	specified	by
append	to	the	Linux	kernel.

10.6.4	Kickstart	File	Directives
You	can	easily	create	your	own	kickstart	files	either	from	scratch	or	by	copying	one	of	the
canned	files.	If	you	create	your	own	kickstart	files	inside	the	directory
poky/scripts/lib/wic/canned-wks,	then	they	are	known	to	wic	and	you	do	not
have	to	provide	a	path	and	extension.	The	disadvantage	is	that	you	are	modifying	the	build
system	sources,	which	makes	updates	a	little	harder.	In	any	case,	you	may	want	to
consider	submitting	your	kickstart	files	to	the	Yocto	Project.	They	can	be	of	use	for	others
too.

Kickstart	files	currently	contain	only	two	directives:	partition	and	bootloader.
Each	directive	takes	a	defined	set	of	parameters.	The	source	plugins	providing	the
functionality	need	to	understand	the	parameters.

partition	Directive

The	partition	directive	part	creates	a	partition	on	a	media.	The	format	is
Part	<mountpoint>	<options>

The	<mountpoint>	determines	where	the	partition	is	mounted.	It	can	be	either

	/path:	Partition	mount-point	path—for	instance,	/,	/usr,	/opt,	/home,	and	so
on.

	swap:	Partition	is	a	swap	partition.

The	<options>	provide	the	necessary	information	on	how	to	create	the	partition:

	—source:	Determines	the	source	of	the	data	that	populates	the	partition.

If	you	do	not	use	this	option,	wic	creates	an	empty	partition,	and	you	have	to	provide
at	least	--size.	If	you	want	wic	to	format	the	partition	with	a	filesystem,	you	need
to	provide	--fstype.

If	you	use	--source	rootfs,	wic	creates	a	root	filesystem	partition	with
sufficient	space	for	the	root	filesystem	provided	by	the	-r	(--rootfs-dir)
parameter.	You	also	need	to	provide	the	--fstype	to	determine	the	filesystem
type.

	—size:	The	minimum	partition	size	in	MB.	You	must	provide	this	parameter	if	you
do	not	use	--source.	You	can	provide	this	parameter	with	--source	if	you
want	to	create	a	larger	partition	than	determined	by	the	root	filesystem	content	(see
also	--extra-space	and	--overhead-factor).

	—ondisk:	Create	the	partition	on	a	particular	device.

	—ondrive:	Same	as	--ondisk.

	—fstype:	Filesystem	type	to	format	the	partition	with.	Supported	filesystem	types
are	ext2,	ext3,	ext4,	btrfs,	squashfs,	and	swap.

	—fsoptions:	String	of	options	that	will	be	written	to	/etc/tstab.	The	string
needs	to	be	enclosed	in	quotes.	If	you	do	not	specify	this	parameter,	it	is	set	to

"defaults".

	—label:	Partition	label.

	—active:	Mark	partition	as	the	boot	partition.

	—align:	Start	the	partition	on	an	n	kB	boundary.

	—no-table:	Create,	format,	and	populate	the	partition	but	do	not	add	it	to	the
partition	table.

	—extra-space:	Add	additional	space	(in	MB)	to	the	partition.	The	default	value
is	10	MB.

	—overhead-factor:	Multiply	the	size	of	the	partition,	which	is	either	provided
by	--size	or	determined	from	the	content	of	the	root	filesystem	directory
specified	by	-r	(--rootfs-dir),	with	this	factor.	The	factor	must	be	greater	than
or	equal	to	1.	The	default	value	is	1.3.

	—part-type:	Specifies	the	globally	unique	identifier	(GUID)	for	the	type	of	the
partition	for	use	with	a	GUID	partition	table	(GPT).19

19.	For	information	on	GPT,	see	https://wiki.archlinux.org/index.php/GUID_Partition_Table	and
https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs.

	—use-uuid:	Generate	a	random	Linux	UUID	for	the	partition

	—uuid:	Specify	a	Linux	UUID	for	the	partition.

bootloader	Directive

The	bootloader	directive	provides	the	configuration	for	the	bootloader:
Click	here	to	view	code	image

bootloader	—timeout=<timeout_in_seconds>	—append=”<kernel_parameters>

The	directive	takes	only	two	parameters:

	—timeout:	Time	in	seconds	the	bootloader	waits	before	booting	the	default	option.
This	parameter	is	used	with	bootloaders	that	display	a	list	of	boot	options	to	the	user.

	—append:	String	of	parameters	enclosed	in	quotes	that	are	passed	to	the	Linux
kernel.

10.6.5	Plugins
Plugins	provide	for	easy	extensibility	of	wic	functionality.	They	are	written	in	Python.
Currently,	there	are	two	types	of	plugins:	imager	and	source.	You	can	find	the	plugins	in
the	directory	poky/scripts/lib/wic/plugins.	Each	plugin	type	has	its	own
subdirectory.

The	imager	plugins	install	an	entire	system	into	a	file	that	contains	a	partition	table	and
one	or	more	partitions	that	are	formatted	with	filesystems.	The	output	of	an	imager	plugin
is	a	file	that	can	be	transferred	directly	to	a	media.	All	imager	plugins	inherit	from	the
ImagerPlugin	Python	class.	There	currently	is	only	one	imager	plugin,	the

https://wiki.archlinux.org/index.php/GUID_Partition_Table
https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs

DirectPlugin,	which	is	used	to	create	all	images.

The	source	plugins	create	partitions	of	particular	types	from	specific	sources.	They	are
used	with	the	part	directive	in	kickstart	files.	Source	plugins	inherit	from	the
SourcePlugin	Python	class.

The	file	poky/scripts/lib/wic/pluginbase.py	defines	the	core	plugin
classes	ImagerPlugin	and	SourcePlugin.

Currently,	user	extension	is	restricted	to	source	plugins	only.	To	create	your	own	source
plugin,	write	a	Python	source	file	containing	the	plugin	class.	You	can	place	the	file	into
the	directory	poky/scripts/lib/wic/plugins/source,	or	you	can	place	it	into
your	own	layer	in	the	directory	meta-
mylayer/scripts/lib/wic/plugins/source.	The	exact	path	below	the	root
directory	of	the	layer	is	important;	otherwise,	wic	cannot	locate	the	plugin.

To	write	your	own	source	plugin,	you	derive	it	from	the	base	source	plugin	class
SourcePlugin	and	implement	the	functions	to	carry	out	the	tasks,	as	shown	in	Listing
10-7.

Listing	10-7	Source	Plugin
Click	here	to	view	code	image

class	MyPartitionPlugin(SourcePlugin):
				name	=	‘mypartition’

@classmethod
def	do_prepare_partiton(cls,	part,	…)
				…

@classmethod
def	do_configure_partition(cls,	part,	…)
				…

@classmethod
def	do_install_disk(cls,	part,	…)
				…

@classmethod
def	do_stage_partition(cls,	part,	…)
				…

Your	own	source	plugin	always	must	set	the	name	attribute	to	a	unique	name.	This	is
the	name	under	which	the	source	plugin	is	known	to	wic.	It	is	the	name	you	use	with	the	-
-source	parameter	of	the	part	directive,	for	example:
Click	here	to	view	code	image

part	/	—source	mypartition	<options>

Depending	on	your	source	plugin,	you	need	to	implement	one	or	more	of	the	methods
that	wic	calls	at	various	stages	of	the	partition	creation	process:

	do_configure_partition():	Called	before	do_prepare_partition()
and	used	to	create	configuration	files	for	the	partition,	such	as	bootloader

configuration	files.

	do_stage_partition():	Called	before	do_prepare_partition()	and
used	to	tailor	the	partition	content	provided	by	the	source.

	do_prepare_partition():	Called	to	populate	the	content	into	the	partition.
This	method	creates	the	partition	image	that	is	then	incorporated	into	the	disk	image.

	do_install_disk():	Called	if	additional	steps	need	to	be	performed	after
do_prepare_partition()	before	the	partition	can	be	incorporated	with	the
final	disk	image.

A	source	plugin	at	least	implements	the	do_prepare_partition()	method,	as	it
is	the	method	that	actually	populates	the	partition	content	from	the	content	sources
rootfs-dir,	kernel-dir,	and	bootimg-dir.	The	values	of	these	parameters	are
passed	to	the	method	so	that	the	plugin	can	access	the	respective	directories.	If	your
source	plugin	does	not	implement	a	particular	method,	the	superclass	method	is	used
instead.	For	all	four	methods,	superclass	methods	do	nothing	but	log	a	debug	message.

10.6.6	Transferring	Images
After	wic	completes	the	creation	of	an	image,	you	can	simply	transfer	it	to	an	SD	card	or
USB	stick	or	whatever	other	media	you	built	your	image	for:
Click	here	to	view	code	image

$	sudo	dd	if=<image_file>	of=/dev/<device>

wic	provides	you	with	the	name	and	location	of	the	image	file	after	creating	it.	By
default,	the	output	directory	is	/var/tmp/wic/build.

Since	you	are	writing	the	image	file	directly	to	a	device,	you	must	execute	the
command	with	root	privileges.	This	is	potentially	dangerous,	as	specifying	the	wrong
device	can	wipe	out	devices	and	partitions	on	your	development	host.	Always	double-
check	that	you	are	using	the	correct	device	name.	It	is	always	a	good	idea	to	use	dmesg
immediately	after	inserting	the	media	to	find	the	correct	device	name.

10.7	Summary
Yocto	Project	BSPs	provide	the	adaptation	layer	to	support	many	different	hardware
platforms	with	the	same	core	build	system.

	Unlike	traditional	embedded	BSPs,	Yocto	Project	BSPs	are	not	standalone.	They
require	the	OE	Core	and	possibly	other	metadata	layers.

	Yocto	Project	BSPs	do	not	contain	toolchains	or	development	tools.	These	are
provided	by	the	core	layers.

	Yocto	Project	BSPs	are	BitBake	layers	that	are	included	with	a	build	environment	by
adding	their	path	to	the	BBLAYERS	variable	in	the	conf/bblayers.conf	file	of
the	build	environment.

	A	Yocto	Project	BSP	must	define	at	least	one	machine	configuration	file	that
provides	the	target	platform-specific	settings.

	A	Yocto	Project	BSP	may	add	its	own	recipes	and/or	append	recipes	from	other
layers	to	adapt	building	of	packages	to	the	requirements	of	the	target	hardware.

	Yocto	Project	BSPs	can	easily	be	swapped	for	each	other	without	touching
configuration	settings	other	than	the	MACHINE	variable	in	the
conf/local.conf	file	of	the	build	environment.

	Since	Yocto	Project	BSPs	contain	only	target-specific	adaptation	of	the	build
system,	maintenance	is	greatly	reduced.

	Yocto	Project	BSPs	follow	a	specific	layout.

	The	yocto-bsp	tool	allows	quick	creation	of	a	basic	BSP	that	is	compliant	with
the	BSP	conventions.

	The	yocto-kernel	tool	simplifies	the	management	of	Linux	kernel	configuration
options,	patches,	and	features.

	The	OpenEmbedded	Image	Creator	(wic)	greatly	simplifies	the	creation	of	bootable
images	that	can	directly	be	transferred	to	various	media.	wic	can	be	extended
through	kickstart	files	and	source	plugins.

10.8	References
Yocto	Project	Board	Support	Package	(BSP)Developer’s	Guide,
www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html

http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html

11.	Application	Development

In	This	Chapter

11.1	Inside	a	Yocto	Project	ADT

11.2	Setting	Up	a	Yocto	Project	ADT

11.3	Building	Applications

11.4	Eclipse	Integration

11.5	Application	Development	Using	an	Emulated	Target

11.6	Summary

11.7	References

In	the	chapters	leading	up	to	this	one,	we	learned	how	to	use	the	Yocto	Project	to	build
Linux	OS	images,	how	to	customize	those	images,	and	how	to	adapt	them	to	a	particular
hardware	through	board	support	packages	(BSPs).	Devices	comprising	hardware,	an
operating	system	stack,	and	a	bunch	of	other	open-source	software	packages	do	not	make
a	product.	Eventually,	you	want	to	develop	your	own	software	packages	providing	the
end-user	functionality	for	your	device,	build	them,	and	deploy	them	to	the	device.	For	that
task,	you	need	a	software	development	environment	for	your	target	system	that	is
commonly	found	in	what	is	referred	to	as	application	development	toolkit	(ADT)	or
software	development	kit	(SDK).	The	Yocto	Project	uses	both	terms	and	typically	refers	to
an	ADT	as	an	SDK	that	has	been	installed	by	the	ADT	installer	from	package	feeds	pulled
from	a	web	server	and	to	SDK	as	an	SDK	that	has	been	created	with	the	build	system.	The
actual	toolkits	provide	the	same	functionality,	as	the	package	feeds	for	the	ADT	have
previously	been	created	with	the	build	system.

Using	the	Yocto	Project	build	system,	you	can	build	an	ADT	that	matches	your	target
system	yourself.	You	can	then	use	the	ADT	environment	to	develop	and	build	applications
for	your	device.

In	this	chapter,	we	explore	what	a	Yocto	Project	ADT	is	made	up	of	as	well	as	how	you
can	build	and	use	it.

11.1	Inside	a	Yocto	Project	ADT
So	what	exactly	are	you	getting	with	a	Yocto	Project	ADT?	A	complete	application
development	environment	consisting	of	the	following:

	Cross-Development	Toolchain:	The	ADT	cross-development	toolchain	comprises	a
cross-compiler,	cross-linker,	cross-debugger,	and	a	set	of	other	tools	used	for
application	development.

	System	Roots:	An	ADT	contains	two	system	roots:	one	for	the	development	host,
which	contains	the	cross-development	toolchain	and	other	tools,	and	one	for	the
target,	which	is	an	entire	root	filesystem	for	the	target	that	also	contains	the

development	packages	with	header	files,	libraries,	and	more.

	QEMU	Emulator:	Together	with	a	kernel	and	a	root	filesystem	image,	QEMU
provides	for	testing	of	your	user	space	applications	without	the	actual	hardware.	You
can	develop	applications	for	the	target	even	before	the	hardware	is	available.

	Environment	Setup:	Scripts	for	setting	up	the	environment	on	your	development
host	for	cross-development	with	the	ADT	are	provided.

	Yocto	Project	Eclipse	Plugin:	The	plugin	is	for	the	popular	Eclipse	IDE1	to
integrate	an	ADT.

1.	https://www.eclipse.org

	Profiling	Tools:	Various	user	space	tools	for	profiling	applications	on	your	target
system	are	included	with	an	ADT.	The	set	of	tools	includes	the	following:

	LatencyTOP:	LatencyTOP2	is	a	tool	to	measure	and	resolve	latency	issues	in
applications	for	Linux	systems	that	impact	the	user	experience,	such	as	audio	and
video	skips	during	media	playback,	delayed	response	to	user	input	on	desktop
interfaces,	and	more,	even	if	your	system	has	plenty	of	CPU	power.

2.	http://git.infradead.org/latencytop.git

	PowerTOP:	Power	management	is	paramount	for	virtually	all	embedded
systems,	particularly	if	they	are	running	on	batteries.	PowerTOP3	is	a	diagnostic
tool	to	measure	power	consumption	and	trace	it	into	applications,	libraries,
routines,	and	code	fragments.

3.	https://01.org/powertop

	OProfile:	OProfile4	is	a	systemwide	profiling	tool	for	Linux	systems,	capable	of
profiling	running	code	by	adding	only	minimal	overhead.	It	consists	of	a	Linux
kernel	driver	and	a	daemon	for	collecting	sample	data	for	the	target	system,	as
well	as	several	offline	tools	to	analyze	the	sample	data	on	a	host	system.

4.	http://oprofile.sourceforge.net

	Perf:	Perf5	is	a	Linux	profiling	tool	that	uses	Linux	kernel	performance	counters
for	collecting	data	on	various	hardware	and	software	events,	such	as	CPU	cycles,
instructions,	interrupts,	cache	references,	and	many	more.

5.	https://perf.wiki.kernel.org

	System	Tap:	System	Tap6	is	infrastructure	and	instrumentation	for	gathering
information	about	a	running	Linux	system.	System	Tap	scripts	allow	tracing
virtually	any	system	event	by	placing	probes.

6.	https://sourceware.org/systemtap

	Linux	Trace	Toolkit—Next	Generation	(LTTng):	LTTng7	is	an	open	source
tracing	framework	for	Linux	systems	that	provides	instrumentation	to	identify
system	events,	extraction	of	identified	events	with	little	overhead,	and	tools	for
investigation	and	analysis.

7.	http://lttng.org

https://www.eclipse.org
http://git.infradead.org/latencytop.git
https://01.org/powertop
http://oprofile.sourceforge.net
https://perf.wiki.kernel.org
https://sourceware.org/systemtap
http://lttng.org

The	components	included	with	an	ADT	provide	application	developers	with	all	the
necessary	tools	to	write	user	space	applications	in	C	and	C++	using	the	Linux	and
middleware	APIs.	These	can	be	GNU	Make–based,	GNU	Autotools–based,	or	CMake-
based	applications.	After	initializing	the	ADT	environment,	you	can	use	the	command-line
to	cross-build	your	applications.

Many	application	developers,	however,	prefer	the	convenience	and	productivity	of	an
integrated	development	environment	(IDE)	that	allows	them	to	edit,	build,	and	debug	their
applications	from	within	a	graphical	user	interface.	For	that	purpose,	the	Yocto	Project
offers	a	plugin	for	the	popular	and	extensible	Eclipse	IDE.	The	plugin	integrates	an	ADT
with	the	many	tools	available	for	Eclipse,	namely,	with	the	Eclipse	C/C++	Tooling	(CDT).
The	Yocto	Project	Eclipse	plugin	also	provides	on-target	remote	application	execution	and
debugging	through	the	Eclipse	Target	Communication	Framework	(TCF).	Via	TCF,	you
can	directly	deploy	an	application	binary	to	your	target	device,	run	it	on	the	target	device,
and	interact	with	it	from	within	the	Eclipse	IDE.	You	can	also	remotely	run	your
application	inside	the	GNU	Debugger	(GDB)	server	(gdbserver)	on	your	target.	The	GDB
cross-debugger,	started	by	Eclipse	on	your	development	host,	connects	to	the	gdbserver	on
your	target,	allowing	you	to	control	the	debug	session	from	the	Eclipse	IDE,	including	but
not	limited	to	setting	breakpoints,	stepping	through	your	code,	and	inspecting	variables.

Developing	applications	for	embedded	systems	does	not	stop	with	writing	the	code	then
debugging	and	deploying	it,	but	commonly	involves	optimization	for	performance,	power
consumption,	and	more.	The	profiling	tools,	of	which	all	but	System	Tap	integrate	with
the	Eclipse	IDE,	can	be	integrated	with	the	ADT	and	added	to	a	target	root	filesystem	to
assist	you	with	analyzing	your	applications.

The	following	sections	walk	you	through	the	process	of	building	an	ADT,	installing	it,
using	it	for	command-line	development,	and	integrating	it	with	the	Eclipse	IDE	for
developing,	building,	and	on-target	debugging	for	a	complete	round-trip	development
experience.

11.2	Setting	Up	a	Yocto	Project	ADT
You	can	set	up	an	ADT	in	various	ways:

	Download	the	ADT	Installer:	Download	the	ADT	installer	tarball	from	the	Yocto
Project	download	site,8	unpack	it,	configure	it	for	your	target,	and	then	run	it.	The
ADT	installer	then	downloads	the	appropriate	cross-toolchain,	root	filesystems,	and
more	from	the	Yocto	Project	download	site	and	installs	them	on	your	development
system.	This	method	is	the	most	convenient	for	setting	up	an	ADT,	but	it	uses	a
prebuilt	system	root	image,	which	most	likely	does	not	match	your	target	image.

8.	http://downloads.yoctoproject.org/releases/yocto/yocto-2.0/adt-installer

	Build	the	ADT	Installer:	Use	a	Yocto	Project	build	environment	to	build	the	ADT
installer	tarball	yourself	rather	than	downloading	it.	After	that,	it	is	the	same	as	for
downloading	the	ADT	Installer.

	Build	a	Toolchain	Installer	to	Create	an	ADT:	Using	your	target	build
environment,	you	create	a	toolchain	installer	that	includes	cross-toolchain	and	target
system	root	that	exactly	match	your	target	system	with	all	the	development	packages

http://downloads.yoctoproject.org/releases/yocto/yocto-2.0/adt-installer

for	the	software	packages	that	you	may	have	added	to	your	custom	system	image.

The	first	two	methods	are	explained	in	detail	by	the	Yocto	Project	Application
Developer’s	Guide.9	In	this	chapter,	we	focus	on	the	third	method,	creating	a	toolchain
installer	for	a	target	using	the	build	environment.

9.	www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html

11.2.1	Building	a	Toolchain	Installer
If	you	already	have	a	build	environment	for	your	target	system,	potentially	including	a
BSP	and	other	layers,	you	can	use	it	to	build	a	toolchain	installer	with	all	the	software
components	that	you	added	to	a	custom	root	filesystem	image.	For	our	example,	we	are
using	the	build	environment	and	BSP	layer	for	our	kiosk	project	from	the	previous
chapter.

Our	BSP	layer	meta-ypbkiosk	currently	does	not	contain	a	custom	image	target.
Listing	11-1	shows	the	image	recipe	for	it.

Listing	11-1	Custom	Image	Recipe	(ypbkiosk-image-sato.bb)
Click	here	to	view	code	image

DESCRIPTION	=	“Custom	image	for	the	Yocto	book	Kiosk,	which	is	based	\
															on	core-inmage-sato.	We	only	replaced	the	Dropbear	SSH	\
															server	with	the	OpenSSH	server,	which	is	necessary	for	\
															the	ADT,	and	added	tar.bz2	to	the	image	types	built.”

IMAGE_FEATURES	+=	“splash	package-management	x11-base	\
																			x11-sato	ssh-server-openssh	hwcodecs”

LICENSE	=	“MIT”

inherit	core-image

IMAGE_INSTALL	+=	“packagegroup-core-x11-sato-games”

IMAGE_FSTYPES	+=	“tar.bz2”

Create	the	directory	recipes-core/images	inside	the	meta-ypbkiosk	layer,
and	add	the	recipe	file	ypbkiosk-image-sato.bb	of	Listing	11-1	to	it.

Now	build	the	toolchain	installer	by	executing
Click	here	to	view	code	image

$	bitbake	-c	populate_sdk	ypbkiosk-image-sato

after	sourcing	the	build	environment.	Also	make	sure	that	the	MACHINE	variable	in
conf/local.conf	of	your	build	environment	is	set	to	MACHINE	=	"ypbkiosk".
The	build	system	derives	the	proper	architecture	settings	for	the	toolchain	from	this
variable.

The	populate_sdk	task	applies	to	all	image	targets	and	creates	a	toolchain	for	the
image	target	honoring	all	the	other	settings	such	as	MACHINE,
EXTRA_IMAGE_FEATURES,	and	so	forth.	Once	the	task	completes,	it	places	the

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html

toolchain	installer	in	tmp/deploy/sdk	of	the	build	environment.	The	toolchain
installer	is	a	single	executable	file	ending	in	.sh.	It	is	part	shell	script	installer	and	part
payload	that	contains	the	actual	toolchain	with	host	and	target	system	roots.	If	you	open
the	file	and	look	at	its	contents,	you	find	the	text	MARKER:,	which	separates	the	script
from	the	payload.
Besides	being	convenient	for	distribution,	the	purpose	of	this	single-file	configuration	is

to	make	the	toolchain	entirely	self-contained,	meaning	that	all	binaries	are	linked	against
their	own	copy	of	libc,	which	results	in	no	dependencies	on	the	host	system.	Since	the
installation	path	of	the	toolchain	is	not	known	at	build	time	(you	can	install	it	anywhere	on
your	system),	and	the	pointer	to	the	dynamic	loader	cannot	be	altered	dynamically,	the
shell	script	portion	takes	care	of	the	relocation.

The	architecture	for	the	development	host	for	which	the	toolchain	is	built	is	determined
by	the	configuration	variable	SDKMACHINE.	This	variable	is	automatically	set	to	the
architecture	of	the	host	the	build	system	is	running	on	when	creating	the	toolchain
installer.	If	you	wish	to	build	the	toolchain	for	a	different	development	host	architecture
than	the	one	you	are	using	to	build	the	toolchain,	then	you	can	set	the	SDKMACHINE
variable	explicitly	in	the	conf/local.conf	file	of	your	build	environment.	The	only
architectures	currently	supported	for	building	are	i686	(x86	32-bit)	and	x86_64	(x86
64-bit).

11.2.2	Installing	the	Toolchain
Installation	of	the	toolchain	is	now	rather	simple:
Click	here	to	view	code	image

$	cd	tmp/deploy/sdk
$./poky-glibc-x86_64-ypbkiosk-image-sato-corei7-64-toolchain-2.0.sh

The	actual	toolchain	installer	file	may	be	different	dependent	on	your	setup.	The
toolchain	installer	by	default	installs	the	toolchain	into	the	/opt/poky/<version>
directory.	You	can	provide	a	different	directory	if	you	wish.

A	feature	of	the	toolchain	installer	is	that	you	can	create	different	installers	for	any
machine	with	any	architecture	and	install	them	into	the	same	directory.	The	build	system
creates	only	one	set	of	cross-canadian	toolchain	binaries10	per	architecture	and	the
toolchain	installer	separates	the	target	system	roots	into	different	directories.	This	is
possible	because	details	describing	the	target	hardware	can	be	passed	as	options	to	the
compiler.	Those	options	are	set	up	by	the	environment	script	by	assigning	variables	such
as	CC,	LD,	and	more.
10.	Cross-canadian	means	that	the	build	system	running	on	the	architecture	defined	by	HOST_ARCH	creates	a

toolchain	to	run	on	the	architecture	defined	by	SDKMACHINE,	which	in	turn	can	build	software	for	a	system
running	on	the	architecture	defined	by	TARGET_ARCH.	Potentially,	this	involves	three	different	architectures.
However,	most	commonly,	SDKMACHINE	and	HOST_ARCH	are	the	same.

Listing	11-2	shows	the	layout	of	the	toolchain	installation	directory	obtained	with	tree
-L	3.

Listing	11-2	Toolchain	Installation	Directory	Layout

Click	here	to	view	code	image

/opt/poky/2.0
	environment-setup-corei7-64-poky-linux
	environment-setup-cortexa8hf-vfp-neon-poky-linux-gnueabi
	site-config-corei7-64-poky-linux
	site-config-cortexa8hf-vfp-neon-poky-linux-gnueabi
	sysroots

			 	corei7-64-poky-linux
			 			 	bin
			 			 	boot
			 			 	dev
			 			 	etc
			 			 	home
			 			 	lib
			 			 	media
			 			 	mnt
			 			 	proc
			 			 	run
			 			 	sbin
			 			 	sys
			 			 	tmp
			 			 	usr
			 			 	var
			 	cortexa8hf-vfp-neon-poky-linux-gnueabi
			 			 	bin
			 			 	boot
			 			 	dev
			 			 	etc
			 			 	home
			 			 	lib
			 			 	media
			 			 	mnt
			 			 	proc
			 			 	run
			 			 	sbin
			 			 	sys
			 			 	tmp
			 			 	usr
			 			 	var
			 	x86_64-pokysdk-linux
							 	etc
							 	lib
							 	sbin
							 	usr
							 	var
	version-corei7-64-poky-linux
	version-cortexa8hf-vfp-neon-poky-linux-gnueabi

Files	and	subdirectories	can	be	categorized	into	the	following:

	Environment	Setup:	The	environment-setup-*	scripts	set	the	toolchain
configuration	for	the	various	architectures.	If	you	want	to	use	a	particular	toolchain,
you	need	to	source	the	respective	script,	similar	to	sourcing	the	oe-init-build-
env	script	when	setting	up	a	Yocto	Project	build	environment.

	Site	Configuration:	The	site	configuration	files	site-config-*	contain
configuration	settings	when	developing	software	packages	utilizing	GNU	Autotools.

	System	Roots:	The	sysroots	subdirectory	contains	a	subdirectory	with	the
system	root	for	each	target	architecture	and	the	host	architecture.	In	the	example,	the
subdirectory	x86_64-pokysdk-linux	is	the	system	root	for	the	host,	which
contains	the	cross-toolchains.	In	addition,	the	example	contains	a	target	system	root
for	Intel	Core	i7	used	for	the	MinnowBoard	Max	and	a	target	system	root	for	ARM
Cortex	A8	used	for	the	BeagleBone.

	Version	Files:	The	version-*	files	contain	version	information	about	the
toolchain	versions.

One	final	note	about	building	a	toolchain	installer:	by	default,	the	toolchains	created
build	only	dynamically	linked	binaries.	If	you	want	to	build	statically	linked	binaries,	you
need	to	make	sure	to	include	the	packages	containing	the	static	libraries	with	your	system
root.	You	can	achieve	this	by	adding	them	to	the	IMAGE_INSTALL	variable.	This
example	adds	the	glibc	static	libraries:
Click	here	to	view	code	image

IMAGE_INSTALL_append	=	”	glibc-static”

Add	this	line	to	conf/local.conf,	and	add	any	other	static	libraries	you	require.

11.2.3	Working	with	the	Toolchain
To	put	a	Yocto	Project	toolchain	to	work	with	your	project,	you	first	have	to	initialize	the
environment	using	the	appropriate	script.	For	our	example	with	the	kiosk,	it	is
Click	here	to	view	code	image

$	source	environment-setup-corei7-64-poky-linux

The	toolchain	initialization	scripts	are	sourced	exactly	like	the	build	environment	setup
script.

If	you	look	inside	the	script,	you	notice	that	it	sets	a	series	of	environment	variables	that
are	assigned	by	the	script	(listed	here	in	alphabetical	order,	not	in	the	order	as	they	appear
in	the	script):

	AR:	Minimal	command	and	options	for	ar	to	maintain	static	libraries.

	ARCH:	Architecture	of	the	target	system.

	AS:	Minimal	command	and	options	to	run	the	cross-assembler	for	the	target	system.

	CC:	Minimal	command	and	options	to	run	the	C	cross-compiler	for	the	target
system.

	CCACHE_PATH:	Ccache11	is	a	compiler	cache	for	C,	C++,	Objective-C,	and
Objective-C++	compilers.	It	caches	intermediate	compiler	output	in	a	directory
during	a	build	and	reuses	it,	if	nothing	has	changed,	on	subsequent	builds.	It	can
significantly	speed	up	build	time	on	subsequent	builds.	The	first	build	is	slower
because	the	cache	is	created.	Ccache	works	only	with	GNU	Compiler	Collection
(GCC)	compilers	and	compilers	with	similar	behavior.	The	script	adds	the	path	to
the	cross-toolchain	to	tell	ccache	where	to	find	the	toolchain	binaries.	By	default,
ccache	stores	the	cache	files	in	${HOME}/.ccache.	If	you	want	to	change	the

location,	you	also	need	to	set	the	CCACHE_DIR	environment	variable.	The	script
does	not	do	that.

11.	http://ccache.samba.org

	CFLAGS:	Flags	for	the	C	cross-compiler.

	CONFIG_SITE:	Site	configuration	for	GNU	Autotools.

	CONFIGURE_FLAGS:	Flags	for	the	GNU	Autotools	configure	command.

	CPP:	Minimal	command	and	options	to	run	the	C	preprocessor	for	the	target	system.

	CPPFLAGS:	Flags	for	the	preprocessor.

	CXX:	Minimal	command	and	options	to	run	the	C++	cross-compiler	for	the	target
system.

	CXXFLAGS:	Flags	for	the	C++	cross-compiler.

	GDB:	Minimal	command	and	options	to	run	the	GNU	Debugger	for	the	target
system.

	KCFLAGS:	Flags	for	compiling	the	Linux	kernel.

	LD:	Minimal	command	and	options	to	run	the	cross-linker	for	the	target	system.

	LDFLAGS:	Flags	for	the	cross-linker.

	NM:	Minimal	command	and	options	for	nm	to	examine	binary	files	(executables,
object	files,	libraries)	and	display	meta	information	stored	inside	them,	in	particular,
the	symbol	tables.

	OBJCOPY:	Minimal	command	and	options	for	objcopy	to	copy	and	translate
object	files.

	OBJDUMP:	Minimal	command	and	options	for	objdump	for	displaying	various
information	about	object	files.

	OECORE_ACLOCAL_OPTS:	Options	for	the	aclocal	command,	which	is	part	of
GNU	Autotools	Autoconfig.

	OECORE_DISTRO_VERSION:	Version	number	for	the	toolchain.

	OECORE_NATIVE_SYSROOT:	Path	to	the	host	system	root.

	OECORE_TARGET_SYSROOT:	Path	to	the	target	system	root.

	PATH:	Adds	the	path	to	the	/usr/bin	directory	inside	the	host	system	root	to	the
search	path	for	executable	files	of	your	development	system	so	that	the	cross-
toolchain	commands	can	be	found	and	executed.

	PKG_CONFIG_SYSROOT	and	PKG_CONFIG_PATH:	Paths	to	the	target	package
configuration	used	by	pkg-config.

	PYTHONHOME:	Path	to	the	Python	interpreter	included	in	the	host	system	root.

	RANLIB:	Minimal	command	and	options	for	ranlib	to	add	and	update	files	in

http://ccache.samba.org

static	libraries.

	SDKTARGETSYSROOT:	The	path	to	the	target	system	root	containing	the
development	packages.	This	variable	is	passed	to	the	cross-toolchain	commands
such	as	compiler,	linker,	and	so	forth.

	STRIP:	Minimal	command	and	options	for	the	strip	command	to	strip	symbols
from	binaries.

	TARGET_PREFIX,	CROSS_COMPILE:	Toolchain	binary	prefix	for	the	cross-
toolchain	tools.

Many	of	these	environment	variables	are	standard	variables,	as	they	are	used	by
makefiles	for	building	applications.	When	you	are	developing	your	own	applications	for
your	target	system,	make	use	of	these	variables	in	the	makefiles	you	are	writing.	These
variables	are	also	used	by	the	build	system	in	recipes,	which	means	you	do	not	have	to
override	them	with	EXTRA_OEMAKE.

Before	we	go	into	more	details	of	writing	applications,	let	us	build	a	simple	program
consisting	of	just	one	C	file,	as	in	Listing	11-3.

Listing	11-3	Calculate	Fibonacci	Series	(fibonacci.c)
Click	here	to	view	code	image

#include	<stdio.h>

int	main()
{
			int	n,	first	=	0,	second	=	1,	next,	c;

			printf(“Enter	the	number	of	terms:	“);
			scanf(“%d”,&n);

			printf(“First	%d	terms	of	Fibonacci	series	are:\n”,	n);

			for	(c	=	0	;	c	<	n	;	c++)
			{
						if	(c	<=	1)
									next	=	c;
						else
						{
									next	=	first	+	second;
									first	=	second;
									second	=	next;
						}
						printf(“%d\n”,next);
			}

			return	0;
}

Create	this	file	in	any	directory	of	your	development	system.	Then	initialize	the
toolchain	and	build	the	application:
Click	here	to	view	code	image

$	source	environment-setup-corei7-64-poky-linux
$	${CC}	fibonacci.c	-g	-o	fibonacci

The	second	command	cross-compiles	fibonacci.c	for	our	kiosk	target	system	using
the	toolchain	environment.	We	added	the	-g	option	to	add	debug	symbols.	If	you	try	to
execute	the	application	on	your	development	host,	you	most	likely	see	output	similar	to
this:
Click	here	to	view	code	image

$./fibonacci

bash:	./fibonacci:	/lib/ld-linux-x86-64.so.2:	bad	ELF	interpreter:	\
			No	such	file	or	directory

That	is	no	surprise,	as	your	application	is	dynamically	linked	to	the	glibc	library	for	our
target,	which	is	almost	certainly	different	from	the	library	on	your	development	system.

11.2.4	On-Target	Execution
If	you	have	a	MinnowBoard	Max	with	the	Linux	OS	stack	that	we	built	in	the	previous
chapter	ready,	copy	the	executable	to	the	target.	You	can	do	this	via	memory	stick	or,	more
conveniently,	via	network	using	scp:
Click	here	to	view	code	image

$	scp	fibonacci	root@<target_ip>:/usr/bin/fibonacci

Replace	<target_ip>	with	the	IP	address	of	your	MinnowBoard	Max.	You	can	now
execute	the	program	on	the	target	either	using	the	target’s	console	or	establishing	a
connection	via	ssh:
Click	here	to	view	code	image

$	ssh	root@<target_ip>
root@ypbkiosk:~#	fibonacci
Enter	the	number	of	terms:	10
First	10	terms	of	the	Fibonacci	series	are:
0
1
…
root@ypbkiosk:~#

11.2.5	Remote	On-Target	Debugging
Troubleshooting	and	fixing	bugs	is	your	daily	bread	as	a	software	developer.	The	tool	of
choice	is	a	debugger	that	lets	you	control	and	examine	the	status	of	a	running	program	as
well	as	analyze	a	program	after	it	crashes,	commonly	referred	to	as	post-mortem
debugging.	The	Yocto	Project	provides	GDB12	as	a	package	for	the	target	as	well	as	a
package	with	a	cross-version	for	the	development	host.	Like	any	cross-development	tool,
a	cross-debugger	runs	on	a	development	host	using	one	architecture	while	being	able	to
debug	binaries,	executables,	and	libraries	that	have	been	compiled	for	another.
12.	https://www.gnu.org/software/gdb

We	already	included	the	target	package	by	including	tools-debug	in	the	variable
EXTRA_IMAGE_FEATURES	in	conf/local.conf.	The	cross-version	is
automatically	included	with	the	SDK.

You	can	directly	run	GDB	on	the	target	using
Click	here	to	view	code	image

https://www.gnu.org/software/gdb

root@ypbkiosk:~#	gdb	/usr/bin/fibonacci

GDB	launches,	starts	our	Fibonacci	program,	and	halts	it	at	the	first	instruction.	From
here,	you	can	use	GDB	commands	to	control	the	running	program,	in	GDB	terms	referred
to	as	the	inferior,	display	program	variables,	and	much	more,	using	the	GDB	command
line.

However,	debugging	directly	on	the	target	is	not	always	possible.	Targets	with	memory
and	disk	constraints	may	not	be	able	to	store	and	load	the	debugging	information	of	the
binaries	or	the	program	being	processed.	Furthermore,	GDB	needs	to	locate	and	process
information	such	as	function	and	variable	names,	variable	values,	and	stack	traces,
requiring	you	to	use	an	executable	that	contains	debug	information	on	the	target,	also
referred	to	as	a	non-stripped	binary.	In	addition,	to	be	able	to	inspect	your	program’s
source	code	within	GDB	while	debugging,	you	need	to	copy	all	of	the	program’s	source
files	to	the	target.	That	is	straightforward	with	a	program	as	simple	as	our	Fibonacci
example,	but	it	can	get	rather	cumbersome	with	a	program	that	is	built	from	many
different	source	files.

To	overcome	these	limitations,	you	can	use	remote	debugging	with	gdbserver.
Gdbserver	is	not	a	debugger	but	a	server	process	that	runs	on	the	target	and	controls	the
debugged	program	or	inferior.	Gdbserver	does	not	load	and	process	any	debug	information
about	the	debugged	program	but	instead	relays	all	information	back	to	a	GDB	running	on
a	development	host.	The	GDB	on	the	development	host	sends	control	commands	to	the
gdbserver	on	the	target	to	start	or	stop	the	inferior,	set	breakpoints,	read	and	write	target
variables,	step	through	the	program,	and	more.	Since	all	the	processing	for	debugging	is
done	by	GDB	on	the	development	host,	only	binaries	with	debug	symbols	are	required	on
the	target.

If	you	want	to	debug	libraries	that	you	use	with	your	program,	you	need	to	install	the
debug	packages	of	these	libraries	on	the	target	by	including	them	in	the
IMAGE_INSTALL	variable	of	your	target	image.	By	convention,	all	debug	packages	end
in	-dbg.	If	you	want	to	include	the	debug	packages	of	all	packages	installed	by	your
target	images,	you	can	add	dbg-pkgs	to	EXTRA_IMAGE_FEATURES	in
conf/local.conf.

If	you	do	include	the	debug	packages	of	all	the	packages,	be	aware	that	the	size	of	your
target	root	filesystem	image	will	increase	considerably	due	to	the	source	files	being	part	of
the	*-dbg	packages.	You	can	instruct	the	build	system	not	to	include	the	source	files	into
the	debug	packages	by	setting	the	PACKAGE_DEBUG_SPLIT_STYLE	variable	to
debug-without-src	in	the	conf/local.conf	file	of	your	build	environment.
Since	this	variable	controls	the	packaging	behavior	for	all	packages	globally,	it	will	cause
a	rebuild	of	the	entire	target	system.

Because	the	GDB	on	the	development	host	is	responsible	for	loading	and	processing	all
the	debugging	information,	it	must	have	access	to	the	non-stripped	binaries—that	is,	the
executable	and	all	libraries	compiled	with	the	-g	option	and	without	any	optimizations.
The	binaries	on	the	target	can	be	stripped	but	must	not	be	compiled	with	optimizations.

GDB	and	gdbserver	communicate	with	each	other	using	a	command	interface	over	a
network,	or	alternatively,	a	serial,	connection.	You	first	launch	gdbserver	on	the	target

with	the	debugged	program	and	then	start	GDB	on	your	development	host,	instructing	it	to
connect	to	the	gdbserver	on	your	target.

Launching	Gdbserver	on	the	Target

For	remote	debugging,	you	need	gdbserver	installed	on	your	target.	You	can	directly
install	the	gdbserver	package	in	your	target	image,	but	using	the	tools-debug	image
feature	is	more	convenient.13

13.	We	recommend	using	tools-debug	over	directly	installing	the	gdbserver	package,	as	it	only	requires	a
change	to	conf/local.conf	rather	than	modifying	the	image	recipe.

Launch	gdbserver	on	your	target,	either	directly	on	a	console	or	remotely	via	Secure
Shell	(SSH),	for	example,	for	our	Fibonacci	program,	using
Click	here	to	view	code	image

root@ypbkiosk:~#	gdbserver	localhost:2345	/usr/bin/fibonacci
Process	/usr/bin/fibonacci	created;	pid	=	810

Listening	on	port	2345

Gdbserver	will	not	exit	until	the	debugged	process	terminates.	Port	number	2345	is	the
default	port	for	GDB	and	gdbserver.	You	can	change	the	port	if	you	wish.

Launching	GDB	on	the	Development	Host

To	debug	the	running	process	on	your	target,	you	need	to	launch	the	cross-debugger	and
instruct	it	to	connect	to	gdbserver	on	your	target.	From	the	directory	where	you	have	built
the	Fibonacci	application,	source	the	environment	setup	script	as	you	did	earlier	in	Section
11.2.3,	and	launch	the	debugger:
Click	here	to	view	code	image

$	source	environment-setup-corei7-64-poky-linux
$	${GDB}	fibonacci
GNU	gdb	(GDB)	7.9.1
…
Reading	symbols	from	fibonacci…done.
(gdb)

We	omitted	some	of	the	initial	output	of	GDB	for	clarity.	After	going	through	its
initialization,	GDB	displays	its	command	prompt	(gdb).	Instruct	GDB	to	connect	to
gdbserver	on	your	target:
Click	here	to	view	code	image

(gdb)	target	remote	<target_ip>:2345
Remote	debugging	using	<target_ip>:2345
…
(gdb)

Replace	<target_ip>	with	the	IP	address	of	your	target	system.	If	you	specified	a
different	port	for	gdbserver,	you	will	have	to	specify	the	same	port	here.	On	your	target
system,	you	should	see	gdbserver	respond	to	the	connection:
Click	here	to	view	code	image

Remote	debugging	from	host	<host_ip>

Now	you	are	ready	to	start	your	debugging	session	on	your	development	host.	Typing

continue	will	run	the	program	on	your	target.	When	the	inferior	process	on	the	target
terminates,	gdbserver	running	on	the	target	will	terminate	too.	However,	GDB	on	your
development	host	will	continue	to	run.	You	can	restart	gdbserver	on	the	target	and	then
reconnect	GDB.

Unless	you	are	a	die-hard	command-line	developer,	using	GDB	and	its	command	line
may	not	be	your	thing.	There	are	many	graphical	frontends	available	for	GDB.	One	of
them	is	the	trusted	Data	Display	Debugger	(DDD)14	provided	by	the	GNU	Project.	DDD
can	easily	be	installed	with	a	package	management	system	of	any	Linux	distribution.
DDD	has	a	basic	but	functional	user	interface	without	any	frills,	as	shown	in	Figure	11-1.
14.	https://www.gnu.org/software/ddd

Figure	11-1	DDD	user	interface

DDD	by	default	uses	the	host	GDB	installed	on	your	development	system.	You	can
instruct	DDD	to	use	the	cross-debugger	from	the	Yocto	Project	SDK:
Click	here	to	view	code	image

$	source	environment-setup-corei7-64-poky-linux
$	ddd	—debugger	${GDB}

https://www.gnu.org/software/ddd

DDD	does	not	offer	a	button	or	menu	item	to	connect	to	a	remote	gdbserver.	You	have
to	enter	the	target	remote	command	manually	into	the	GDB	command	window	at
the	bottom	of	DDD.

The	Eclipse	IDE	also	provides	a	very	comfortable	graphical	frontend	to	GDB.	We
explain	how	to	integrate	Eclipse	with	the	Yocto	Project	and	the	use	of	the	debugger	in
Section	11.4.

Debugging	Standard	Libraries

If	you	are	looking	to	trace	into	standard	libraries	installed	on	your	target	with	GDB,	you
need	to	tell	GDB	where	to	find	the	debug	information	and	source	files	for	the	libraries.
The	SDK	installs	all	of	the	debug	packages,	including	the	source	files	in	the	SDK	system
root,	for	the	target	platform	on	your	development	host—for	example,
/opt/poky/2.0/sysroots/corei7-64-poky-linux	for	the	SDK	for	our
MinnowBoard	Max.

You	can	instruct	GDB	to	use	a	system	root	by	typing
Click	here	to	view	code	image

(gdb)	set	sysroot	/opt/poky/2.0/sysroots/corei7-64-poky-linux
(gdb)	set	substitute-path	/usr/src/debug	\
										/opt/poky/2.0/sysroots/corei7-64-poky-linux/usr/src/debug

GDB	will	then	use	this	system	root	to	look	for	debug	information	and	source	files.
Entering	these	settings	repeatedly	again	when	starting	GDB	is	rather	tedious.	Therefore,
you	can	add	the	statements	to	a	.gdbinit	file.	You	can	place	this	file	either	in	your
home	directory,	in	which	case	the	settings	will	apply	to	all	projects,	or	in	the	project
directory,	in	which	case	it	will	apply	only	to	the	current	project	when	you	start	GDB	from
within	that	directory.	If	you	do	use	a	local	.gdbinit	file	in	a	project	directory,	you	still
need	a	.gdbinit	file	in	your	home	directory	containing	the	lines
Click	here	to	view	code	image

set	auto-load	safe-path	/
set	auto-load	local-gdbinit	on

GDB’s	default	security	policies	only	allow	autoloading	initialization	files	from	the
user’s	home	directory.	These	settings	also	allow	autoloading	from	the	current	directory.

11.3	Building	Applications
Any	nontrivial	application	consists	of	potentially	many	source	files	that	are	compiled	and
linked	into	libraries	and/or	executable	program	files.	The	environment	setup	of	the
toolchain	makes	it	rather	simple	to	develop	makefile-based	and	GNU	Autotools–based
applications.

11.3.1	Makefile-Based	Applications
For	makefile-based	projects,	it	is	best	not	to	set	any	environment	variables,	such	as	CC,
AS,	LD,	and	CFLAGS,	inside	the	makefile,	as	the	settings	for	those	variables	are
established	by	the	initialization	script	for	the	toolchain	environment.	In	general,	you	do
not	want	to	set	or	provide	any	toolchain	flags	that	pertain	to	a	particular	architecture
directly,	as	they	may	limit	the	ability	to	compile	the	project	on	different	architectures.	The
toolchain	environment,	as	well	as	the	Yocto	Project	build	environment,	provide	all
architecture-dependent	settings.

Listing	11-4	shows	a	simple	makefile	to	build	our	project	to	compute	the	Fibonacci
series.

Listing	11-4	Makefile	for	Fibonacci	Series	Project
Click	here	to	view	code	image

#	Makefile	for	the	Fibonacci	Application

#	Files
SOURCES=fibonacci.c
OBJECTS=$(SOURCES:.c=.o)
EXEC=fibonacci

#	Define	extra	flags	here
EXTRACFLAGS=-ansi

all:	$(SOURCES)	$(EXEC)

$(EXEC):	$(OBJECTS)
								$(CC)	$(CFLAGS)	$(EXTRACFLAGS)	$(OBJECTS)	-o	$@

%.o	:	%.c
								$(CC)	$(CFLAGS)	$(EXTRACFLAGS)	-c	$<

install:
								install	$(EXEC)	$(DESTDIR)/usr/bin

clean:
								rm	-rf	*.o	$(EXEC)

Of	course,	it	is	still	a	rather	simple	project,	but	it	illustrates	the	concepts	of	using	the
variables	set	by	the	environment	and	providing	any	additional	configuration	settings	via
separate	variables.

11.3.2	Autotools-Based	Applications
We	talked	about	GNU	Autotools	and	writing	recipes	for	autotooled	software	packages	in
Chapter	8,	“Software	Package	Recipes.”	The	toolchain	environment	provides	all	the
necessary	settings	to	build	autotooled	packages,	including	site	configuration	files.	GNU
Autotools	makes	applications	portable	between	different	UNIX-like	systems	by	detecting
the	system	configuration.	That	detection	does	not	work	correctly	when	working	in	a	cross-
development	environment:	the	Autotools	would	detect	the	development	host	configuration
rather	than	the	proper	configuration	for	the	target.	Providing	the	target	configuration	to
Autotools	is	the	purpose	of	the	site	configuration	files.

To	illustrate	the	process	of	using	the	toolchain	with	an	autotooled	project,	we	are	going
to	build	the	GNU	Hello	application:
Click	here	to	view	code	image

$	source	environment-setup-corei7-64-poky-linux
$	wget	http://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz
$	tar	xvf	hello-2.10.tar.gz
$	cd	hello-2.10
$	aclocal	${OECORE_ACLOCAL_OPTS}	-I	m4
$	autoconf
$	autoheader
$	automake	-a
$./configure	${CONFIGURE_FLAGS}
$	make

The	first	four	steps	are	self-explanatory:	we	set	up	the	environment,	then	download	the
source	package	for	the	GNU	Hello	application,	unpack	it,	and	change	into	the	unpacked
source	directory.

We	then	run	aclocal	to	automatically	generate	the	aclocal.m4	files	based	on
automake	macros.	These	macros	are	collected	from	directories	added	through	the	-I
option.	The	OECORE_ACLOCAL_OPTS	adds	those	for	the	toolchain	configuration,	while
-I	m4	includes	the	local	m4	directory	of	the	source.

Running	autoconf,	autoheader,	and	automake	then	create	the	configuration
inputs,	header	template,	and	makefile	template	used	by	configure.

After	that,	the	local	configure	script	is	executed	to	determine	the	build	configuration
and	generate	the	makefile.	The	environment	variable	CONFIGURE_FLAGS	provides	host
and	target	configuration	settings	for	cross-compilation.

And	last	but	not	least,	running	make	builds	the	application.

11.4	Eclipse	Integration
Development	with	command-line	tools,	editors,	cross-toolchains,	makefiles,	scripts,	and
more,	has	long	been	the	daily	routine	of	embedded	developers	as	the	development	of	IDEs
with	graphical	user	interfaces	for	embedded	systems	has	been	lagging	behind	their
counterparts	for	native	development.	Application	developers	working	on	native
applications	for	operating	systems	for	personal	computers	commonly	have	the	choice
between	a	variety	of	different	IDEs	for	their	platforms	to	best	meet	their	requirements.
Embedded	developers	have	had	to	work	with	what	silicon	vendors	or	third-party	toolchain
companies	offered	for	a	particular	hardware	and	software	platform,	which,	in	many	cases,
was	not	much.	Using	Linux	for	embedded	systems	development	has	broadened	the	choice
of	development	tools	for	embedded	developers.

One	of	these	choices,	but	not	the	only	one,	is	Eclipse.	Eclipse,	originally	developed	by
IBM	for	Java	development,15	is	an	IDE	that	can	be	extended	through	plugins	to	serve
many	different	development	purposes	and	to	integrate	various	tools	in	a	common
framework	following	standardized	workflows.	Behind	the	scenes,	Equinox,16	an
implementation	of	the	core	Open	Services	Gateway	Initiative	(OSGi)17	framework
specification,	provides	the	plumbing	for	plugins	to	be	installed	and	integrated	into	Eclipse

and	to	communicate	with	each	other.	In	OSGi	terminology,	plugins	are	commonly	referred
to	as	bundles,	software	packages	that	can	be	installed	in	an	OSGi	framework	and	provide
services	to	other	bundles.
15.	The	original	Eclipse	code	base	stems	from	the	IBM	VisualAge	IDE.

16.	www.eclipse.org/equinox

17.	www.osgi.org

Although	Eclipse	was	originally	developed	as	an	IDE	for	the	Java	programming
language,	it	has	been	extended	to	support	many	other	programming	languages,	among
them	Ada,	C/C++,	Cobol,	Erlang,	Fortran,	Haskell,	JavaScript,	Lua,	Perl,	PHP,	Python,
Ruby,	Scala,	and	many	more;	interface	with	a	range	of	SCM	such	as	Git,	Perforce,
Subversion,	and	others;	and	integrate	with	a	growing	list	of	tools.	One	of	those	is	the
Yocto	Project	Eclipse	plugin	that	integrates	Yocto	Project	toolchains	and	much	more.

11.4.1	Installing	the	Eclipse	IDE
Eclipse	installation	packages	are	released	preconfigured	for	a	particular	task,	such	as
Eclipse	IDE	for	Java	Developers,	Eclipse	IDE	for	Java	EE	Developers,	Eclipse	IDE	for
C/C++	Developers,	and	so	forth.	You	can	find	a	complete	list	on	the	Eclipse	download
site.18	For	the	integration	with	the	Yocto	Project,	Eclipse	IDE	for	C/C++	Developers	is	the
best	choice,	as	it	already	includes	the	core	components	required	by	the	plugin:
18.	www.eclipse.org/downloads

	C/C++	Development	Tools

	Eclipse	Git	Team	Provider

	Remote	System	Explorer	(RSE)

The	Yocto	Project	Eclipse	plugin	requires	a	matching	version	of	Eclipse.	For	Yocto
Project	2.0	(Jethro),	the	Eclipse	versions	for	which	a	plugin	is	available	are	Juno,	Kepler,
and	Luna.	You	can	always	find	which	version	of	Eclipse	you	need	to	install	on	the	Yocto
Project	Eclipse	website.19

19.	https://www.yoctoproject.org/tools-resources/projects/eclipse-ide-plug

Virtually	all	mainstream	Linux	distributions	offer	Eclipse	for	installation	from	their
package	repositories.	These	may	work,	but	before	installing	any	of	them,	you	need	to
verify	that	a	matching	version	for	the	Yocto	Project	is	provided,	and	you	most	likely	need
to	install	the	three	plugins	listed	above	separately.20	If	there	is	no	matching	version	offered
by	your	distribution,	or	if	you	prefer	a	manual	installation,	you	need	to	use	an	installation
package	from	the	Eclipse	site:
20.	Eclipse	Git	Team	Provider	is	not	strictly	necessary	for	the	Yocto	Project	Eclipse	plugin	but	is	recommended.

1.	Install	Java:	Eclipse	is	a	Java	application	and	requires	at	least	a	Java	Runtime
Environment	(JRE)21	to	run.	Eclipse	works	with	OpenJDK	as	well	as	with	Oracle
Java.	Linux	distributions	typically	provide	OpenJDK	for	installation	from	the
package	repositories.	Simply	use	your	distribution’s	package	manager	to	install	Java
and	verify	the	installation	with

21.	You	can,	of	course,	also	use	a	Java	Development	Kit	(JDK)	that	includes	the	JRE.

http://www.eclipse.org/equinox
http://www.osgi.org
http://www.eclipse.org/downloads
https://www.yoctoproject.org/tools-resources/projects/eclipse-ide-plug

Click	here	to	view	code	image
$	java	–version
openjdk	version	“1.8.0_40”
OpenJDK	Runtime	Environment	(build	1.8.0_40-b25)
OpenJDK	64-Bit	Server	VM	(build	25.40-b25,	mixed	mode)

2.	Install	Eclipse:	Download	the	proper	version	of	the	Eclipse	IDE	for	C/C++
Developers	for	your	development	host	system.	In	our	example,	this	is	eclipse-
cpp-luna-SR2-linux-gtk-x86_64.tar.gz,	suitable	for	any	64-bit	x86-
based	Linux	system.	The	installation	package	is	a	simple	compressed	tarball	that	you
can	extract	into	any	directory	on	your	system	(we	use	/opt,	which,	however,
requires	root	access):

Click	here	to	view	code	image
$	cd	/opt
$	sudo	tar	xvf	\
				~/Downloads/eclipse-cpp-luna-SR2-linux-gtk-x86_64.tar.gz

Now	start	the	Eclipse	IDE:
$	/opt/eclipse/eclipse	&

Eclipse	first	shows	a	dialog	for	selecting	a	location	for	its	workspace.	The	default
~/workspace	is	adequate	unless	you	would	like	to	use	a	different	directory.

3.	Install	Standard	Eclipse	Plugins:	You	need	to	install	a	couple	of	standard	plugins
that	are	provided	through	the	Eclipse	download	site.	To	install	those,	first	select
Install	New	Software…	from	the	Help	menu	of	the	Eclipse	workbench.	Then,	from
the	Work	with:	combo-box,	choose	the	download	site	that	matches	your	version	of
Eclipse	(for	Eclipse	Luna,	that	is	Luna—http://download.eclipse.org/releases/luna).
Now	you	can	select	the	various	plugins	for	installation	(if	any	of	the	following	items
are	not	shown,	they	are	already	installed):

a.	Expand	the	list	Mobile	Device	Development	and	select	the	following:

	C/C++	Remote	Launch	(Requires	RSE	Remote	System	Explorer)

	Remote	System	Explorer	End-user	Runtime

	Remote	System	Explorer	User	Actions

	Target	Management	Terminal	(Core	SDK)

	TCF	Remote	System	Explorer	add-in

	TCF	Target	Explorer

b.	Expand	the	list	Linux	Tools	and	select

	Linux	Tools	LTTng	Tracer	Control

c.	Expand	the	list	Programming	Languages	and	select

	C/C++	Autotools	Support

	C/C++	Development	Tools

Complete	the	installation	and	restart	Eclipse.

http://download.eclipse.org/releases/luna

4.	Install	Eclipse	Yocto	Plugin:	We	are	installing	the	plugin	from	the	Yocto	Project
download	site.

a.	After	Eclipse	has	started	again,	select	Install	New	Software…	from	the	Help
menu,	and	click	on	Add…	in	the	Work	with:	area.	Enter
http://downloads.yoctoproject.org/releases/eclipse-plugin/2.0/luna	in	the
Location:	field	and	a	meaningful	name,	such	as	Yocto	Project,	in	the	Name:	field.

b.	Select	the	check	boxes	next	to

	Yocto	Project	ADT	Plug-in

	Yocto	Project	BitBake	Commander	Plug-in

	Yocto	Project	Documentation	plug-in

Complete	the	installation	by	accepting	the	license	agreement,	and	restart	Eclipse.

Your	Eclipse	installation	is	now	ready	for	integration	with	a	Yocto	Project	ADT.

11.4.2	Integrating	a	Yocto	Project	ADT
We	are	now	integrating	the	ADT	that	we	set	up	in	Section	11.2	with	Eclipse	and	the	Yocto
Project	Eclipse	plugin.	The	process	is	split	into	the	following	steps:

1.	Configuring	the	cross-toolchain	options

2.	Configuring	the	target	options

The	configuration	options	you	choose	in	the	following	steps	become	the	default	settings
for	all	projects	you	develop	with	the	Yocto	Project	plugin.	Each	new	project	you	create
inherits	these	settings,	and	you	can	adjust	them	later	individually	for	each	project.

For	the	configuration	steps	described	in	the	following	sections,	you	first	need	to

1.	Select	Preferences	from	the	Window	menu	to	show	the	Preferences	dialog.

2.	Choose	Yocto	Project	ADT	from	the	list	to	show	the	configuration	screen.

The	configuration	screen	is	divided	into	the	following	sections:

	Cross-Development	Profiles:	You	can	create	multiple	profiles	with	different
settings	for	your	Yocto	Project	ADT	development.	The	profile	named	Standard
Profile	is	the	default,	which	is	applied	to	all	new	projects	unless	you	choose	a
different	profile	when	creating	the	project.	You	cannot	remove	the	Standard	Profile.
Leave	the	selection	to	Standard	Profile.

	Cross	Compiler	Options:	This	section	configures	the	cross-toolchain.

	Toolchain	Type:	You	have	the	choice	between

•	Standalone	Prebuilt	Toolchain:	This	option	is	for	application	developers	who
have	been	provided	with	a	prebuilt	and	packaged	Yocto	Project	toolchain,	which
they	have	installed	on	their	development	system.

•	Build	System	Derived	Toolchain:	Use	this	option	if	you	want	to	use	the
toolchain	from	a	Yocto	Project	build	environment.

http://downloads.yoctoproject.org/releases/eclipse-plugin/2.0/luna

Since	we	built	a	toolchain	with	the	Yocto	Project	and	installed	it	on	our
development	system,	select	the	first	option.

	Toolchain	Root	Location:	This	option	is	the	path	that	points	to	the	toolchain
installation	location.	This	path	depends	on	the	Toolchain	Type:

•	Standalone	Prebuilt	Toolchain:	Point	the	path	to	the	location	where	you
installed	the	toolchain.	In	our	example,	that	is	/opt/poky/2.0.

•	Build	System–Derived	Toolchain:	If	you	intend	to	use	a	build	system–derived
toolchain,	point	the	path	to	the	top	directory	of	your	build	environment.

	Sysroot	Location:	This	option	is	the	path	to	the	location	where	the	system	root
for	your	target	resides.	For	our	kiosk	project	using	the	MinnowBoard	Max,	this	is
/opt/poky/2.0/sysroots/corei7-64-poky-linux.

	Target	Options:	This	section	configures	the	target	you	want	to	use	with	your
Eclipse	setup.	There	are	two	choices:

	QEMU:	Choose	this	option	if	you	intend	to	use	the	QEMU	emulator	to	test	your
applications.	If	you	are	using	QEMU,	you	also	have	to	provide	a	kernel	to	which
you	may	pass	additional	options.

	External-HW:	This	option	is	for	external	hardware,	which	is	what	we	are	using.

Click	Apply	to	have	the	Yocto	Project	plugin	verify	your	settings	and	to	save	the
configuration,	and	click	OK	to	dismiss	the	dialog.	Eclipse	and	the	Yocto	Project	plugin	are
now	ready	for	application	development.

11.4.3	Developing	Applications
The	Yocto	Project	Eclipse	plugin	provides	project	templates	for	developing	C/C++
applications	using	CMake	and	GNU	Autotools.	The	build	files,	such	as	the	makefile,	are
created	with	environment	settings	that	meet	the	requirements	of	the	build	system’s
cmake.bbclass	and	autotools.bbclass	classes.	Hence,	writing	recipes	that
build	the	projects	that	you	have	developed	with	Eclipse	and	a	Yocto	Project	cross-
toolchain	is	as	simple	as	providing	SRC_URI	and	inheriting	the	respective	class.

You	can	also	develop	applications	that	just	use	a	makefile	without	CMake	or	Autotools.
However,	you	have	to	set	the	Eclipse	environment	for	the	cross-toolchain	manually.
Hence,	we	recommend	that	you	stick	to	one	of	the	provided	project	templates.	Whether
you	choose	to	build	your	project	with	CMake	or	with	Autotools	depends	on	the
requirements	of	your	project	and,	of	course,	your	personal	preferences.

Start	creating	your	new	project	by	launching	Eclipse	and	selecting	New	>	Project…
from	the	File	menu.	From	the	New	Project	dialog	box,	expand	the	C/C++	folder	and
choose	either	C	Project	or	C++	Project.	The	following	examples	build	a	simple	Hello
World–style	project	using	identical	source	code,	so	it	does	not	make	any	difference
whether	you	choose	C	Project	or	C++	Project.	For	the	examples,	we	choose	C	Project.

The	next	dialog	box	lets	you	select	the	type	of	project	you	want	to	create.	The	choices

	Yocto	Project	ADT	Autotools	Project

	Yocto	Project	ADT	CMake	Project

are	provided	by	the	Yocto	Project	Eclipse	plugin	and	include	the	templates	that	integrate
with	the	Yocto	Project	cross-toolchain.

Developing	a	CMake-Based	Application

Starting	from	the	project	dialog,	follow	these	steps	to	create	your	project:

1.	C	Project	Page:	Expand	the	folder	Yocto	Project	ADT	CMake	Project,	and	from	the
list	choose	Hello	World	C	CMake	Project.	This	creates	a	simple	project	with	one	C
file	containing	a	main	function,	CMake	files,	and	so	on.	Alternatively,	you	can
choose	Empty	Project,	but	then	you	have	to	create	all	the	files	manually.	Enter	a
name	in	the	field	Project	Name	at	the	top,	and	leave	Use	default	location	checked.
The	project	name	must	not	contain	any	special	characters	or	spaces.	Click	Next.

2.	General	Settings	Page:	If	you	wish,	enter	your	author	information.	You	may	also
leave	the	page	blank.	The	information	you	enter	here	is	automatically	added	to	a
header	in	the	source	files.	Click	Next.

3.	Select	Configurations	Page:	The	Debug	configuration	is	selected	by	default.	If	you
click	Advanced	Settings,	the	project	properties	dialog	opens	up.	The	item	Yocto
Project	Settings	contains	the	ADT	settings	with	cross-development	profiles,	cross-
compiler	options,	and	target	options.	The	fields	are	prefilled	with	the	settings	we
entered	earlier.	You	can	override	these	settings	by	choosing	Use	project	specific
settings.	You	can	come	back	to	this	dialog	at	any	time	after	your	project	has	been
created	by	choosing	Properties	from	the	Eclipse	Project	menu.	Click	Finish.

4.	C/C++	Perspective:	Depending	on	your	current	Eclipse	state,	the	Open	Perspective
prompt	may	appear	asking	you	if	you	want	to	change	to	the	C/C++	Perspective.
Confirm	opening	the	C/C++	Perspective.	Eclipse	calls	its	different	environments
perspectives.	Depending	on	your	Eclipse	installation,	there	are	perspectives	for	Java,
C/C++,	Debug,	and	many	more.	You	can	switch	between	perspectives	from	the
Eclipse	Window	menu	or	use	the	buttons	in	the	upper	right	corner	of	the	Eclipse
window.	Each	perspective	can	have	multiple	different	views	that	are	displayed	in	the
workbench	area	of	the	perspective.	On	the	left	side,	you	see	the	Project	Explorer
view	showing	the	project	structure	and	the	files	of	your	project.	If	you	want	to	edit	a
file,	double-click	on	its	name	in	the	Project	Explorer,	which	loads	it	into	the	built-in
editor.

You	can	now	comfortably	perform	all	development	tasks	from	within	the	C/C++
perspective,	including	building	the	project	with	the	Yocto	Project	ADT	cross-toolchain
and	system	root	for	your	target.	Either

	Select	Build	Project	from	the	Eclipse	Project	menu,	or

	Right-click	on	the	project	name	in	the	Project	Explorer	and	select	Build	Project.

During	the	build	process,	which	of	course	is	rather	quick	for	this	simple	project,	the
Console	view	shows	the	output	of	the	various	build	steps.	If	there	are	any	build	errors,
Eclipse	switches	to	the	Problems	view.	If	the	build	was	successful,	Eclipse	shows	the
binary	files	under	Binaries	in	the	Project	Explorer.

Developing	an	Autotools-Based	Application

Creating	and	building	an	Autotools-based	application	is	not	much	different	from	a
CMake-based	application.	Once	again,	starting	from	the	project	dialog,	follow	these	steps
to	create	your	project:

1.	C	Project	Page:	Expand	the	folder	Yocto	Project	ADT	Autotools	Project,	and	from
the	list	choose	Hello	World	ANSI	C	Autotools	Project.	Enter	a	name	in	the	field
Project	Name	at	the	top,	and	leave	Use	default	location	checked.	The	project	name
must	not	contain	any	special	characters	or	spaces.	Click	Next.

2.	Basic	Settings	Page:	If	you	wish,	enter	your	author	information	and	choose	the
license.	This	dialog	is	slightly	different	from	General	Settings	for	the	CMake
project,	but	it	serves	a	similar	purpose.	Click	Next.

3.	Select	Configurations	Page:	This	dialog	is	exactly	the	same	as	for	the	CMake
project.	Click	Finish.

4.	C/C++	Perspective:	After	completion,	Eclipse	either	directly	switches	to	the
C/C++	perspective	or	asks	you	before	doing	so	depending	on	your	current	Eclipse
state.

Building	an	Autotools-based	application	involves	two	steps	that	you	can	execute	from
within	the	C/C++	perspective:

	Configure:	Right-click	on	the	project	name	in	the	Project	Explorer,	and	select
Reconfigure	Project.	This	invokes	the	autogen.sh	script,	which	in	turn	executes
libtoolize,	aclocal,	autoconf,	autoheader,	automake,	and
configure,	similar	to	what	we	did	on	the	command	line	in	Section	11.3.2.

	Build:	Right-click	on	the	project	name	in	the	Project	Explorer,	and	select	Build
Project.

You	can	follow	the	steps	in	the	Console	view.	After	a	successful	build,	Eclipse	shows
the	binary	files	under	Binaries	in	the	Project	Explorer.

11.4.4	Deploying,	Running,	and	Testing	on	the	Target
Integration	of	the	Yocto	Project	ADT	toolchain	with	Eclipse	makes	creating	and	building
CMake-based	and	GNU	Autotools–based	projects	as	simple	as	a	couple	of	mouse-clicks
in	the	graphical	user	interface.	You	still	have	to	write	the	code,	of	course,	but	the	tedious
mechanics	are	taken	care	of.	Deploying,	running,	and	testing	your	application	on	the	target
system,	however,	is	still	a	matter	of	copying	binary	files	manually	to	the	target.

This	is	where	Eclipse’s	TCF	adds	the	missing	link	for	a	complete	round-trip
development	experience.	TCF	enables	copying	the	binary	files	to	the	target	system,
remotely	running	executable	applications	on	the	target	system,	and	even	remotely
debugging	applications	on	the	target	system	directly	from	within	Eclipse.

TCF	is	a	lightweight	but	extensible	network	protocol	mainly	for,	but	not	limited	to,
communication	with	embedded	devices,	or	targets.	It	is	designed	as	a	framework	for	tools
on	a	development	system	to	interact	with	services	on	the	target	using	a	standardized
communication	layer	that	is	independent	of	a	particular	transport	such	as	TCP/IP,	serial

wire	connection,	SSH	tunnel,	and	so	forth.	While	TCP/IP	is	the	standard	communication
channel,	other	protocols	are	available	and	can	be	added.	TCF	uses	JSON	for	data
marshalling	and	also	supports	automatic	discovery	of	targets	and	services	on	targets.	At	its
core,	TCF	consists	of	a	plain	C	implementation	of	an	extensible	agent	running	on	the
target	and	a	Java	client	API.	The	latter	is	integrated	with	various	Eclipse	tools	but	can	also
be	used	in	standalone	applications.

Preparing	the	Target	for	Remote	Control

To	be	able	to	use	Eclipse	with	TCF	to	remotely	deploy,	run,	test,	and	debug	applications
we	need	to	prepare	the	target	root	filesystem	by	installing	the	required	components.	The
Yocto	Project	provides	a	set	of	image	features	which	makes	this	task	rather	easy	and
straightforward.	All	you	have	to	do	is	add	the	features	tools-debug	and	eclipse-
debug	to	the	EXTRA_IMAGE_FEATURES	in	the	conf/local.conf	file	of	your
build	environment:
Click	here	to	view	code	image

EXTRA_IMAGE_FEATURES	=	“debug-tweaks	tools-debug	eclipse-debug”

Then	rebuild	the	image:
Click	here	to	view	code	image

$	bitbake	-k	ypbkiosk-image-sato

and	deploy	it	to	the	MinnowBoard	Max	target	system,	as	explained	in	the	previous
chapter.	After	rebooting	the	board,	you	can	verify	that	the	TCF	agent	is	running	by
executing	on	the	target:
Click	here	to	view	code	image

#	ps	|	grep	tcf-agent
699	root						668m	S				/usr/sbin/tcf-agent	-d	-L-	-l0
931	root						4412	R				grep	tcf-agent

Of	course,	your	output	is	most	likely	slightly	different,	but	the	line	containing
/usr/sbin/tcf-agent	indicates	that	the	TCF	agent	is	running	on	the	target.	Your
target	is	now	ready	to	accept	TCF	connections	from	your	Eclipse	workbench.

Before	you	can	set	up	a	TCP	connection	from	the	Eclipse	workbench	on	your
development	system	to	your	target	system,	both	systems	need	to	be	connected	to	the	same
local	network.	Our	ypbkiosk-image-sato	is	derived	from	the	default	core-
image-sato,	which	includes	networking	support	with	Dynamic	Host	Configuration
Protocol	(DHCP).	All	you	have	to	do	is	connect	your	MinnowBoard	Max	target	to	the
same	router	as	your	development	system.	You	may	want	to	use	a	separate	router	and	an
additional	network	port	on	your	development	system	if	the	IT	department	of	your
organization	does	not	allow	you	to	connect	your	target	system	to	the	organization’s
network.

Using	the	Eclipse	Target	Explorer

With	the	Target	Explorer,	you	can	inspect	your	target	system	from	the	Eclipse	workbench.
You	can	browse	the	target’s	filesystem,	list	running	processes	as	well	as	terminate	them
and	attach	a	debugger	to	them,	and	create	application	launch	configurations.

The	Target	Explorer	uses	TCF’s	discovery	mechanism,	which	is	very	handy,	as	you	do
not	have	to	find	out	your	target’s	IP	address	manually.22	The	TCF	discovery	mechanism
scans	your	local	network	for	TCF	agents	listening	on	its	default	port	1534.	Follow	these
steps	to	set	up	a	connection	to	your	target	with	the	Target	Explorer:
22.	Not	that	it	is	very	hard	to	run	ifconfig	on	the	target	system,	but	it	requires	a	serial	terminal	or	a	screen	and	a

keyboard.

1.	Open	the	Target	Explorer	Perspective:	From	the	Eclipse	Window	menu,	select
Open	Perspective,	and	from	the	submenu,	select	Other…	From	the	list	of
perspectives	in	the	dialog,	select	Target	Explorer.	Eclipse	automatically	switches	to
the	Target	Explorer	perspective	with	a	System	Management	tab	on	the	left	side.

2.	System	Management	Tab:	The	System	Management	tab	contains	a	list	with	three
folders:	Favorites,	Connections,	and	Neighborhood.	If	you	have	never	used	Target
Explorer	before,	the	Favorites	folder	is	empty,	and	the	Connections	folder	has	one
entry	called	Create	New	Connection…	The	Neighborhood	folder,	however,	shows	an
entry	for	each	TCF	agent	the	discovery	mechanism	has	found	on	the	local	network
in	the	form	of	TCF	Agent	<ip	address>.

3.	Setting	Up	the	Connection:	Right-click	on	the	TCF	Agent	with	the	IP	address	you
want	to	connect	to	and	select	Connect	from	the	menu.	Eclipse	opens	the	New
Connection	dialog.	The	fields	of	the	dialog	are	prefilled	with	the	connection
parameters	the	discovery	mechanism	has	detected.	All	you	need	to	do	is	give	the
connection	a	meaningful	Connection	Name.	After	you	click	Finish,	Eclipse	connects
to	the	TCF	agent	on	the	target	and	opens	a	tab	for	the	new	connection.

4.	Connection	Tab:	Depending	on	the	connection	status,	the	Connection	tab	has
multiple	subtabs	that	are	shown	on	the	bottom:

a.	Details	(Overview):	Shows	the	connection	details.	The	fields	can	be	modified
only	if	the	connection	is	closed.

b.	Source	Paths:	Search	path	for	source	files	when	attaching	the	debugger	to	a
process.	By	default,	these	are	paths	on	the	target,	but	paths	on	the	development
host	can	be	added.

c.	Launches:	Allows	creation	of	launch	configurations	to	run	applications	installed
on	the	target.	Standard	input	(stdin),	standard	output	(stdout),	and	standard
error	(stderr)	are	redirected	via	TCF	to	eclipse	so	that	you	can	interact	with	the
running	application.

d.	Processes:	List	of	processes	running	on	the	target.	The	list	is	retrieved	from	the
target	when	you	click	on	the	subtab.	You	can	load	it	again	by	clicking	on	the
Refresh	button	in	the	upper	right	corner.

e.	File	System:	Lets	you	explore	the	filesystem	on	the	target.	You	can	create	new
folders	and	files,	move	them,	delete	them,	copy	them,	and	rename	them.	You	can
also	search	for	folders	and	files	on	the	target.

If	you	have	developed	native	applications	(that	is,	applications	that	can	be	executed	on
the	development	system	itself)	with	Eclipse	before,	you	know	that	you	can	execute	and

debug	them	directly	from	the	development	environment	within	Eclipse,	for	instance,	the
C/C++	or	Java	perspective,	after	compiling	them.	With	TCF,	you	can	do	the	same	on	the
target.	It	requires	a	few	configuration	steps,	which	we	explain	in	the	next	sections.

Running	Applications	on	the	Target

Through	Eclipse’s	Run	Configurations,	you	can	set	up	environments	for	executing
applications.	You	create	and	manage	your	environments	using	a	dialog	you	launch	by
selecting	Run	Configurations…	from	Eclipse’s	Run	menu.	On	the	left	side	of	the	dialog,
Eclipse	shows	a	list	with	the	various	run	configuration	types,	and	underneath	each	type,	a
list	with	predefined	configurations.	To	create	a	run	configuration	to	execute	our	C/C++
application	on	the	remote	target,	you	choose	C/C++	Remote	Application	and	then	click	on
the	New	button	in	the	upper	left	corner	above	the	list.

1.	Name:	Eclipse	fills	in	a	name	for	your	run	configuration	based	on	the	current
project.	Accept	the	default	if	it	meets	your	requirements,	or	enter	a	new	name.

2.	Main	Tab:

a.	Connection:	Create	a	new	connection	by	clicking	New…

i.	Select	TCF	from	the	list	and	click	Next	>.

	ii.	Enter	the	IP	address	of	your	target	board	or	a	host	name	if	you	have	a	local
DNS	in	the	Host	Name	field.

iii.	Enter	a	name	for	your	connection	in	the	field	Connection	Name.

iv.	Enter	a	Description	if	you	wish.

	v.	Click	Finish	to	create	the	connection	and	dismiss	the	dialog.

b.	Project:	Eclipse	automatically	fills	in	the	name	of	your	current	project.	If	that	is
not	the	project	you	want,	choose	a	different	project	using	the	Browse...	button.

c.	Build	configuration:	Eclipse	automatically	chooses	the	current	configuration	of
the	project.	You	may	override	it	by	choosing	a	different	one	from	the	list.

d.	C/C++	application:	A	project	can	potentially	build	more	than	one	application.
Use	Search	Project…	to	select	the	correct	executable.

e.	Remote	absolute	file	path	for	C/C++	application:	This	field	contains	the
absolute	path	and	name	of	the	application	on	the	target.	Eclipse	copies	the
application	to	that	path.	You	can	choose	a	different	name	than	the	name	of	the
executable	file	created	by	the	Eclipse	build	process.	Use	Browse…	to	select	the
path	on	the	target	and	then	append	a	name,	such	as	/usr/bin/hello.

f.	Commands	to	execute	before	application:	In	this	field	you	can	enter	additional
commands	to	execute	on	the	target	before	Eclipse	launches	the	application.	Leave
it	blank.

g.	Skip	download	to	target	path:	Do	not	check	this	box.	You	want	Eclipse	to
download	your	application	to	the	target	every	time	so	that	your	latest	changes	are
applied.

3.	Arguments	Tab:	If	your	application	requires	command-line	arguments,	you	can
enter	them	into	the	Program	Arguments	field.

4.	Common	Tab:	General	settings	for	the	run	configuration	are	accessed	through	the
Common	tab.	The	default	settings	are	appropriate	in	most	cases.	If	you	would	like
Eclipse	to	store	your	application’s	output,	check	File	and	provide	a	path	and	name
for	the	file	to	store	the	output.

Click	Apply	and	then	Run	on	the	bottom	of	the	dialog	to	launch	your	application	on	the
target.	If	it	is	the	first	time	Eclipse	uses	this	connection	to	run	an	application	on	that	target,
it	presents	you	with	a	dialog	asking	for	a	User	ID	and	Password	for	the	user	account	under
which	to	execute	the	application.	Enter	root	as	the	User	ID	and	leave	Password	empty,	as
a	standard	Yocto	Project	image	has	only	a	root	user	account	with	no	password.

Watch	the	Console	window	inside	Eclipse	as	Eclipse	first	builds	your	application,	then
transfers	it	to	the	target,	and	finally	executes	it.	The	Console	window	should	show	output
similar	to	the	following:
Click	here	to	view	code	image

root@ypbkiosk:/#
echo	$PWD’>’
/>
root@ypbkiosk:/#	/usr/bin/hello;exit
Hello	World!
logout

Eclipse	and	TCF	only	redirect	standard	input	(stdin),	standard	output	(stdout),	and
standard	error	(stderr)	from	the	target	to	a	terminal	inside	Eclipse.	If	your	target
application	is	a	graphical	application,	its	output	is	displayed	on	a	screen	connected	to	the
target	hardware.	In	general,	this	makes	sense	because	you	would	want	to	test	your
application	with	a	local	screen.

Debugging	Applications	on	the	Target

Similar	to	Run	Configurations	for	executing	applications	on	a	target,	Eclipse	provides
Debug	Configurations	for	debugging	applications	on	a	target.	For	debugging,	an
application	or	program	is	launched	from	within	the	context	of	the	debugger.	The	debugger
then	controls	and	monitors	the	execution	of	the	program	and	provides	access	to	variables,
stack,	dynamic	storage,	file	pointers,	and	more,	used	by	the	program.

Remote	debugging	requires	a	debugger	that	is	capable	of	executing	a	program	on	the
target	while	controlling	and	monitoring	it	from	a	different	system,	the	development	host,
via	a	connection	link	such	as	a	network	or	serial	connection.	The	GDB,	which	is	the
standard	debugger	for	Linux	systems,	has	a	matching	server,	the	gdbserver,	for	remote
debugging.	The	GDB	running	on	the	host	system	communicates	with	gdbserver	on	the
target	system	via	a	network	connection	using	TCP	or	via	serial	connection.

It	is	useful	to	understand	the	principal	Eclipse	workflow	for	remote	debugging,	as	it
uses	a	combination	of	TCF	and	the	communication	protocol	used	by	the	debugger:

1.	Eclipse	downloads	the	application	to	the	target	system	via	TCF.

2.	Eclipse	launches	gdbserver	on	the	target	with	the	application	to	be	debugged	via

TCF	by	executing	a	command	similar	to	gdbserver	host:2345	<program>
<arguments>.	The	parameter	host:2345	indicates	to	use	a	TCP	connection	on
port	2345	(the	gdbserver	default	port),	<program>	is	the	application	that	Eclipse
downloaded	in	the	previous	step,	and	<arguments>	are,	if	provided,	command-
line	arguments	passed	to	the	application.

3.	Eclipse	starts	GDB	on	the	development	system	or	host	and	switches	to	the	Debug
perspective.

4.	Eclipse	instructs	GDB,	through	its	GDB/MI	interface,	to	connect	to	the	gdbserver
running	on	the	target	using	the	command	target	remote	<target>:2345,
where	<target>	is	the	hostname,	if	DNS	is	available,	or	the	IP	address	of	the
target.

5.	GDB	starts	the	application	on	the	target	and	automatically	holds	execution	at	the
first	instruction	of	the	main()	function.

6.	You	can	now	control	and	monitor	the	application	with	GDB	on	the	target	via	the
graphical	user	interface	provided	by	Eclipse’s	Debug	perspective.

GDB	provides	multiple	command	interpreters	and	command	infrastructure	through
which	users	and	other	applications	can	interact	with	it:

	GDB/CLI:	The	console	or	command-line	interpreter	that	is	commonly	used	by
users.	It	provides	a	simple	command	infrastructure	in	human-readable	form.	This	is
the	default	interpreter.

	GDB/MI:	The	machine	interpreter	typically	used	by	other	programs,	such	as	Eclipse
and	other	frontends	to	GDB.	There	are	two	versions	of	GDB/MI:	mi1	and	mi2.	The
latter	is	the	current	version.

All	GDB	interpreters	use	stdin	to	accept	commands,	stdout	for	information	and
data	output,	and	stderr	for	error	messages.	Eclipse	uses	the	latest	GDB/MI	version,
mi2.

Creating	a	debug	configuration	is	not	much	more	difficult	than	creating	a	run
configuration.	As	a	matter	of	fact,	if	you	already	created	a	run	configuration	for	your
application,	Eclipse	uses	it	as	a	starting	point.	From	the	Eclipse	Run	menu,	select	Debug
Configurations…	to	open	the	configuration	editor.	The	dialog	looks	pretty	much	the	same
as	the	Run	Configurations	dialog.	On	the	left	side,	you	have	your	list	of	application	types.
If	you	created	a	run	configuration	as	described	in	the	previous	section,	Eclipse	most	likely
already	highlighted	that	configuration	in	the	list	and	is	showing	the	configuration	details
on	the	right.

The	tabs	Main,	Arguments,	and	Common	let	you	view	and	edit	the	same	information	as
their	respective	counterparts	of	the	Run	Configurations	dialog.	We	explained	those	in	the
previous	section.	The	tabs	Debugger	and	Source	are	new:

	Debugger	Tab:	This	is	where	you	configure	the	GDB:

	Stop	on	startup	at:	If	checked	and	a	function	name	is	provided	in	the	field	next
to	it,	GDB	sets	a	breakpoint	at	the	first	instruction	of	the	provided	function.	On

startup,	GDB	executes	the	program	until	it	reaches	the	breakpoint.	The	default
setting	is	to	halt	execution	at	the	main().	If	you	are	debugging	a	complex
program	and	you	are	not	interested	in	what	is	happening	in	the	beginning	of	the
program,	set	it	to	a	different	function.

	Main	Subtab:	General	settings	for	GDB:

•	GDB	Debugger:	This	setting	is	for	the	path	and	name	of	the	GDB	debugger.
This	information	should	already	be	filled	out	correctly	by	the	Yocto	Project
plugin	to	point	to	the	cross-debugger	for	the	platform.

•	GDB	Command	File:	This	setting	points	to	the	project	command	file	for	GDB.
The	debugger	reads	this	file	on	startup.	The	filename	is	typically	.gdbinit
and	is	located	inside	the	Eclipse	project	directory.

•	Non-stop	Mode:	If	checked,	this	setting	allows	you	to	debug	stopped	threads	of
a	multithreaded	program	while	other	threads	are	running	freely.

•	Enable	Reverse	Debugging:	With	this	setting	checked,	you	can	step	and
continue	backwards	through	a	program.	Normally,	you	can	only	step	and
continue	in	the	order	of	the	program’s	flow.	This	GDB	functionality	is	still
limited	to	certain	architectures	and	platforms	and	is	not	generally	available	for
remote	debugging.

•	Force	Thread	List	Update	on	Suspend:	This	setting	automatically	updates	the
thread	information	in	the	Eclipse	Debug	perspective	when	a	thread	hits	a
breakpoint.

•	Automatically	Debug	Forked	Processes:	Typically,	the	GDB	debugger
attaches	to	the	main	process.	If	that	process	creates	child	processes,	GDB
continues	debugging	the	main	process.	Newer	versions	of	GDB	can	attach	to
forked	processes.	Enable	this	option	to	have	GDB	automatically	also	attach	to
child	processes.

•	Tracepoint	Mode:	For	some	applications,	particularly	real-time	applications,	it
is	not	feasible	to	use	breakpoints	and	inspect	variables	because	suspending	the
program	alters	the	timing	characteristics.	That	is	where	a	developer	can	use
tracepoints	to	have	GDB	automatically	collect	and	report	data.	In	Normal	mode,
tracepoints	are	inserted	into	the	program	as	traps;	in	Fast	mode,	they	are
inserted	as	jumps.	Jump	tracepoints	are	not	supported	on	all	platforms	and	under
all	conditions.	The	Automatic	mode	leaves	the	decision	to	the	debugger.

	Shared	Libraries	Subtab:	In	this	subtab,	you	can	add	directory	paths	to
additional	shared	libraries	into	the	text	box.	The	standard	shared	libraries	are
known	and	loaded	by	default.	If	you	want	to	debug	shared	libraries,	you	need	to
check	the	Load	Shared	Library	Symbols	Automatically	option.

	Gdbserver	Settings	Subtab:	Path	and	name	of	the	gdbserver	executable	on	the
target	are	shown	in	this	subtab.	The	default	is	gdbserver,	which	is	sufficient	for
Yocto	Project	target	images,	as	the	gdbserver	is	in	the	default	PATH.	Port	number
is	the	TCP	port	to	be	used	for	communication	between	GDB	running	on	the	host

and	gdbserver	running	on	the	target.	The	default	is	2345.

	Source	Tab:	When	stepping	through	a	program,	the	debugger	needs	to	show	you	the
source	so	that	you	effectively	can	trace	your	program.	For	that	purpose,	the
debugger	needs	to	be	able	to	locate	and	load	the	source	files.	The	paths	added	to	the
list	in	Source	Lookup	Path	serve	that	purpose.	Eclipse	adds	the	project	paths	by
default.	If	you	need	to	debug	any	shared	libraries,	you	must	add	their	paths	to	that
list	to	be	able	to	see	their	sources.

Accept	your	modifications	by	clicking	Apply,	and	then	launch	the	debugger	by	clicking
Debug.	Eclipse	starts	the	debugger	and	switches	to	the	Debug	perspective.	Execution	halts
at	the	first	instruction	of	the	main()	function.	You	can	now	step	through	the	code,	set
breakpoints,	and	examine	variables	of	the	program	running	on	the	target	as	you	would	do
with	a	program	running	in	the	debugger	locally.

Tracing	Library	Functions

You	can	use	the	debugger	to	trace	into	functions	of	shared	libraries,	such	as	C	library
libc.	However,	the	debugger	cannot	display	the	source	code	because	it	has	no
information	on	where	to	locate	it.	When	building	the	SDK,	the	build	system	automatically
adds	the	debug	and	source	packages	with	the	system	roots	for	all	installed	packages,
including	standard	shared	libraries.	To	tell	the	debugger	where	to	find	the	source	files,	we
have	to	add	the	necessary	information	to	the	.gdbinit	file	located	in	the	project
directory	of	the	Eclipse	workspace	(Listing	11-5).

Listing	11-5	GDB	Startup	File	.gdbinit
Click	here	to	view	code	image

set	sysroot	/opt/poky/2.0/sysroots/corei7-64-poky-linux
set	substitute-path	/usr/src/debug	\
				/opt/poky/2.0/sysroots/corei7-64-poky-linux/usr/src/debug

Listing	11-5	shows	an	example	of	the	.gdbinit	file	that	sets	the	paths	for	GDB	to
locate	the	source	files	for	library	debugging	for	an	SDK	installed	in	/opt/poky/2.0:

	set	sysroot:	Specifies	the	local	directory	that	contains	the	copies	of	the
libraries	that	are	installed	on	the	target.	This	paths	enables	the	debugger	to	locate
and	load	the	libraries	and	their	symbols.	This	is	the	path	to	the	Yocto	Project	SDK
installed	on	your	development	system.

	set	substitute-path:	Specifies	a	substitution	rule	for	the	debugger	to	find
the	source	files	for	the	libraries.	Standard	executables	and	libraries	compiled	for
Linux	systems	record	their	compilation	directory	with	a	path	prefix	as
/usr/src/debug.	The	substitute-path	command	causes	GDB	to	replace
the	first	path	fragment	with	the	second	when	locating	the	source	files.

Unfortunately,	Eclipse	does	not	provide	any	means	to	give	GDB	configuration	settings
such	as,	but	not	limited	to,	the	ones	shown	previously	for	cross-debugging.	However,	you
can	modify	the	.gdbinit	file	using	Eclipse’s	text	editor.	Since	the	file	is	a	hidden	file
on	Linux/UNIX	systems,	the	Eclipse	Project	Explorer	does	not	show	it	by	default.	Click

the	down	arrow	in	the	menu	next	to	the	title	Project	Explorer,	and	then	select	Customize
View…	from	the	menu.	Then	remove	the	checkmark	next	to	.*	resources.	Alternatively,
you	can	give	the	GDB	Command	File	in	the	Debug	Configuration	dialog	a	different
filename	so	that	it	is	not	a	hidden	file	(no	dot	leading	the	filename).

11.5	Application	Development	Using	an	Emulated	Target
Many	embedded	projects	are	combined	efforts	of	hardware	and	software	engineering.	The
actual	target	hardware,	or	even	early	engineering	samples,	may	not	be	available	for
software	development	well	into	the	development	cycle.	To	shorten	the	development	cycle,
you	may	want	to	commence	software	development	on	application	software	early	in	the
project	in	parallel	with	the	hardware	development.	One	approach	is	to	use	inexpensive
development	boards	such	as	the	BeagleBone,	MinnowBoard	Max,	Wandboard,	and	others
that	resemble	your	project’s	target	hardware.	Another	approach	is	to	use	target	emulation.
Target	emulation	also	has	the	advantage	that	application	developers	do	not	have	to	deal
with	embedded	hardware	because	they	can	build	and	test	their	applications	using	their
development	system.

The	Yocto	Project	uses	QEMU	for	target	emulation.	We	have	used	QEMU	throughout
this	book	for	testing	our	various	Yocto	Project	system	builds.	Now	we	illustrate	how	to
use	QEMU	for	application	development	with	a	Yocto	Project	SDK	and	Eclipse.

11.5.1	Preparing	for	Application	Development	with	QEMU
We	need	two	things	for	application	development	with	an	emulated	target:

	Linux	kernel	and	root	filesystem	for	QEMU

	ADT	to	match	the	former

Both,	of	course,	we	build	with	the	build	system.	We	already	have	the	build	environment
that	we	used	to	create	the	image	for	our	kiosk	project	with	the	MinnowBoard	Max.	We
just	need	to	change	the	machine	from	ypbkiosk	to	QEMU	machine.	It	makes	good
sense	to	use	an	emulated	machine	whose	core	architecture	is	similar	to	the	actual	hardware
target.	Since	the	MinnowBoard	Max	is	equipped	with	a	64-bit	x86	CPU,	we	choose
qemux86-64	as	the	machine.	Change	the	MACHINE	variable	in	conf/local.conf
of	the	build	environment	to	qemux86-64,	and	launch	BitBake	with
Click	here	to	view	code	image

$	bitbake	-k	ypbkiosk-image-sato

to	build	the	Linux	kernel	and	the	ypbkiosk-image-sato	root	filesystem	image.	Once
the	build	completes,	create	the	matching	SDK	with
Click	here	to	view	code	image

$	bitbake	-c	populate_sdk	ypbkiosk-image-sato

Once	that	has	finished,	install	the	ADT,	as	explained	in	Section	11.2.2.	You	can	safely
install	the	ADT	in	the	same	/opt/poky/<version>	directory,	as	toolchain,	system
roots,	and	setup	scripts	are	uniquely	named	and	separated	from	each	other.

Extracting	the	Root	Filesystem

Eclipse	launches	QEMU	with	a	root	filesystem	exported	from	the	development	host	via
Network	File	System	(NFS).	To	set	up	the	root	filesystem	for	QEMU	and	NFS,	we	need	to
extract	and	prepare	the	root	filesystem	that	we	created	during	the	previous	step.	The	ADT
includes	a	script	that	performs	all	the	necessary	work.

1.	Change	directory	to	the	ADT	installation:
$	cd	/opt/poky/<version>

2.	Source	the	QEMU	ADT	environment:
Click	here	to	view	code	image

$	source	environment-setup-core2-64-poky-linux

3.	Change	directory	to	sysroots:
$	cd	sysroots

4.	Extract	the	root	filesystem	from	the	build	environment:
Click	here	to	view	code	image

$	runqemu-extract-sdk	\
		/<path-to-build-environment>/tmp/deploy/images/qemux86-64/\
		ypbkiosk-image-sato-qemux86-64.tar.bz2	\
		core2-64-poky-linux

5.	Copy	the	Linux	kernel	image	from	the	build	environment:
Click	here	to	view	code	image

$	cp	/<path-to-build-envrionment>/bzImage-qemux86-64.bin	\
		core2-64-poky-linux/boot

For	NFS,	your	development	system	must	have	rpcbind,	the	Universal	Address	to	RPC
Program	Number	Mapper,	installed.	Depending	on	your	system’s	configuration,	you	may
need	to	install	it	using	your	system	package	manager,	for	instance,	on	Ubuntu	sudo
apt-get	install	rpcbind.	Furthermore,	for	user	space	NFS,	rpcbind	is	required
to	run	in	insecure	mode,	allowing	calls	to	SET	and	UNSET	from	any	host.	To	enable
insecure	mode,	you	need	to	add	the	-i	option	to	the	rpcbind	startup	configuration.	On
Ubuntu,	add	-i	to	the	OPTIONS	variable	in	the	file	/etc/init.d/rpcbind	and
restart	rpcbind	with	sudo	service	rpcbind	restart.

Integrating	with	Eclipse

Now	we	need	to	integrate	our	ADT	and	the	root	filesystem	extracted	for	QEMU	with
Eclipse.

Open	the	Preferences	dialog	from	the	Eclipse	Window	menu,	click	Yocto	Project	ADT,
and	create	a	new	cross-development	profile	for	application	development	with	QEMU
following	these	instructions:

1.	Cross	Development	Profiles:	Your	Standard	Profile	from	the	Cross	Development
Profiles	list	should	reflect	the	settings	we	used	in	the	previous	sections	for	the
MinnowBoard	Max.	Save	the	Standard	Profile	as	MinnowBoard	Max	and	then
change	the	selection	back	to	Standard	Profile.

2.	Cross	Compiler	Options:	Keep	the	settings	for	Standalone	Pre-built	Toolchain	and
Toolchain	Root	Location.	Click	on	Browse…	next	to	Sysroot	Location,	and	browse
to	/opt/poky/<version>/sysroots/core2-64-poky-linux,	which	is
the	location	where	we	extracted	the	root	filesystem	to.	From	the	Target	Architecture
list,	choose	core2-64-poky-linux.

3.	Target	Options:	Select	QEMU	and	browse	to	the	location	we	copied	the	Linux
kernel	to:	/opt/poky/<version>/sysroots/core2-64-poky-
linux/boot/bzImage-qemux86-64.bin.

Eclipse	is	now	ready	for	application	development	with	QEMU.

11.5.2	Building	an	Application	and	Launching	It	in	QEMU
You	can	now	create	a	new	application	project	as	described	in	Section	11.4.3.	After
creating	the	project,	right-click	on	its	name	in	the	Project	Explorer	and	select	Yocto
Project	Settings	at	the	bottom	of	the	list.	From	Cross	Development	Profiles,	choose	the
QEMU	profile,	and	click	Apply.	Your	project	now	uses	the	cross-toolchain	for	QEMU	to
compile	and	debug.

To	execute	and	debug	your	application,	you	first	need	to	start	QEMU.	From	the	Run
menu	in	Eclipse	select	External	Tools.	The	first	entry	of	the	submenu	is	the	QEMU
integration	that	we	just	created:	qemu_core2-64-poky-linux.	Click	on	it,	and
Eclipse	launches	a	terminal	window	in	which	it	starts	QEMU.	QEMU	itself	starts	in	a
second	window.

Use	Run	Configurations	and	Debug	Configurations	to	deploy,	execute,	and	debug	your
application	on	the	emulated	target	using	TCF	and	GDB/gdbserver,	as	explained	in	Section
11.4.4.

11.6	Summary
Operating	system	stacks	and	middleware	form	the	foundation	for	devices.	Applications
and	user	software	create	the	value	for	end	users.	Yocto	Project	Application	Development
Toolkits	(ADTs)	provide	application	developers	with	the	necessary	tools	to	build,	test,	and
deploy	applications	for	their	target	devices.

	A	Yocto	Project	ADT	comprises	cross-development	toolchains,	system	roots	for	the
hardware	target	devices	and	emulated	targets,	QEMU	emulator,	test	and	profiling
tools,	and	integration	scripts	for	convenient	development	environment	setup.

	The	build	system	creates	ADTs	to	match	the	target	device	by	including	the	exact
toolchain	used	to	build	the	device’s	Linux	OS	stack	and	by	packaging	the	device’s
root	filesystem	image.

	ADT	cross-development	tools	can	be	used	directly	from	the	command	line	for
traditional	development	and	for	integration	with	build	tools.	Setup	only	requires
sourcing	of	script	that	sets	the	necessary	environment	variables.

	Integration	of	an	ADT	with	the	Eclipse	IDE	provides	access	to	the	cross-
development	tools	from	the	convenience	of	a	graphical	user	interface.

	Eclipse’s	Target	Communication	Framework	(TCF)	allows	deployment,	execution,
and	debugging	to	actual	target	hardware	as	well	as	to	an	emulated	target	directly
from	the	IDE.

11.7	References
Yocto	Project	Application	Developer’s	Guide,	www.yoctoproject.org/docs/2.0/adt-
manual/adt-manual.html

Yocto	Project	Development	Manual,	www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html

http://www.yoctoproject.org/docs/2.0/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html

12.	Licensing	and	Compliance

In	This	Chapter

12.1	Managing	Licenses

12.2	Managing	Source	Code

12.3	Summary

12.4	References

A	fully	functional	Linux	OS	stack	comprises	many	hundreds,	possibly	thousands,	of	open
source	software	packages.	These	software	packages	are	released	by	their	authors	under	the
terms	and	conditions	of	a	rather	large	variety	of	open	source	licenses.	Virtually	all	of	these
licenses	require	that	end	users	are	given	access	to	the	license	texts	to	inform	them	about
their	rights	and	potential	duties	when	using	the	software.	As	a	system	builder	who	is
building	an	entire	system	from	many	different	open	source	software	packages,	you	are
required	to	collect	all	the	license	information	and	provide	it	to	the	users	of	your	system.	In
addition	to	providing	the	license	information,	some	open	source	licenses,	particularly	the
GNU	General	Public	License	(GPL)	licenses,	require	you	to	provide	the	source	code	that
you	used	to	build	the	binaries	of	the	software	packages.	Collecting,	managing,	and
providing	license	information	and	source	code	can	be	a	time-consuming	task.	The	Yocto
Project	greatly	simplifies	this	task	by	providing	a	set	of	tools	that	take	care	of	the	tedious
aspects	of	open	source	license	and	source	code	management.

12.1	Managing	Licenses
For	any	software	product,	it	is	common	practice	to	include	an	End-User	License
Agreement	(EULA)	with	the	product	that	informs	users	about	their	rights	and	duties	when
using	the	product.	This	process	is	simple	and	straightforward	if	all	of	the	code	that	is
included	with	the	product	has	been	entirely	developed	by	the	organization	or	individual
who	is	shipping	the	product.	Just	provide	and	include	the	proprietary	license	agreement
with	the	product	and	have	the	customer	accept	the	agreement	when	installing	the	software
on	a	computer	system.	That	has	been	the	standard	practice	for	any	software	for	personal
computers.	However,	matters	are	substantially	different	if

	The	software	product	contains	software	components,	such	as	libraries,	from	other
providers

	The	software	product	is	built	using	open	source	software	packages

	The	software	product	is	provided	together	with	hardware	as	part	of	an	embedded
system

All	of	the	above	are	true	for	a	Linux	OS	stack	for	an	embedded	device.	While	it	is	not	a
requirement	that	end	users	explicitly	accept	open	source	licenses	for	the	software
packages	included	with	a	product,	they	must	be	made	aware	that	the	product	was	built
using	open	source	software.	License	texts	and	information	on	how	to	obtain	the	source
code	must	be	made	available	to	the	end	users.

License	and	source	code	information	can	be	included	with	the	device	or	provided	by
other	means.	For	example,	on	Android	devices,	you	can	access	license	information	from
the	Legal	Information	item	in	the	About	Device	menu	of	the	Settings	app.	License
information	and	text	can	be	stored	on	the	device,	or	alternatively,	in	particular	for
connected	devices,	accessed	through	hypertext	links	directing	the	end	user	to	a	website
where	the	license	information	can	be	shown.	That	is	convenient	for	devices	with	a	user
interface	at	least	capable	of	displaying	text.	For	devices	without	such	capabilities,	license
information	can	be	provided	with	the	user	documentation,	on	the	manufacturer’s	website,
and	so	on.

Managing	licenses	for	your	product	is	not	a	trivial	task.	The	Yocto	Project	includes	over
170	common	license	schemes.	The	majority	of	them	are	open	source	licenses,	but	there
are	also	some	commercial	licenses	included	for	some	software	packages.	Some	developers
of	open	source	software	use	their	own	licenses,	which	can	further	complicate	matters,
since	they	may	not	be	legally	sound.	The	Open	Source	Initiative	(OSI)	examines	licenses
in	a	license	review	process	for	their	compliance	with	the	Open	Source	Definition.1	OSI
lists	about	70	open	source	licenses	on	its	website	that	have	passed	the	organization’s
license	review	process	and	are	approved	as	compliant	with	the	Open	Source	Definition.2

1.	http://opensource.org/osd

2.	http://opensource.org/licenses/alphabetical

Further	complicating	the	issue	is	that	a	single	open	source	project	can	actually	use
multiple	license	schemes.	Following	are	common	examples:

	Libraries	for	which	one	licensing	scheme	applies	to	the	source	code	of	the	library
and	any	work	derived	from	it,	such	as	bug	fixes	and	enhancements,	and	another
licensing	scheme	applies	to	the	use	of	the	library	by	other	software	components
through	its	APIs.	For	instance,	GnuTLS	uses	GPLv3+	for	the	sources	and
LGPLv2.1+	for	the	use	of	the	library	by	other	components.

	Packages	that	comprise	multiple	components	that	are	licensed	individually	by
different	schemes.	That	scheme	is	commonly	found	in	packages	that	provide	a
plugin	mechanism.	An	example	is	media	frameworks	where	plugins	for	encoders
and	decoders	can	be	licensed	differently	from	the	framework	itself,	and	other
encoders/decoders,	such	as	Free	Lossless	Audio	Codec	(FLAC).

The	Yocto	Project	assists	with	managing	licenses	in	several	ways:

	License	tracking

	Common	licenses

	Commercially-licensed	packages

	License	deployment

We	examine	these	in	the	following	sections.

http://opensource.org/osd
http://opensource.org/licenses/alphabetical

12.1.1	License	Tracking
All	recipes	must	set	the	LICENSE	variable	to	a	list	of	source	licenses	that	apply	to	the
software	package	the	recipe	builds.	The	license	information	for	the	software	package	itself
may	be,	and	in	virtually	all	cases	is,	different	from	the	license	for	the	recipe.	The	latter	is
typically	specified	in	the	LICENSE	file	of	the	layer.	You	must	not	confuse	the	two.

The	LICENSE	variable	may	contain	a	single	license	designation	or	a	list	of	multiple
license	designations	if	the	software	package	is	covered	by	multiple	licenses:

	If	there	is	a	choice	of	licenses,	separate	the	license	designations	with	the	pipe	(|)
symbol:	for	instance,	LICENSE	=	"LGPLv2.1+	|	GPLv3".

	If	multiple	licenses	cover	different	parts	of	the	package	sources,	separate	the	license
designations	with	the	ampersand	(&)	symbol:	for	instance,	LICENSE	=	"MPLv2
&	LGPLv2.1".

License	designations	can	be	any	text	string	but	must	not	contain	any	white-space
characters.	For	standard	licenses,	use	the	names	of	the	common	license	files	in
meta/files/common-licenses	or	use	the	Software	Package	Data	Exchange
(SPDX)	license	flag	names	defined	in	meta/conf/licenses.conf	as	license
designations.	SPDX3	is	a	standard	format	for	license	information	created	and	maintained
by	the	SPDX	Working	Group	of	the	Linux	Foundation.

3.	https://spdx.org/

Unless	LICENSE	is	set	to	the	special	license	designation	CLOSED	(LICENSE	=
"CLOSED"),	a	recipe	must	also	set	the	variable	LIC_FILES_CHKSUM	to	enable	license
tracking.

The	author	or	copyright	holder	of	a	software	package	may	change	the	license	itself,
such	as	from	GPLv2	to	GPLv3,	or	may	modify	the	license	text	from	one	version	of	the
software	package	to	the	next.4	It	is	important	that	a	build	system	can	track	such	changes
and	show	a	notice,	so	that	you	as	the	system	builder	can	take	action	on	whether	or	not	you
want	to	adopt	the	new	package	version	with	the	updated	license.	The
LIC_FILES_CHKSUM	variable,	which	is	evaluated	by	the	license	class,	provides	a
flexible	mechanism	for	tracking	license	changes.	The	following	example	shows	the
various	ways	to	specify	LIC_FILES_CHKSUM	in	a	recipe:

4.	In	fact,	newer	versions	of	many	software	packages,	particularly	the	ones	provided	by	GNU,	for	which	earlier
versions	have	been	licensed	under	the	terms	and	conditions	of	GPLv2,	are	now	licensed	under	the	newer	GPLv3.

Click	here	to	view	code	image
LIC_FILES_CHKSUM	=	“file://COPYING;md5=wwww	\
																				file://header.h;beginline=7;endline=34;md5=xxxx	\
																				file://source.c;beginline=10;md5=yyyy	\
																				file://license3.txt;endline=46;md5=zzzz”

The	variable	contains	a	space-delimited	list	of	license	files	that	contain	the	license	text.
The	build	system	computes	an	MD5	checksum	over	the	license	text	and	compares	it	to	the
value	provided	by	the	md5	parameter.	If	neither	the	parameter	beginline	nor	the
parameter	endline	is	provided,	the	entire	file	is	considered	as	the	license	text.	That

https://spdx.org/

approach	works	well	with	separate	license	files	commonly	named	COPYING	or
LICENSE.	Sometimes,	license	information	is	provided	as	part	of	a	source	file,	such	as	a	C
header	or	similar	file.	In	that	case,	only	a	portion	of	the	file	contents	actually	represents
the	license	information.	You	can	specify	that	portion	by	setting	the	parameters
beginline	and	endline	to	the	line	number	where	the	license	text	begins	or	ends
respectively.

The	build	system	by	default	searches	for	the	license	files	in	the	directory	specified	by
the	variable	S,	which	is	the	directory	where	the	source	code	is	unpacked.	You	can
explicitly	provide	directory	information	by	adding	directory	paths:
Click	here	to	view	code	image

LIC_FILES_CHKSUM	=	“file://src/header.h;beginline=7;endline=34;md5=xxxx	\
																				file://${WORKDIR}/license.txt;md5=yyyy”

The	first	line	locates	the	file	header.h	containing	the	license	information	relative	to	S
in	${S}/src,	while	the	second	lines	refers	to	the	variable	WORKDIR	to	locate	the	file
license.txt.

12.1.2	Common	Licenses
The	OpenEmbedded	Core	metadata	layer	includes	files	with	the	license	texts	for	common
licenses	in	the	directory	meta/files/common-licenses.	This	directory	is
referenced	by	the	variable	COMMON_LICENSE_DIR.	You	can	use	this	variable	and	the
common	license	filename	for	LIC_FILES_CHKSUM,	such	as
Click	here	to	view	code	image

LIC_FILES_CHKSUM	=	“\
file://${COMMON_LICENSE_DIR}/GPL-2.0;md5=801f80980d171dd6425610833a22dbe6”

However,	we	recommend	doing	so	only	if	the	source	package	does	not	actually	contain
the	license	text	but	just	a	reference	to	the	common	license	in	a	file.	In	that	case,	we	also
recommend	that	you	include	the	file	containing	the	reference	with
LIC_FILES_CHKSUM.	The	reason	is	that	simply	using	the	common	license	file
effectively	disables	the	license-tracking	mechanism.	Changes	to	the	license	information
inside	the	package	sources	may	go	unnoticed	by	the	build	system,	as	the	recipe	uses	the
common	license	file.

You	can	provide	your	own	license	directory,	or	directories	if	more	than	one,	for	the
build	system	to	search	by	adding	them	to	the	LICENSE_PATH	variable:
Click	here	to	view	code	image

LICENSE_PATH	+=	“/path/to/my/licenses”

This	variable	may	contain	a	list	of	directories	separated	by	space	characters.	The	build
system	adds	the	path(s)	of	the	variable	to	the	path	provided	by	COMMON_LICENSE_DIR.

12.1.3	Commercially	Licensed	Packages
Some	software	packages,	while	open	source,	are	licensed	using	commercial	licenses	or
special	license	terms	and	conditions	not	compliant	with	open	source	licensing.	Recipes
building	such	software	packages	flag	the	special	licensing	requirements	by	setting	the
variable	LICENSE_FLAGS:	for	example,	LICENSE_FLAGS	=	"commercial".

The	LICENSE_FLAGS	variable	can	contain	any	string,	but	as	soon	as	a	recipe	sets	the
variable,	the	build	system	does	not	build	the	software	package	unless	it	is	explicitly
enabled.

To	enable	a	particular	license	flag,	you	add	it	to	the	LICENSE_FLAGS_WHITELIST
variable.	The	variable	contains	a	space-delimited	list	of	license	flags.	The	build	system
matches	the	license	flag	set	by	the	recipe	to	the	list	of	license	flags	in
LICENSE_FLAGS_WHITELIST.	Before	doing	so,	however,	it	appends	the	package
name	PN	to	the	license	flag	defined	in	LICENSE_FLAGS	of	the	recipe.	For	example,	for
a	recipe	building	the	hello	package	containing

LICENSE_FLAGS	=	“commercial”

the	variable	effectively	becomes
Click	here	to	view	code	image

LICENSE_FLAGS	=	“commercial_hello”

You	can	now	specifically	enable	the	hello	recipe	by	setting
Click	here	to	view	code	image

LICENSE_FLAGS_WHITELIST	=	“commercial_hello”

or	enable	all	recipes	using	the	commercial	license	flags,	including	hello,	by	setting
Click	here	to	view	code	image

LICENSE_FLAGS_WHITELIST	=	“commercial”

This	matching	scheme	gives	you	fine	control	over	which	packages	you	want	to	enable
building.	You	can	drive	this	further	by	explicitly	specifying	package	name	PN	and
package	version	PV	in	the	LICENSE_FLAGS	setting	of	your	recipe.	Consider	the	recipe
building	the	hello	package	to	contain
Click	here	to	view	code	image

LICENSE_FLAGS	=	“commercial_${PN}_${PV}”

which	allows	you	to	enable	only	a	particular	version	of	the	hello	recipe,	such	as	version
1.0,	by	using
Click	here	to	view	code	image

LICENSE_FLAGS_WHITELIST	=	“commercial_hello_1.0”

You	specify	the	LICENSE_FLAGS_WHITELIST	variable	in	the
conf/local.conf	file	of	your	build	environment,	or	even	better,	in	a	distribution
configuration	file	such	as	conf/distro/mydistro.conf	of	a	custom	layer.

12.1.4	License	Deployment
When	building	a	target,	the	build	system	places	the	license	information	into	the
${TMPDIR}/deploy/licenses	directory	inside	the	build	environment.	For	every
recipe	the	build	system	builds,	it	creates	a	subdirectory	in
${TMPDIR}/deploy/licenses:

	If	the	recipe	builds	a	software	package,	the	subdirectory	has	the	name	of	the	recipe
and	contains	the	license	files.

	If	the	recipe	builds	an	image	target,	such	as	core-image-minimal,	the
subdirectory	has	the	name	of	the	image	recipe	with	an	added	timestamp,	for
example,	core-image-minimal-20150817224402.	The	directory	contains
two	files:	package.manifest	and	license.manifest.	The	former	is	an
alphabetically	sorted	flat	list	with	the	names	of	all	packages	contained	in	the	image.
The	latter	is	an	alphabetically	sorted	list	of	the	same	packages	with	information
about	package	name,	package	version,	recipe	name,	and	license	details.

	If	the	recipe	is	for	a	package	group,	the	build	system	creates	the	subdirectory	with
the	name	of	the	package	group,	but	there	are	no	files	inside	the	subdirectory.

If	you	are	looking	to	deploy	the	licensing	information	into	the	root	filesystem	image	for
your	target	system

	Setting	the	variable	COPY_LIC_MANIFEST	=	"1"	copies	the	file
license.manifest	into	the	root	filesystem	to	/usr/share/common-
licenses/license.manifest.

	Setting	the	variable	COPY_LIC_DIRS	=	"1"	copies	the	license	directories	to
/usr/share/common-licenses.

You	specify	these	variables	in	conf/local.conf	of	your	build	environment,	or
even	better,	in	a	distribution	configuration	file	such	as
conf/distro/mydistro.conf	of	a	custom	layer.

12.1.5	Blacklisting	Licenses
By	setting	the	variable	INCOMPATIBLE_LICENSE	to	a	space-separated	list	of	license
designations,	you	can	exclude	recipes	from	the	build.	Packages	for	which	their	respective
recipes	do	not	provide	alternatives	to	the	listed	licenses	are	not	built.	For	example,	setting
Click	here	to	view	code	image

INCOMPATIBLE_LICENSE	=	“GPL-3.0	LGPL-3.0	AGPL-3.0”

effectively	excludes	all	packages	licensed	under	these	licenses	from	the	build,	unless	there
are	license	alternatives,	which	could	be	an	earlier	version	using	a	different	license	or	a
package	providing	similar	functionality.	The	preceding	example	represents	the	setting	with
which	the	Yocto	Project	team	tests	this	functionality.	Although	you	can	use	other	settings,
you	might	be	required	to	handle	dependencies	yourself	by	either	removing	them	or
providing	alternatives	to	produce	a	functional	system.

12.1.6	Providing	License	Manifest	and	Texts
A	common	requirement	for	open	source	licenses	is	that	you	have	to	provide	license
information.	Using

COPY_LIC_MANIFEST	=	“1”

copies	the	license	manifest	to	the	target	image	into	the	directory
/usr/share/common-licenses/license.manifest.	The	license	manifest
contains	a	list	of	all	open	source	software	packages	installed	on	the	target	with	their
respective	licenses.

Using
COPY_LIC_DIRS	=	“1”

also	copies	the	license	texts	to	the	target	image	into	the	directory
/usr/share/common-licenses	for	all	packages	installed	on	the	target.
COPY_LIC_DIRS	can	be	used	only	in	conjunction	with	COPY_LIC_MANIFEST;
otherwise,	setting	the	variable	has	no	effect.

For	target	systems	that	have	a	user	interface	capable	of	displaying	license	manifest	and
license	texts,	including	them	with	the	target	image	simplifies	this	part	of	open	source
license	compliance	significantly.	If	your	embedded	target	does	not	have	a	user	interface	or
does	not	have	enough	storage	space	to	hold	license	manifest	and	texts,	you	need	to
provide	the	information	in	an	alternative	way,	such	as	printed	information	or	a	page	on
your	organization’s	website.

12.2	Managing	Source	Code
Some	open	source	licenses	explicitly	require	you	to	provide	the	source	code	you	used	to
build	the	software	stack	for	your	target	system	to	the	end	users	of	your	system.	Providing
the	source	code	is	part	of	the	compliance	management	activities	you	have	to	perform,	and
you	should	consider	the	necessary	tasks	before	you	create	the	final	image	for	your	target
system.

The	simplest	way	to	provide	the	source	code	is	to	provide	the	entire	download	directory
DL_DIR.	However,	there	are	a	couple	of	issues	with	this	approach:

	The	size	of	the	entire	download	directory	can	be	rather	large.	It	also	contains	the
sources	for	packages	that	you	typically	do	not	deploy	in	a	released	image,	such	as
the	toolchain	sources.	There	are	also	files	in	the	download	directory	that	you	never
deploy,	namely	the	*.done	files	that	indicate	whether	a	source	package	has
successfully	been	downloaded.	Furthermore,	the	download	directory	includes
subdirectories	containing	unpacked	repositories	for	sources	that	have	been	directly
retrieved	from	source	control	management	(SCM)	systems.

	The	download	directory	does	not	contain	any	patches	that	are	provided	with	a
recipe.	To	provide	sources	that	an	end	user	can	use	to	build	the	binaries,	you	would
need	to	include	those	patches	manually.

	Most	important,	the	download	directory	also	contains	source	packages	and/or
repositories	for	closed	source	and/or	proprietary	software	packages,	which	you	do

not	want	to	release	to	end	users.

A	better	way	of	providing	source	code	is	offered	by	the	archiver	class,	which	gives
you	flexibility	to	control	what	source	code	you	want	to	provide	and	in	what	form	you	want
to	provide	it.	You	enable	the	source	archiving	with	the	archiver	class	by	adding	the
class	to	the	INHERIT	variable	to	the	conf/local.conf	file	in	your	build
environment:

INHERIT	+=	“archiver”

You	control	what	and	how	the	archiver	class	does	its	job	by	setting	several	variables
and	variable	flags:

	ARCHIVER_MODE[src]	is	a	flag	that	controls	how	the	source	code	is	archived:

	ARCHIVER_MODE[src]	=	"original"	archives	source	package	and
patches	separately.

	ARCHIVER_MODE[src]	=	"patched"	archives	the	source	package	with	the
patches	applied.	This	is	the	default	setting.

	ARCHIVER_MODE[src]	=	"configured"	archives	the	source	package
with	the	patches	applied	and	configured.

	ARCHIVER_MODE[diff]	=	"1"	archives	the	patches	between	the
do_unpack	and	the	do_patch	tasks.

	ARCHIVER_MODE[diff-exclude]	is	a	space-delimited	list	of	files	and
directories	of	patches	that	you	want	to	exclude	from	ARCHIVER_MODE[diff].
The	default	setting	is	ARCHIVER_MODE[diff-exclude]	=	".pc
autom4te.cache	patches".

	ARCHIVER_MODE[dumpdata]	=	"1"	includes	a	file	containing	the
environment	data	for	a	particular	package,	similar	to	bitbake	-e	<recipe>.
The	default	setting	is	ARCHIVER_MODE[dumpdata]	=	"0".

	ARCHIVER_MODE[recipe]	=	"1"	includes	the	recipe	(.bb	file	including	any
.bbappend)	and	any	include	files.	The	default	setting	is
ARCHIVER_MODE[recipe]	=	"0".

	ARCHIVER_MODE[srpm]	=	"1"	outputs	the	sources	as	source	RPM	(SRPM)
files	in	addition	to	the	compressed	tar	archive.	The	ARCHIVER_MODE[src]	flag
applies	to	the	SRPM	as	well.	The	default	setting	is	ARCHIVER_MODE[srpm]	=
"0".

In	addition	to	the	various	ARCHIVER_MODE	flags,	the	archiver	class	allows
filtering	for	licenses	and	for	what	recipe	types	the	package	sources	is	archived:

	COPYLEFT_LICENSE_INCLUDE	is	a	space-delimited	list	of	licenses	for	which
the	source	code	is	archived.	Wildcards	for	license	designations	are	allowed.	For
example,	COPYLEFT_LICENSE_INCLUDE	=	"GPL*	LGPL*"	includes	the
sources	for	all	packages	licensed	under	any	version	of	GPL	and	LGPL.	The	default

setting	is	COPYLEFT_LICENSE_INCLUDE	=	"".

	COPYLEFT_LICENSE_EXCLUDE	is	a	space-delimited	list	of	licenses	that	are
explicitly	excluded	from	source	archiving.	For	example,
COPYLEFT_LICENSE_EXCLUDE	=	"CLOSED	Proprietary"	explicitly
excludes	all	software	packages	with	closed	or	proprietary	licensing	from	source
archiving.	The	default	setting	is	COPYLEFT_LICENSE_EXCLUDE	=	"".

	COPYLEFT_TARGET_TYPES	is	a	space-delimited	list	of	recipe	types	for	which
source	archiving	is	enabled.	Possible	recipe	types	are

	target:	Archive	sources	for	all	packages	built	for	the	target

	native:	Archive	sources	for	all	packages	built	for	the	build	host

	nativesdk:	Archive	sources	for	all	packages	that	are	built	for	the	host	SDK

	cross:	Archive	sources	for	all	cross-build	packages

	crosssdk:	Archive	sources	for	all	cross-build	SDK	packages

	cross-canadian:	Archive	sources	for	all	cross-canadian	packages

The	default	setting	is	to	include	all	of	the	above	recipe	types.

Because	both	COPYLEFT_LICENSE_INCLUDE	and
COPYLEFT_LICENSE_EXCLUDE	are	set	to	empty	strings	by	default,	the	archiver
class	does	not	perform	any	license	filtering.	At	a	minimum,	you	probably	want	to	set
COPYLEFT_LICENSE_EXCLUDE	to	exclude	any	of	your	proprietary	software	packages.
Rather	than	doing	that	in	the	conf/local.conf	file	of	the	build	environment,	we
recommend	setting	it	in	a	distribution	policy	file	such	as
conf/distro/mydistro.conf	of	a	custom	layer,	so	that	enabling	the	archiver
class	will	by	default	exclude	your	proprietary	software	packages	when	building	your	target
distribution.

To	further	limit	the	size	of	your	source	deployment,	consider	setting
COPYLEFT_TARGET_TYPES	=	"target"	in	the	conf/local.conf	file	or	the
distribution	policy	configuration	file.

The	archiver	class	copies	source	package	output	it	creates	to	the
${TMPDIR}/deploy/sources	directory.	It	organizes	the	packages	in	subdirectories
by	architecture	and	then	by	package	name.	You	can	override	the	default	output	directory
by	setting	the	variable	DEPLOY_DIR_SRC.

12.3	Summary
Compliance	management	for	open	source	software	packages	according	to	license
requirements	of	their	respective	licenses	is	an	important	task	that	a	system	builder	has	to
perform.	Due	to	the	increased	popularity	of	Linux	and	open	source	for	embedded	devices
and	software	products	in	general,	multiple	organizations	such	as	the	Free	Software
Foundation5	and	the	Software	Freedom	Conservancy6	are	actively	monitoring	whether
companies	offering	products	containing	open	source	software	are	meeting	compliance
requirements	of	the	various	open	source	licenses,	particularly	the	GPL.	If	these
organizations	discover	a	failure	of	a	company	to	comply	with	the	license	requirements,
they	ask	the	company	to	remedy	the	situation.	If	a	company	does	not	take	action,	these
organizations	potentially	file	a	lawsuit	against	the	company	on	behalf	of	the	author	of	the
software	package	in	question.

5.	www.fsf.org

6.	https://sfconservancy.org

As	permissive	as	open	source	licenses	are,	they	are	legally	binding	documents	and	as
such	enforceable	by	law.	It	is	best	to	avoid	any	issues	by	staying	on	top	of	the	compliance
requirements	and	plan	the	proper	release	of	license	texts	and	source	code	before	shipping
a	product.

In	this	chapter	we	discussed

	License	management	by	tracking	licenses	with	recipes,	creating	commercially
licensed	packages	and	their	respective	recipes,	and	collecting	and	deploying	license
information.

	Source	code	management	with	the	archiver	class,	which	provides	a	convenient
way	of	controlling	source	code	archiving	based	on	licenses	and	recipe	types.

12.4	References
Yocto	Project	Development	Manual,	www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html

http://www.fsf.org
https://sfconservancy.org
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html

13.	Advanced	Topics

In	This	Chapter

13.1	Toaster

13.2	Build	History

13.3	Source	Mirrors

13.4	Autobuilder

13.5	Summary

13.6	References

In	this	chapter,	we	discuss	select	topics	that	facilitate	using	the	Yocto	Project	in	team	and
production	environments.	One	of	the	strengths	of	the	Yocto	Project	build	system	is	that	it
can	be	easily	deployed	on	individual	development	systems	of	software	and	build
engineers.	The	features	discussed	in	this	chapter	extend	the	build	system’s	capabilities,
enabling	you	to	share	resources	and	track	build	results	necessary	for	team	development
and	for	requiring	reproducibility,	consistency,	and	repeatability	in	the	production
environment.

13.1	Toaster
Toaster	is	a	graphical	user	interface	to	the	build	system.	Unlike	Hob,	which	is	a	native
application,	Toaster	is	a	web	interface	accessed	via	web	browser.	Because	it	is	a	web
interface,	Toaster	is	suitable	for	deployment	on	remote	systems	in	build	farms	or	cloud
services.

Similar	to	Hob,	Toaster	allows	you	to	configure,	launch,	and	monitor	builds.	Toaster
also	offers	functionality	to	search	and	add	metadata	layers	and	recipes	to	your	build.	Since
Yocto	Project	version	1.8	Fido,	Hob	has	officially	been	deprecated	by	the	Yocto	Project
team	and	development	has	stopped	in	favor	of	Toaster.

Working	with	Toaster	is	slightly	more	complex	than	working	with	Hob,	as	it	requires
additional	setup	for	the	web	server	environment.	Toaster	uses	the	Django1	web
framework.	Django	is	a	high-level	web	framework	written	entirely	in	Python.	Django
employs	object-relational	mapping	(ORM)	with	database-backed	object	storage.	Toaster
uses	ORM	to	store	build	statistics	and	other	data	in	a	database	allowing	easy	comparison
between	subsequent	builds.	The	database	system	can	be	any	relational	database
management	system	(RDBMS)	supported	by	Django.	By	default,	for	local	use,	Toaster
uses	SQLite	for	the	sake	of	simplicity.	For	deployment	on	a	remote	build	server,	the	use	of
an	actual	RDBMS	such	as	MySQL,	MariaDB,	or	PostgreSQL	is	recommended.

1.	https://www.djangoproject.com

In	the	following	sections,	we	discuss	the	two	Toaster	operational	modes,	setup	for	local
development	in	both	modes,	Toaster	configuration,	and	setup	of	a	production	build	system
with	Toaster.

https://www.djangoproject.com

13.1.1	Toaster	Operational	Modes
You	can	run	Toaster	in	either	Analysis	mode	or	Build	mode.

Analysis	Mode

In	Analysis	mode,	Toaster	attaches	to	an	existing	build	environment	that	you	have
previously	created	with	oe-init-build-env.	In	this	mode,	you	start	building	images
directly	using	the	bitbake	command.	Toaster	then	collects	build	statistics	and	other
information,	stores	them	in	the	database,	and	makes	them	available	for	browsing	and
viewing	through	its	web	interface.	You	need	to	start	Toaster	first	before	launching	your
build	through	BitBake.

In	Analysis	mode,	Toaster	provides	the	following	functionality:

	Detailed	information	on	the	image	that	was	built	including	recipes	and	packages

	Manifest	of	what	packages	were	installed	into	the	image

	Ability	to	browse	the	directory	structure	of	the	image

	Build	configuration	including	variable	settings

	Examination	of	error,	warning,	and	log	messages	to	facilitate	debugging

	Information	on	task	execution	and	shared	state	usage

	Dependency	explorer

	Performance	information	such	as	build	time,	time	per	task,	CPU	usage,	and	more

Build	Mode

In	Build	Mode,	Toaster	creates	build	environments	and	manages	the	configuration,
BitBake	execution,	and	data	collection	and	analysis	tasks	of	the	Analysis	mode.	You
interact	with	Toaster	only	through	its	web	interface.	You	can	select	your	image,	configure
the	target	machine	and	other	aspects	of	builds,	and	start	builds	from	the	Toaster	interface.
You	do	not	interact	directly	with	BitBake	as	you	do	when	Toaster	is	in	Analysis	mode.

In	Build	mode,	Toaster	provides	the	following	functionality	in	addition	to	the
functionality	of	Analysis	mode:

	Browse	layers	and	add	layers	to	the	build	configuration.

	Select	target	images,	target	machine,	and	distribution	policies.

	Inspect	and	set	configuration	variables.

	Execute	builds.

In	Build	mode,	Toaster	offers	configuration	and	execution	functionality	on	par	with
Hob.	Configuring	images	by	adding	packages	to	them	is	not	as	convenient	with	Toaster,	as
it	requires	you	to	edit	the	IMAGE_INSTALL_append	variable	from	the	Toaster	user
interface.	With	Hob,	it	was	simply	a	matter	of	checking	a	checkbox.	Compared	to	Hob,
Toaster	offers	more	detailed	build	analysis	and	statistics.

13.1.2	Toaster	Setup
Toaster	is	based	on	the	Django	web	framework	and	therefore	requires	additional	Python
packages	to	be	installed	before	you	can	use	it.	You	can	find	the	list	of	packages	in	the	file
bitbake/toaster-requirements.txt	in	the	root	directory	where	you	have
installed	the	build	system—for	instance,	/home/myname/poky.	You	can	use	this	file
directly	to	install	the	required	Python	packages.

You	can	install	those	packages	either	directly	into	the	Python	library	directories	of	your
build	host	or	you	can	use	a	Python	virtual	environment.	A	Python	virtual	environment
creates	a	Python	sandbox	based	on	the	original	Python	setup	on	your	build	host.	This	is
particularly	useful	if	you	are	concerned	about	conflicting	package	versions.	We	strongly
recommend	using	a	Python	virtual	environment.

Setting	Up	a	Python	Virtual	Environment

You	set	up	a	Python	virtual	environment	with	the	virtualenv	command,	which	all
Linux	distributions	provide	as	a	package.	If	it	is	not	already	installed	on	your	build	host,
you	can	install	it	with
Click	here	to	view	code	image

$	sudo	dnf	install	python-virtualenv

for	Fedora	or	Red	Hat	systems,	or	with
Click	here	to	view	code	image

$	sudo	apt-get	install	python-virtualenv

for	Ubuntu	systems.

Then	you	can	create	a	Python	virtual	environment	with
$	virtualenv	pvenv

The	command	creates	a	new	Python	virtual	environment	in	a	directory	called	pvenv	at
the	current	location.	It	then	copies	all	the	necessary	files	from	your	build	host’s	Python
environment	to	the	new	virtual	environment.	It	is	irrelevant	where	on	your	build	host	you
create	your	Python	virtual	environment.

Before	you	can	use	your	Python	virtual	environment,	you	have	to	activate	it	with
$	source	pvenv/bin/activate
(pvenv)	$

To	indicate	that	you	are	working	with	a	Python	virtual	environment,	your	command
prompt	is	prefixed	with	the	name	of	the	virtual	environment	in	parentheses,	in	our
example	(pvenv).

You	have	to	execute	all	operations	related	to	Toaster,	including	the	installation	of	the
required	Python	packages,	from	within	an	active	Python	virtual	environment;	otherwise,
your	build	host	uses	its	default	Python	environment.

To	exit	a	Python	virtual	environment,	you	type
(pvenv)	$	deactivate

while	within	the	Python	virtual	environment.

Installing	the	Toaster	Requirements

From	within	the	Python	virtual	environment,	executing
Click	here	to	view	code	image

(pvenv)	$	pip	install	-r	bitbake/toaster-requirements.txt

installs	the	required	Python	packages,	including	Django,	into	the	Python	virtual
environment.

Now	your	build	host	is	ready	for	local	Toaster	development.

13.1.3	Local	Toaster	Development
In	local	deployment	mode,	Toaster	uses	Django’s	built-in	web	server	rather	than
integrating	with	an	external	web	server,	and	it	uses	SQLite	instead	of	an	RDBMS.	That
greatly	simplifies	installation	and	configuration.	However,	it	does	not	scale	for	workgroup
use	and	remote	deployment.	For	a	scalable	deployment,	you	want	to	consider	using	a
Toaster	production	setup,	as	described	in	Section	13.1.5.

Local	Toaster	Development	in	Build	Mode

While	within	the	active	Python	virtual	environment,	change	to	the	root	directory	of	your
build	system	installation,	for	example,
Click	here	to	view	code	image

(pvenv)	$	cd	/home/myname/poky

Then	launch	Toaster	with
(pvenv)	$	bitbake/bin/toaster

If	it	is	the	first	time	you	launch	Toaster,	it	initializes	the	database,	reads	layer	and	build
system	configuration,	and	performs	a	series	of	other	initial	setup	tasks.	Once	setup	is
complete,	Toaster	prints
Click	here	to	view	code	image

Starting	webserver…
Webserver	address:	http://0.0.0.0:8000/
Starting	browser…
Toaster	is	now	running.	You	can	stop	it	with	Ctrl-C

The	default	web	browser	of	your	build	host	should	launch	automatically,	showing	the
Toaster	landing	page.	If	the	web	browser	does	not	start	automatically,	open	your	preferred
web	browser	and,	in	the	navigation	bar,	enter

http://localhost:8000

You	can	now	create	a	Toaster	project,	configure	it,	and	build	it.

Local	Toaster	Development	in	Analysis	Mode

If	you	like	to	use	Toaster	with	an	existing	build	environment	and	control	the	build	process
directly	by	invoking	BitBake,	first	source	the	build	environment	from	within	the	Python
virtual	environment:
Click	here	to	view	code	image

(pvenv)	$	source	/home/myname/poky/oe-init-build-env	tbuild

Then,	from	within	the	build	environment,	launch	Toaster:
Click	here	to	view	code	image

(pvenv)	$	source	/home/myname/poky/bitbake/bin/toaster

You	can	now	run	BitBake	builds	as	usual,	for	example:
Click	here	to	view	code	image

(pvenv)	$	bitbake	-k	core-image-base

To	monitor	progress	during	build	and	to	view	build	statistics	and	more	after	the	build
has	completed,	point	your	browser	to:

http://localhost:8000

To	stop	Toaster,	enter
Click	here	to	view	code	image

(pvenv)	$	source	/home/myname/poky/bitbake/bin/toaster	stop

from	within	the	Python	virtual	environment,	which	terminates	all	Toaster	processes.

13.1.4	Toaster	Configuration
Toaster	operation	can	be	configured	and	administrated	through	command-line	options,
environment	variables,	and	the	Django	administrative	user	interface.

Setting	a	Different	Port

By	default,	Toaster	listens	on	port	8000	on	all	network	interfaces	of	your	build	host.	To
change	the	port,	start	Toaster	in	Build	mode	with	the	webport	argument,	as	follows:
Click	here	to	view	code	image

(pvenv)	$	/home/myname/poky/bitbake/bin/toaster	webport=5000

Alternatively,	you	can	start	Toaster	in	Analysis	mode	with	the	webport	argument:
Click	here	to	view	code	image

(pvenv)	$	source	/home/myname/poky/bitbake/bin/toaster	webport=5000

Toaster	then	listens	on	the	provided	port	on	all	network	interfaces.2

2.	If	you	are	familiar	with	Django,	you	may	know	that	Django	allows	you	not	only	to	set	the	port	but	also	specify	the
network	interface.	The	latter	is	currently	not	possible	with	Toaster.

Setting	the	Toaster	Directory	for	Build	Mode

In	Build	mode,	Toaster	stores	the	build	environment	and	clones	of	additional	layers	from
remote	repositories	in	a	directory	defined	by	the	environment	variable	TOASTER_DIR.
Inside	that	directory,	Toaster	creates	the	directory	build,	which	contains	the	build
environment;	the	directory	_toaster_clones,	which	contains	the	cloned	layers;	and
the	database	toaster.sqlite,	which	stores	the	configuration	and	build	data.	By
default,	TOASTER_DIR	is	set	to	the	current	directory	from	where	Toaster	is	started.

The	only	way	to	set	the	Toaster	directory	is	to	launch	Toaster	from	a	different	directory.

Toaster	then	creates	a	new	database	as	well	as	build	and	layer	directories.

Administrating	the	Django	Framework

The	Django	web	framework,	on	top	of	which	Toaster	is	built,	provides	an	administrative
user	interface	that	gives	you	direct	access	to	the	ORM	stored	in	the	database.	To	use	the
user	interface,	you	first	have	to	create	a	Django	superuser.	From	within	the	Python	virtual
environment,	execute
Click	here	to	view	code	image

(pvenv)	$	/home/myname/poky/bitbake/lib/toaster/manage.py	createsuperuser

The	command	launches	the	Django	administrative	utility,	which	first	prompts	you	for	the
following	items:

	User	name	for	the	superuser	(mandatory)

	E-mail	address	(optional)

	Password	(required;	you	have	to	enter	it	twice	for	verification)

After	Django	creates	the	superuser,	you	can	launch	Toaster	as	usual	with
Click	here	to	view	code	image

(pvenv)	$	/home/myname/poky/bitbake/bin/toaster

and	then	access	the	administrative	user	interface	by	entering
http://localhost:8000/admin

into	your	browser’s	navigation	bar.	From	the	administrative	user	interface,	you	can	browse
the	Toaster	ORM,	add	new	database	entries,	and	more.

If	you	start	Toaster	from	different	directories,	each	directory	contains	its	own
toaster.sqlite	database.	For	each	of	these	Toaster	environments,	you	have	to	create
the	superuser	individually.

Toaster	administration	provides	access	to	the	following	categories:

	Auth:	Authentication	category	that	defines	users	and	user	groups.	A	local	Toaster
configuration	does	not	make	use	of	this	functionality	other	than	for	the	super-user.
Toaster	environments	for	production	use	this	functionality	to	share	Toaster	instances
with	remote	and	multiple	users	to	control	access.

	Bldcontrol:	Build	control	category	that	contains	information	about	the	build
environments	used	by	Toaster.	One	Toaster	instance	can	potentially	control	multiple
build	environments	on	the	same	build	host	or	on	different	build	hosts	over	the
network.	For	local	development,	there	is	typically	only	one	build	environment.

	Orm:	Object-relational	model	category	that	contains	information	on	BitBake
versions,	layer	sources,	Yocto	Project	releases,	and	Toaster	settings.	The	latter
contains	various	BitBake	variables	that	you	can	set	via	the	Toaster	user	interface	by
clicking	on	BitBake	variables	in	the	Project	Configuration	screen.

Typically,	you	do	not	need	to	access	the	ORM	directly	but	can	use	the	Toaster	user
interface	for	configuration	purposes.

13.1.5	Toaster	Production	Deployment
A	production	deployment	of	Toaster	allows	sharing	of	the	instance	with	multiple	as	well
as	remote	users.	To	scale	to	the	loads	of	multiple	users	accessing	the	Toaster	service,
Toaster	uses	an	external	web	server	instead	of	the	Django	built-in	web	server	and	an
RDBMS	instead	of	SQLite.	A	production	deployment	is	typically	also	set	up	in	Build
mode	rather	than	Analysis	mode.	Build	mode,	as	we	have	seen,	allows	users	to	create
Toaster	projects	and	launch	builds	directly	from	the	web	user	interface.

The	web	server	of	choice	for	a	Django	production	deployment	is	Apache.	As	for	the
RDBMS,	you	have	the	choice	between	MySQL	and	PostgreSQL.	Which	you	choose	may
depend	on	your	preferences	and	prior	experience.	For	this	example,	we	choose	MySQL.

Virtually	all	Linux	distributions	have	replaced	MySQL	with	MariaDB.3	MariaDB	is	a
drop-in	replacement	for	MySQL	that	is	maintained	by	the	original	developers	of	MySQL.
Even	though	package	managers	of	Linux	distributions	may	still	use	mysql	in	package
names,	they	actually	install	MariaDB.

3.	https://mariadb.org

Preparing	the	Production	Host

To	prepare	your	production	system	for	Toaster	setup,	perform	the	following	steps:

1.	Install	the	prerequisites	for	the	Yocto	Project	build	system,	as	described	in	Chapter
2,	“The	Yocto	Project.”

2.	Install	Apache	web	server,	MySQL	(MariaDB)	with	development	libraries,	Python
virtual	environment,	and	the	Apache	Python	module.

a.	On	Ubuntu	systems:
Click	here	to	view	code	image

$	sudo	apt-get	install	apache2	libapache2-mod-wsgi	mysql-server	\
					virtualenv	libmysqlclient-dev

b.	On	Fedora	or	Red	Hat	systems:
Click	here	to	view	code	image

$	sudo	dnf	install	httpd	mod_wsgi	python-virtualenv	mysql-server	\
					mysql	mysql-devel

3.	Start	the	Apache	web	server.

a.	On	Ubuntu	systems:
$	sudo	service	apache2	start

b.	On	Fedora	or	Red	Hat	systems:
Click	here	to	view	code	image

$	sudo	systemctl	start	httpd

Validate	whether	the	web	server	is	running	by	pointing	your	browser	to	the
production	host.	You	should	see	a	default	web	page,	depending	on	your	distribution.

4.	Start	the	database	server.

https://mariadb.org

a.	On	Ubuntu	systems:
$	sudo	service	mysql	start

b.	On	Fedora	or	RedHat	systems:
$	sudo	systemctl	start	mariadb

5.	By	default,	MySQL	(MariaDB)	does	not	have	a	root	password	set.	To	set	the	root
password	for	the	first	time,	execute

Click	here	to	view	code	image
$	mysqladmin	-u	root	password	<rootpassword>

6.	Validate	that	you	can	log	in	to	the	MySQL	(MariaDB)	server:
$	mysql	-u	root	-p

The	database	server	should	prompt	you	for	the	password	that	you	set	in	the	previous
step	and	then	show	the	command	prompt.

7.	Prepare	the	MySQL	database	for	Toaster:
Click	here	to	view	code	image

$	mysql	-u	root	-p
mysql>	CREATE	USER	‘toaster’@‘localhost’	identified	by	‘password’;
mysql>	CREATE	DATABASE	toaster;
mysql>	GRANT	all	on	toaster.*	to	‘toaster’@‘localhost’;
mysql>	exit

Your	production	host	is	now	ready	for	installation	and	configuration	of	Toaster.

Toaster	Installation	and	Configuration

For	production	configuration,	Toaster,	which	is	part	of	the	Poky	build	system,	ideally	is
installed	into	the	document	root	of	the	Apache	web	server,	which	allows	for	simpler
application	of	the	Apache	access	rule	hierarchy.	Typically,	that	directory	is	/var/www.
You	may	install	into	a	different	directory,	but	you	then	need	to	adjust	the	Apache
configuration	accordingly.	Perform	the	following	steps	to	install	and	configure	Toaster	on
your	production	host:

1.	Create	a	directory	in	the	web	server	document	root	directory	and	install	the	Poky
build	system.	We	are	using	/var/www/toaster	as	the	installation	directory	and
the	Jethro	branch	of	Poky:

Click	here	to	view	code	image
$	sudo	mkdir	/var/www/toaster
$	cd	/var/www/toaster
$	sudo	git	clone	git://git.yoctoproject.org/poky
$	cd	poky
$	sudo	git	checkout	jethro

2.	Install	Python	packages	required	by	Toaster	and	by	the	Django	web	framework	to
access	the	MySQL	database.	We	recommend	using	a	Python	virtual	environment
again	to	isolate	the	Toaster	setup	from	the	production	host’s	Python	setup.

Click	here	to	view	code	image
$	cd	/var/www/toaster
$	sudo	virtualenv	pvenv

$	source	pvenv/bin/activate
$	sudo	pip	install	-r	poky/bitbake/toaster-requirements.txt
$	sudo	pip	install	mysql
$	sudo	pip	install	MySQL-python

3.	Configure	Toaster	by	editing	configuration	sections	in	the	file
/var/www/toaster/poky/bitbake/lib/toaster/toastermain/settings.py
as	follows:

a.	Modify	the	DATABASES	section	for	MySQL:
Click	here	to	view	code	image

DATABASES	=	{
			‘default’:	{
						‘ENGINE’:	‘django.db.backends.mysql’,
						‘NAME’:	‘toaster’,
						‘USER’:	‘toaster’,
						‘PASSWORD’:	‘password’,
						‘HOST’:	‘localhost’,
						‘PORT’:	‘3306’,
			}
}

For	database	NAME,	USER,	and	PASSWORD,	use	the	values	from	step	7	of	the
previous	section.	Remove	the	HOST	and	PORT	settings	to	use	UNIX	domain
sockets	to	access	the	MySQL	server,	which	is	the	default.

b.	Change	the	SECRET_KEY	to	a	unique	key:
SECRET_KEY	=	‘secretkey’

You	can	use	OpenSSL	to	create	an	arbitrary	key.	The	following	command	creates
a	base64-encoded	key	that	is	16	characters	long:
$	openssl	rand	-baes64	16

c.	Change	STATIC_ROOT	to
Click	here	to	view	code	image

STATIC_ROOT	=	‘/var/www/toaster/static/’

Both	Django	and	Toaster	use	statically	served	files	such	as	HTML	and	JavaScript
files	that	need	to	be	served	by	the	Apache	web	server.	These	files	are	collected
and	copied	into	this	directory.

d.	Enable	Build	mode	by	changing	BUILD_MODE	to
BUILD_MODE	=	True

4.	Create	database	schema,	load	default	data,	and	collect	the	statically	served	files:
Click	here	to	view	code	image

$	cd	/var/www/toaster/poky
$./bitbake/lib/toaster/manage.py	syncdb
$./bitbake/lib/toaster/manage.py	migrate
$	TOASTER_DIR=`pwd`	TOASTER_CONF=./meta-yocto/conf/toasterconf.json\
						./bitbake/lib/toaster/manage.py	checksettings
$	sudo	./bitbake/lib/toaster/manage.py	collectstatic

A	couple	of	explanations	concerning	the	steps	are	in	order:

	The	syncdb	and	migrate	commands	create	the	database	schema.	They	also
install	Django’s	authentication	system,	which	asks	you	if	you	want	to	create	a
superuser	for	access	to	the	administrative	user	interface.	We	recommend	doing	so	at
this	time.	Alternatively,	you	can	create	a	superuser	at	a	later	time,	as	described
earlier	in	the	section	“Administrating	the	Django	Framework.”

	The	checksettings	command	loads	the	Toaster	configuration	data	from	the	file
poky/meta-yocto/conf/toasterconf.json.	This	file	contains	the
default	configuration	as	well	as	information	on	layer	sources.	The	TOASTER_DIR
environment	variable	determines	where	Toaster	creates	the	build	environment.	Using
pwd,	as	in	the	preceding	example,	places	the	build	environment	into	the
/var/www/toaster/poky	directory,	which	may	not	be	desirable	because	the
build	environment	gets	quite	large.	You	can	specify	a	different	directory—just	make
sure	that	it	exists	and	is	writable	by	the	user	who	will	be	running	the	Toaster	builds.

	The	collectstatic	command	retrieves	the	statically	served	files,	as	described
earlier.	Unlike	the	other	commands,	you	have	to	run	collectstatic	with	root
privileges	unless	you	change	permissions	on	the	static	directory.

Web	Server	Configuration

This	step	integrates	Toaster	with	the	Apache	web	server.	You	need	a	Web	Server	Gateway
Interface	(WSGI)	configuration	file	in	the	Apache	configuration	directory	of	your
production	host.

On	Ubuntu	and	Debian	systems,	create	the	file
Click	here	to	view	code	image

/etc/apache2/conf-available/toaster.conf

On	Fedora	and	Red	Hat	systems,	create	the	file
Click	here	to	view	code	image

/etc/httpd/conf.d/toaster.conf

with	the	content	of	Listing	13-1.

Listing	13-1	WSGI	Configuration	(toaster.conf)
Click	here	to	view	code	image

Alias	/static	/var/www/toaster/static
					<Directory	/var/www/toaster/static>
													Order	allow,deny
													Allow	from	all
													Require	all	granted
					</Directory>

					WSGIDaemonProcess	toaster_wsgi	\
								python-path=/var/www/toaster/poky/bitbake/lib/toaster:	\
								/var/www/toaster/pvenv/lib/python2.7/site-packages
					WSGIProcessGroup	toaster_wsgi

					WSGIScriptAlias	/	\
								”/var/www/toaster/poky/bitbake/lib/toaster/toastermain/wsgi.py”

If	you	changed	the	location	of	the	Poky	installation	and/or	the	Python	virtual
environment	from	the	example,	make	sure	that	you	adjust	them	accordingly	in	the
WSGIDaemonProcess	setting.

On	Ubuntu	and	Debian	systems,	you	need	to	explicitly	enable	the	WSGI	module	and
the	Toaster	configuration	with

$	sudo	a2enmod	wsgi
$	sudo	a2enconf	toaster

That	step	is	not	required	on	Fedora	and	Red	Hat	systems.

Finally,	you	need	to	restart	the	Apache	web	server.	On	Ubuntu	and	Debian	systems,	use
Click	here	to	view	code	image

$	sudo	service	apache2	restart

On	Fedora	and	Red	Hat	systems,	use
Click	here	to	view	code	image

$	sudo	systemctl	restart	httpd

Now	enter	the	hostname	or	IP	address	of	your	production	host	into	the	navigation	bar	of
your	web	browser,	and	you	should	see	the	Toaster	landing	page.	If	you	get	an	error
message,	consult	the	Apache	web	server’s	log	files	in	/var/log/apache2	on	Ubuntu
and	Debian	systems	or	/var/log/httpd	on	Fedora	and	Red	Hat	systems,	for	detailed
information	on	the	root	cause	of	the	error.

Installing	the	Build	Runner	Service

The	build	runner	service	needs	to	be	running	to	execute	builds.	The	service	creates	a
Yocto	Project	build	environment	with	the	configuration	settings	for	bblayers.conf
and	local.conf	and	executes	BitBake	with	the	provided	image	target.	To	start	the
build	runner	service,	use
Click	here	to	view	code	image

$	source	/var/www/toaster/pvenv/bin/activate
(pvenv)	$	/var/www/toaster/poky/bitbake/lib/toaster/mangage.py	runbuilds

You	may	wrap	that	into	a	simple	shell	script	to	simplify	execution,	as	shown	in	Listing
13-2.

Listing	13-2	Toaster	Build	Runner	Shell	Script	(toasterbuildrunner.sh)
Click	here	to	view	code	image

#!/bin/sh
#	Launch	Toaster	Build	Runner	on	a	production	host
pushd	/var/www/toaster
source	./pvenv/bin/activate
./poky/bitbake/lib/toaster/manage.py	runbuilds

Do	not	run	the	build	runner	service	as	root.	The	build	runner	service	executes	itBake,
and	BitBake	refuses	to	run	with	root	privileges.	Make	sure	that	the	user	running	the	build
runner	service	has	full	access	to	the	directory	you	specified	with	TOASTER_DIR	when
installing	and	configuring	Toaster.

Now	you	can	launch	builds	from	the	Toaster	web	user	interface.

Maintaining	Your	Toaster	Production	Instance

To	keep	your	Toaster	production	instance	up	to	date	at	all	times,	you	regularly	need	to
update	the	layer	source	information	in	the	database.	This	ensures	that	you	always	have
access	to	the	latest	layers	and	recipes.	To	load	the	latest	layer	information	into	the	Toaster
database,	use	the	command
Click	here	to	view	code	image

$	/var/www/toaster/poky/bitbake/lib/toaster/manage.py	lsupdates

To	update	your	production	toaster	instance	to	a	later	version	of	the	Yocto	Project,	use
Click	here	to	view	code	image

$	cd	/var/www/toaster/poky
$	git	pull
$	git	checkout	<branch>
$	TOASTER_DIR=`pwd`	TOASTER_CONF=./meta-yocto/conf/toasterconf.json	\
						./bitbake/lib/toaster/manage.py	checksettings
$	sudo	./bitbake/lib/toaster/manage.py	collectstatic

Running	checksettings	populates	the	database	with	updated	release	and	layer
information	from	the	toasterconf.json	file.	Executing	collectstatic	ensures
that	user	interface	updates	are	made	available	to	the	web	server.	After	updating,	make	sure
that	you	restart	the	web	server.

13.1.6	Toaster	Web	User	Interface
The	Toaster	web	user	interface	provides	the	following	functionality:

	Project	Management:	Create,	configure,	and	view	Toaster	projects.	A	Toaster
project	is	similar	to	a	build	environment	that	you	create	from	the	command	line	by
sourcing	oe-init-build-env.	Toaster	creates	and	manages	the	build
environments	for	you.	For	a	project,	you	select	the	Yocto	Project	release	that	you
want	to	use	to	build	your	project	with.

	Build	Configuration:	Within	a	Toaster	project,	you	can	configure	machine,
distribution,	and	other	settings	as	you	would	by	editing	the	conf/local.conf
file	of	a	build	environment.	The	Toaster	user	interface	provides	direct	access	to
common	configuration	variables,	such	as	DISTRO,	IMAGE_FSTYPES,
IMAGE_INSTALL_append,	PACKAGE_CLASSES,	and	SDKMACHINE.	You	can
add	other	variables	as	you	wish.	However,	some	variables	are	precluded.	These	are
variables	that	affect	the	configuration	of	the	build	host	and	variables	that	set	paths	to
where	build	artifacts	are	stored	such	as	SSTATE_DIR	and	TMPDIR.

	Layer	Management:	The	Toaster	user	interface	allows	you	to	add	and	remove
layers	to	your	project.	You	can	also	browse	a	list	of	available	layers.	The	three	layers
meta,	yocto,	and	yocto-bsp	are	by	default	included	in	a	project	and	are
checked	out	automatically	from	the	Poky	repository.	Information	about	layers	from
the	OpenEmbedded	Layer	Index	is	obtained	directly	from	the	web	and	shown	in	the
Toaster	user	interface.	You	can	add	those	layers	to	your	project	by	a	simple	click	of	a

button.	These	layers	are	checked	out	from	the	OpenEmbedded	Layer	repositories	on
demand.	In	addition,	you	can	import	your	own	layers	from	Git	repositories.	You
need	to	ensure	that	the	layers	you	are	importing	are	compatible	with	the	Yocto
Project	release	you	have	chosen	for	your	project.

	Image	Targets:	Toaster	identifies	and	lists	the	image	targets	from	the	various
available	layers.	If	an	image	target	is	available	from	a	layer	that	is	already	included
with	your	build	configuration,	then	you	can	build	it	directly	by	clicking	a	Build
recipe	button	next	to	the	image	target.	Otherwise,	click	the	Add	layer	button	to	add
the	layer	to	your	build	configuration.	If	a	layer	is	dependent	on	other	layers,	Toaster
informs	you	about	the	dependencies	and	includes	them	automatically.

	Package	Recipes:	Toaster	maintains	a	list	of	all	recipes	of	all	layers,	whether
already	included	with	your	build	or	not.	A	search	function	assists	in	finding	a
particular	recipe.	For	example,	entering	jdk	into	the	search	bar	lists	all	recipes	that
provide	the	Java	JDK.	With	the	click	of	a	button,	you	can	add	the	layer	containing
the	recipe	and	build	it.	However,	building	a	recipe	does	not	automatically	add	it	to
IMAGE_INSTALL.	You	have	to	do	this	explicitly	by	editing	the
IMAGE_INSTALL_append	variable	from	the	BitBake	variables	screen.

	Build	Log:	You	can	directly	view	and	examine	trace,	warning,	and	error	messages
from	the	Toaster	user	interface.	You	can	also	download	the	build	log	from	Toaster	to
your	local	machine.

	Build	Statistics	and	Performance	Information:	Toaster	collects	build	statistics
such	as	overall	build	time,	time	per	task,	CPU	usage,	and	disk	I/O.

	Image	Information:	Toaster	collects	and	presents	information	on	what	software
packages	have	been	built	and	included	with	your	image.	You	can	browse	the
structure	of	your	image	from	the	Toaster	user	interface	and	view	dependency
relationships	between	recipes	and	packages.

While	Toaster	allows	you	to	select	and	build	a	particular	recipe	and	include	it	with	your
image,	you	cannot	directly	choose	a	specific	version	of	a	recipe	to	build	if	a	layer	provides
more	than	one	for	it.	Typically,	as	we	have	seen	earlier,	the	build	system	chooses	the	latest
version	of	a	recipe.	For	instance,	if	the	latest	version	of	the	Linux	Yocto	kernel	is	4.1	but
you	would	like	to	build	version	3.9,	you	need	to	add
Click	here	to	view	code	image

PREFERRED_VERSION_linux-yocto	=	“3.9%”

to	the	variable	configuration	in	the	Toaster	user	interface.

The	Yocto	Project	Toaster	team	has	produced	a	series	of	instructional	videos	covering
the	various	aspects	of	Toaster.	You	can	find	these	videos	on	www.youtube.com.	Simply
enter	Yocto	Project	Toaster	into	the	YouTube	search	bar.

http://www.youtube.com

13.2	Build	History
A	rather	large	collection	of	recipes	and	configuration	files	processed	by	the	build	system
determines	what	software	packages	are	built,	how	they	are	built,	how	they	depend	on	each
other,	and	ultimately,	what	the	completed	output	artifacts	consist	of.	Those	output	artifacts
include,	but	are	not	limited	to,	binary	packages,	the	kernel	and	root	filesystem	images,	and
the	software	development	kit	(SDK).	With	so	many	factors	influencing	a	build,
maintaining	repeatability	and	consistency	between	builds	and	the	ability	to	track	and	audit
changes	is	a	strong	requirement.

Consider	the	upgrade	of	a	software	package	to	a	newer	version.	What	seems	simple
enough	could	have	major	consequences	if	that	software	package	depends	on	a	newer
version	of	a	library	that	is	shared	with	many	other	packages.	In	that	case,	building	the	new
version	of	the	software	package	automatically	pulls	in	the	newer	version	of	the	library,
which	could	cause	problems	for	other	software	packages	if	that	library	is	not	backwards-
compatible.

The	build	system’s	build	history	function	provides	automated	support	for	maintaining
the	build	quality	by	recording	essential	information	about	package,	images,	and	SDK
build;	storing	them	in	files;	and	committing	those	files	into	a	Git	repository	to	create	a
traceable	history.	Build	history	is	implemented	by	the	buildhistory	class	that	is
universally	inherited	by	all	recipes.	Its	behavior	is	controlled	by	a	couple	of	configuration
variables	that	let	you	define	where	the	build	history	is	stored,	from	what	build	artifacts	to
collect	information,	and	more.

13.2.1	Enabling	Build	History
Build	history	is	disabled	by	default.	You	have	to	enable	it	by	adding	it	to	the	INHERIT
variable	in	the	conf/local.conf	file	of	your	build	environment:

INHERIT	+=	“buildhistory”
BUILDHISTORY_COMMIT	=	“1”

The	first	statement	enables	the	buildhistory	class,	which	collects	the	build
information	for	all	recipes.	The	second	statement	enables	committing	all	changes	to	the
build	history	to	a	Git	repository.	If	you	are	interested	in	gathering	information	only	on
your	last	build	then,	you	can	disable	committing	to	a	Git	repository	by	setting
BUILDHISTORY_COMMIT	=	"0".

Build	history	is	additive,	meaning	that	information	is	collected	only	on	recipes	and	their
tasks	that	have	run	during	the	build	process.	That	implies	that	if	you	are	looking	for	a
complete	build	history,	you	have	to	enable	it	for	your	build	environment	before	you	start
building	for	the	first	time.

13.2.2	Configuring	Build	History
You	can	tune	the	behavior	of	build	history	through	a	set	of	configuration	variables:

	BUILDHISTORY_DIR:	This	variable	specifies	the	path	to	the	directory	where	the
buildhistory	class	stores	the	build	history	information.	The	default	setting	is
BUILDHISTORY_DIR	?=	"${TOPDIR}/buildhistory.	If

BUILDHISTORY_COMMIT	is	enabled,	the	buildhistory	class	creates	a	Git
directory	in	that	location.	Use	this	variable	to	relocate	the	build	history.

	BUILDHISTORY_COMMIT:	This	variable	controls	whether	the	build	history	is
committed	to	a	local	Git	repository	residing	in	BUILDHISTORY_DIR.	When	used
for	the	first	time	on	an	existing	build	history,	the	buildhistory	class	initializes
the	Git	repository	in	BUILDHISTORY_DIR.	After	every	completed	BitBake	run,
the	changes	to	the	build	history	are	committed	to	the	repository.	If	you	want	to	track
changes	to	the	build	history,	set	BUILDHISTORY_COMMIT	=	"1".	The	default
setting	is	BUILDHISTORY_COMMIT	?=	"0".

	BUILDHISTORY_COMMIT_AUTHOR:	When	using	a	Git	repository	to	track	build
history	changes	over	time,	the	variable	provides	a	Git	user	name	for	the	commits	to
the	repository.	Git	requires	the	format	of	the	value	for	the	variable	to	be	in	the	form
of	name	<email@domain>.	The	default	setting	for	the	variable	is
BUILDHISTORY_COMMIT_AUTHOR	?=	"buildhistory
<buildhistory@${DISTRO}>.	The	setting	of	this	variable	has	no	effect	unless
BUILDHISTORY_COMMIT	is	set	to	"1".

	BUILDHISTORY_FEATURES:	The	buildhistory	class	collects	analysis	data
for	different	categories:

	image:	Analysis	data	of	the	content	of	images	including	the	installed	packages.

	package:	Analysis	data	of	the	content	of	the	individual	packages.

	sdk:	Analysis	data	of	the	content	of	SDKs.

You	can	specify	any	combination	of	these	as	a	space-separated	list.	The	default
value	is	BUILDHISTORY_FEATURES	?=	"image	package	sdk".

	BUILDHISTORY_IMAGE_FILES:	This	variable	specifies	a	space-separated	list	of
paths	to	files	installed	in	a	root	filesystem	image	so	that	you	can	track	their	content.
That	is	particularly	useful	for	system	and	application	configuration	files.	The	default
setting	is	BUILDHISTORY_IMAGE_FILES	?=	"/etc/passwd
/etc/group",	which	allows	you	to	track	changes	to	user	and	group	entries.	The
buildhistory	class	uses	the	cp	command	to	copy	the	files	from	the	image	root
to	the	build	history	directories.	You	can	use	wildcards	for	the	last	segment	of	the
path	to	copy	multiple	files	with	a	single	entry	in	the	variable.	However,
subdirectories	are	not	copied	recursively.	For	example,	using
BUILDHISTORY_IMAGE_FILES	=	"/etc/*"	copies	all	files	in	/etc	but	not
the	subdirectories.	You	need	to	specify	those	explicitly.

	BUILDHISTORY_PUSH_REPO:	When	using	a	Git	repository	to	track	the	changes,
which	is	strongly	recommended,	you	can	optionally	specify	a	remote	Git	repository
to	push	the	build	history	to	a	Git	repository	server	after	it	has	been	committed	to	the
local	repository.	For	BUILDHISTORY_PUSH_COMMIT	to	work,	the	variable
BUILDHISTORY_COMMIT	must	be	set	to	1.	The	default	setting	for	the	variable	is
BUILDHISTORY_PUSH_REPO	?=	"".

13.2.3	Pushing	Build	History	to	a	Git	Repository	Server
In	addition	to	tracking	build	history	with	a	local	Git	repository	on	the	build	host,	pushing
all	changes	to	a	Git	repository	is	an	important	tool	for	ensuring	build	quality	and
maintaining	history.	Although	setup	is	mostly	straightforward,	we	have	dedicated	this
section	to	the	topic	because	there	are	some	important	things	to	consider.

To	demonstrate	the	setup,	we	use	the	public	GitHub	repository	server.4	We	do	not
recommend	using	GitHub	for	this	purpose,	but	it	provides	a	simple	way	of	testing	the
functionality	because	setting	up	a	Git	repository	server	is	outside	of	the	scope	of	this	book.
Before	you	can	use	GitHub,	you	have	to	create	a	GitHub	account,	which	is	free	of	charge
for	accounts	that	host	only	public	repositories.	The	GitHub	website	explains	the	process
very	well.	Then,	using	the	GitHub	web	user	interface,	create	an	empty	Git	repository—for
instance,	yp_buildhistory.	Do	not	create	any	files,	and	do	not	do	an	initial	commit	to	the
repository.	The	first	commit	comes	from	the	Yocto	Project	build.

4.	https://github.com

Although	you	can	freely	read	and	clone	any	public	repository	on	GitHub,	pushing
changes	to	a	repository	requires	authentication.	The	build	system	uses	Secure	Shell	(SSH)
to	push	changes	made	to	the	local	build	history	Git	repository	to	a	remote	Git	server.
When	using	SSH,	GitHub	requires	public	key	infrastructure	(PKI)	keys	for	authentication.
PKI	consists	of	a	public	and	a	private	key	pair.	You	create	the	key	pair	on	your	build	host
and	upload	the	public	key	to	GitHub.	GitHub	provides	good	instructions	on	how	to
accomplish	that	task.5	When	creating	SSH	keys,	you	have	the	option	to	protect	the	private
key	with	a	passphrase.	Doing	so	is	not	recommended	if	you	plan	to	do	automated	builds
with	the	Yocto	Project,	as	the	build	system	stops	execution	and	asks	for	the	passphrase	to
be	entered.

5.	https://help.github.com/articles/generating-ssh-keys

Once	you	have	set	up	a	GitHub	account,	added	a	public	SSH	key	to	your	account,	and
created	a	repository,	you	need	to	set	up	build	history	for	your	build	environment.	As	usual,
that	configuration	is	done	by	setting	the	variables	in	conf/local.conf,	as	shown	in
Listing	13-3.

Listing	13-3	Build	History	Configuration	(conf/local.conf)
Click	here	to	view	code	image

#
#	Build	History	Configuration
#
INHERIT	+=	“buildhistory”
BUILDHISTORY_COMMIT	=	“1”
BUILDHISTORY_COMMIT_AUTHOR	=	“Santa	Claus	<santa.claus@northpole.com>”
BUILDHISTORY_DIR	=	“${TOPDIR}/../../yocto/buildhistory”
BUILDHISTORY_IMAGE_FILES	=	“/etc/passwd	/etc/group”
BUILDHISTORY_PUSH_REPO	=	“git@github.com:sclaus/yp_buildhistory.git	master”

The	URL	used	for	BUILDHISTORY_PUSH_REPO	is	of	course	dependent	on	the	setup
of	the	remote	repository.	Specifying	a	branch,	in	the	case	of	the	example	master,	is
optional	but	requires	that	the	branch	already	exists	in	the	remote	repository,	which	is	not

https://github.com
https://help.github.com/articles/generating-ssh-keys

the	case	for	an	empty	repository.	Using	branches	and	explicitly	specifying	them	is	strongly
recommended	with	multiple	build	environments	pushing	build	history	to	the	same	remote
repository,	which	allows	for	using	different	branches	per	build	environment.	BitBake
variable	expansion	applies	to	BUILDHISTORY_PUSH_REPO	as	it	does	to	any	other
variable.	That	means	that	you	can	use	variables	such	as	${DISTRO}	to	specify	the
branch.

As	the	build	system	always	commits	changes	in	the	build	history	to	the	master	branch,
you	have	to	create	and	switch	to	that	branch	in	the	local	build	history	Git	repository
manually	using
Click	here	to	view	code	image

$	git	checkout	-b	<branchname>

After	that,	you	can	use	branchname	in	BUILDHISTORY_PUSH_REPO.

13.2.4	Understanding	the	Build	History
The	build	history	is	stored	underneath	BUILDHISTORY_DIR	as	a	specific	structure
consisting	of	directories	and	files	(see	Listing	13-4).

Listing	13-4	Build	History	Structure
Click	here	to	view	code	image

$	tree	-L	3	buildhistory
buildhistory/

	metadata-revs
	images

			 	qemux86_64
			 			 	glibc
			 							 	core-image-base
			 											 	build-id.txt
			 											 	depends.dot
			 											 	depends-nokernel.dot
			 											 	depends-nokernel-nolibc.dot
			 											 	depends-nokernel-nolibc-noupdate.dot
			 											 	depends-nokernel-nolibc-noupdate-nomodules.dot
			 											 	files-in-image.txt
			 											 	image-files
			 											 	image-info.txt
			 											 	installed-package-names.txt
			 											 	installed-package-sizes.txt
			 											 	installed-packages.txt
			 	ypbkiosk
							 	glibc
											 	core-image-minimal-initramfs
											 			 	build-id.txt
											 			 	depends.dot
											 			 	depends-nokernel.dot
											 			 	depends-nokernel-nolibc.dot
											 			 	depends-nokernel-nolibc-noupdate.dot
											 			 	depends-nokernel-nolibc-noupdate-nomodules.dot
											 			 	files-in-image.txt
											 			 	image-files
											 			 	image-info.txt
											 			 	installed-package-names.txt
											 			 	installed-package-sizes.txt

											 			 	installed-packages.txt
											 	ypbkiosk-image-sato
															 	build-id.txt
															 	depends.dot
															 	depends-nokernel.dot
															 	depends-nokernel-nolibc.dot
															 	depends-nokernel-nolibc-noupdate.dot
															 	depends-nokernel-nolibc-noupdate-nomodules.dot
															 	files-in-image.txt
															 	image-files
															 	image-info.txt
															 	installed-package-names.txt
															 	installed-package-sizes.txt
															 	installed-packages.txt
	metadata-revs
	packages

			 	all-poky-linux
			 			 	adwaita-icon-theme
			 			 			 	adwaita-icon-theme
			 			 			 			 	latest
			 			 			 			 	latest.pkg_postinst
			 			 			 			 	latest.pkg_postrm
			 			 			 	adwaita-icon-theme-cursors
			 			 			 			 	latest
			 			 			 			 	latest.pkg_postinst
			 			 			 			 	latest.pkg_postrm
			 			 			 	adwaita-icon-theme-hires
			 			 			 			 	latest
			 			 			 			 	latest.pkg_postinst
			 			 			 			 	latest.pkg_postrm
…
			 	core2-64-poky-linux
			 			 	acl
			 			 			 	acl
			 			 			 			 	files-in-package.txt
			 			 			 			 	latest
			 			 			 	acl-dbg
			 			 			 			 	files-in-package.txt
			 			 			 			 	latest
			 			 			 	acl-dev
			 			 			 			 	files-in-package.txt
			 			 			 			 	latest
			 			 			 	acl-doc
			 			 			 			 	files-in-package.txt
			 			 			 			 	latest
…

	sdk
				 	poky-glibc-x86_64-hagw-image-base-corei7-64
								 	hagw-image-base
												 	files-in-sdk.txt
												 	sdk-info.txt
												 	host
												 			 	depends.dot
												 			 	installed-package-names.txt
												 			 	installed-package-sizes.txt
												 			 	installed-packages.txt
												 	target
																 	depends.dot
																 	installed-package-names.txt
																 	installed-package-sizes.txt
																 	installed-packages.txt

At	the	top	level	are	subdirectories	for	the	categories	enabled	through
BUILDHISTORY_FEATURES.	The	subdirectories	for	image	and	package	features	are
always	present	after	a	successful	build.	The	subdirectory	for	the	sdk	feature	is	created	and
populated	only	after	you	have	built	an	SDK	with	-c	populate_sdk.	In	addition,	the
top-level	directory	of	the	build	history	contains	the	file	metadata-revs	that	contains
the	revision	information	for	the	metadata	layers	used	by	the	build	system	when	the	build
was	produced.

Build	History	Image	Information

Build	history	image	information	is	categorized	by	machine	as	the	images	in	the
${DEPLOY_DIR}/images	directory.	Beneath	that	is	a	subdirectory	with	the	name	of
the	C	library	used.	Unless	you	are	building	with	a	different	C	library,	the	name	of	that
subdirectory	is	glibc.	Inside	the	C	library	subdirectory,	the	build	system	creates	a
subdirectory	for	each	image	target,	for	instance,	core-image-base.	Inside	the	image
target	subdirectory	are	various	files	and	directories	containing	the	information	about	the
image:

	build-id.txt:	Build	configuration	used,	including	BitBake	version,	build	host,
metadata	layer	version,	and	more

	depends.dot:	Full	dependency	graph	in	textual	DOT	format	representation,	that
can	be	rendered	by	Graphviz	or	other	software	capable	of	interpreting	DOT	format

	depends-nokernel.dot:	Same	as	previous	but	without	kernel	dependencies

	depends-nokernel-nolibc.dot:	Same	as	previous	but	without	C	library
dependencies

	depends-nokernel-nolibc-noupdate.dot:	Same	as	previous	but	without
update	dependencies

	depends-nokernel-nolibc-noupdate-nomodules.dot:	Same	as
previous	but	without	kernel	module	dependencies

	files-in-image.txt:	List	of	all	files	in	the	image,	essentially	the	output	of
find	/	!	-path	.	-printf	"%M	%-10u	%-10g	%10s	%p\n"	of	the
root	filesystem

	image-files:	Subdirectory	containing	the	files	specified	by
BUILDHISTORY_IMAGE_FILES

	image-info.txt:	List	of	variables	with	their	variables	directly	influencing	the
content	and	the	size	of	the	image

	installed-package-names.txt:	Alphabetically	sorted	list	with	the	names
of	all	packages	installed	in	the	image

	installed-package-sizes.txt:	List	of	all	packages	installed	in	the	image
ordered	by	size	from	largest	to	smallest	package

	installed-packages.txt:	Alphabetically	sorted	list	with	the	full	package

filenames	of	all	packages	installed	in	the	image

The	image-info.txt	file	with	its	summary	overview	of	settings	provides	a	useful
starting	point	for	tracking	changes	in	image	contents.	Among	the	variables	stored	in	the
file	are	IMAGE_CLASSES,	containing	a	list	of	classes	used	to	create	the	image;	and
IMAGE_INSTALL,	IMAGE_FEATURES,	and	ROOTFS_POSTPROCESS_COMMAND,
which	are	directly	involved	in	compiling	the	content	of	a	root	file	system.

Build	History	Package	Information

Build	history	for	packages	is	organized	into	subdirectories	by	architecture	and	includes
packages	created	for	the	build	host	as	well	as	for	the	target.	The	architecture	subdirectories
are	the	same	as	used	inside	${BASE_WORKDIR}.

Each	package	has	its	own	subdirectory	containing	a	file	named	latest	and
subdirectories	for	every	installation	package	created	during	the	package	splitting	process.
The	package	top-level	latest	file	contains	the	package	version	(PV)	and	package	revision
(PR)	information,	the	list	of	build	dependencies	(DEPENDS),	and	the	list	of	installation
packages	created	(PACKAGES).	If	the	package	was	created	from	sources	fetched	from	a
version	control	system	such	as	Git,	the	directory	also	contains	the	file	latest_srcrev,
which	contains	a	list	with	the	source	revisions	for	the	branches	used.

Each	of	the	installation	package	subdirectories	contains	one	or	more	files	with
information	on	the	package:

	latest:	List	of	variables	and	their	values	determining	the	package	contents	during
build.	This	list	includes	PV,	PR,	RPROVIDES,	RDEPENDS,	FILES,	and	an	entry
PKGSIZE	with	the	total	package	size	in	kilobytes.

	files-in-package.txt:	List	of	all	files	contained	in	the	package	with	their
paths	and	sizes.

	latest.pkg_*:	Files	that	contain	any	commands	performed	by	the	package
manager	prior	to	or	after	carrying	out	a	particular	command,	such	as	install,	update,
or	remove.

The	source	revision	information	contained	in	a	package’s	latest_srcrev	is
important	when	you	are	looking	to	fix	source	revisions	for	packages	that	use	AUTOREV	to
automatically	retrieve	the	latest	revision	from	a	repository	branch.	You	can	use	the	script
buildhistory-collect-srcrevs	to	gather	the	source	revisions	from	the	build
history	in	a	format	that	you	can	directly	use	in	a	configuration	file	such	as
conf/local.conf	or	a	distribution	policy	file.	For	each	package	obtained	from	a
version	control	system	source,	the	script	produces	a	line	in	the	form	of
Click	here	to	view	code	image

SRCREV_pn-<packagename>	=	“<versiontag>”

By	default,	the	script	produces	output	only	for	the	packages	that	are	using	AUTOREV
unless	you	use	-a	or	--report-all	to	the	command	line	when	invoking	the	script.

Specifying	SRCREV_pn-<packagename>	in	a	configuration	does	not	prevent	the

variable	being	overridden	by	append	files	to	a	recipe	or	elsewhere	in	the	build
configuration.	To	prevent	overriding,	forcevariable	must	be	added:
Click	here	to	view	code	image

SRCREV_pn-<packagename>_forcevariable	=	“<versiontag>”

The	script	can	automatically	add	forcevariable	when	-f	or	--forcevariable
is	added	to	the	command	line.

Build	History	SDK	Information

When	an	SDK	target	is	processed	by	the	build	system,	build	history	collects	information
on	the	content	of	the	SDK.	Multiple	SDKs	are	separated	into	subdirectories	by	distribution
and	image	target.	Because	SDKs	are	built	for	the	build	host	as	well	as	for	the	target,	the
build	history	contains	information	for	each	of	them.	The	build	history	directory	for	an
SDK	contains	the	following:

	files-in-sdk.txt:	A	list	of	files	included	in	the	SDK.	This	list	is	for	the	build
host	and	for	the	target.

	sdk-info.txt:	List	of	configuration	variables	and	their	values	that	determine	the
content	of	the	SDK	as	well	as	an	entry	for	the	size	of	the	SDK:

	DISTRO:	Distribution	policy.

	DISTRO_VERSION:	Version	string	of	the	distribution.

	SDK_NAME:	Name	string	of	the	SDK.

	SDK_VERSION:	Version	string	of	the	SDK.

	SDKMACHINE	SDK:	Machine	information.

	SDKIMAGE_FEATURES:	List	of	image	features	used	to	build	the	SDK	root
filesystem,	typically	dev-pkgs	and	dbg-pkgs.

	SDKSIZE:	Size	of	the	SDK.

	host	and	target:	Directories	containing	files	with	information	on	the	host	and
target	SDK.	These	files	are	created	in	both	directories:

	depends.dot:	Full	dependency	graph	in	textual	DOT	format	representation
that	can	be	rendered	with	Graphviz	or	other	software	capable	of	interpreting	DOT
format.

	installed-package-names.txt:	List	with	package	names	installed	in	the
SDK	in	alphabetical	order.

	installed-package-sizes.txt:	List	with	package	names	and	the	sizes
of	the	packages	installed	in	the	SDK,	ordered	from	largest	to	smallest	package.

	installed-packages.txt:	Alphabetically	sorted	list	with	the	full	package
filenames	of	all	packages	installed	in	the	SDK.

13.3	Source	Mirrors
In	Chapter	4,	“BitBake	Build	Engine,”	Section	4.5,	we	discussed	how	the	build	system
accesses	and	downloads	sources	and	how	mirror	sites	can	be	used	to	set	up	alternative
download	locations	without	modifying	SRC_URI	inside	recipes.

Setting	up	your	own	mirror	site	makes	good	sense	for	various	reasons:

	Avoid	downloading	multiple	gigabytes	of	source	packages	from	the	Internet	for
teams	with	many	developers.

	Ensure	that	all	developers	of	a	team	are	building	from	the	same	sources	for
consistency	and	repeatability.

	Control	source	package	versions	for	product	delivery.

13.3.1	Using	Source	Mirrors
We	have	seen	that	after	checking	whether	a	source	package	is	available	from	the	local
download	directory,	as	specified	by	the	DL_DIR,	the	build	system	first	uses	the	mirror
sites	specified	by	the	variable	PREMIRRORS	for	remote	access	to	source	packages.	The
variable	contains	a	list	of	tuples	delimited	by	a	newline	character	that	specify	regular
expressions	for	the	key	to	match	the	SRC_URI.	Each	key	represents	a	scheme	for	a
particular	protocol,	such	as	FTP,	HTTP,	HTTPS,	Git,	and	so	on.	You	can	of	course	specify
the	PREMIRRORS	variable	directly	yourself	in	the	conf/local.conf	file	of	your
build	environment.	However,	more	conveniently,	you	can	use	the	own-mirrors	class
and	the	variable	SOURCE_MIRROR_URL.	As	Listing	13-5	shows,	the	own-mirrors
class	contains	nothing	more	than	an	assignment	of	the	PREMIRRORS	variable.

Listing	13-5	own-mirrors	Class
Click	here	to	view	code	image

PREMIRRORS()	{
cvs://.*/.*					${SOURCE_MIRROR_URL}
svn://.*/.*					${SOURCE_MIRROR_URL}
git://.*/.*					${SOURCE_MIRROR_URL}
gitsm://.*/.*			${SOURCE_MIRROR_URL}
hg://.*/.*						${SOURCE_MIRROR_URL}
bzr://.*/.*					${SOURCE_MIRROR_URL}
p4://.*/.*						${SOURCE_MIRROR_URL}
osc://.*/.*					${SOURCE_MIRROR_URL}
https?$://.*/.*	${SOURCE_MIRROR_URL}
ftp://.*/.*					${SOURCE_MIRROR_URL}
}

The	class	essentially	does	all	the	work	for	you	by	assigning	the	variable
SOURCE_MIRROR_URL	to	all	of	the	protocol	schemes	supported	by	the	build	system’s
fetchers.	All	you	have	to	do	is	inherit	the	own-mirrors	class	and	set	the
SOURCE_MIRROR_URL	variable	to	your	own	mirror	site	in	the	conf/local.conf
file	of	your	build	environment:
Click	here	to	view	code	image

SOURCE_MIRROR_URL	?=	“file:///path/to/directory/”
INHERIT	+=	“own-mirrors”

The	example	uses	the	file:	scheme	to	directly	access	file	systems	which	can	be	local
or	any	type	of	remote	file	system	such	as	Network	File	System	(NFS).	Alternatively,	you
can	use	ftp:,	http:,	and	https:	schemes	for	the	build	system	to	access	your	mirror
site.	For	team	development,	it	may	also	make	sense	to	use	your	distribution	policy	rather
than	the	local	build	environment	configuration	to	set	your	own	mirrors.

Using	the	own-mirrors	class	with	SOURCE_MIRROR_URL	or	setting
PREMIRRORS	directly	does	not	prevent	the	build	system	from	accessing	other	download
sources	such	as	SRC_URI	of	recipes	or	postmirrors	specified	by	MIRRORS.	However,	for
product	development,	it	is	essential	that	the	build	system	does	not	inadvertently	fetch	any
source	packages	from	uncontrolled	locations.	Disabling	postmirrors	can	be	achieved
simply	by	setting	MIRRORS	to	an	empty	string;	however,	globally	disabling	SRC_URI	in
recipes	is	not	possible.

Using
BB_NO_NETWORK	=	“1”

disables	network	access	for	fetching	from	any	download	source,	including	the	ones
specified	by	PREMIRRORS.	This	works	fine	if	you	intend	to	use	only	the	file:	scheme
for	your	mirror	site.	However,	for	a	setup	useful	for	team	development	with	automated
build	and	quality	assurance,	you	want	to	enable	fetching	from	controlled	mirror	sites	using
FTP,	HTTP,	or	HTTPS	protocols	without	the	risk	of	inadvertently	fetching	source
packages	from	the	Internet.	You	can	achieve	this	be	restricting	access	to	PREMIRRORS
only	by	setting

BB_FETCH_PREMIRRORONLY	=	“1”

In	addition,	or	alternatively,	you	can	restrict	network	access	to	specific	hosts.	The
variable	BB_ALLOWED_NETWORKS	specifies	a	white-space	delimited	list	of	hosts	from
which	the	build	system	is	allowed	to	fetch	source	packages:
Click	here	to	view	code	image

BB_ALLOWED_HOSTS	=	“server1.acme.com	server2.acme.com”

This	example	allows	fetching	from	the	server1	and	server2	belonging	to	the	acme.com
domain.	Basic	wildcard	matching	is	provided	against	the	beginning	of	host	names:	for
instance
Click	here	to	view	code	image

BB_ALLOWED_HOSTS	=	“*.acme.com”

allows	fetching	from	any	host	belonging	to	the	acme.com	domain.

When	using	BB_ALLOWED_HOSTS,	hosts	listed	in	the	mirror	variables	PREMIRRORS
and	MIRRORS	are	simply	skipped,	and	a	log	message	is	recorded.	Accessing	a	SRC_URI
with	a	host	that	is	not	contained	in	BB_ALLOWED_HOSTS	results	in	an	error.

Using	BB_ALLOWED_HOSTS	in	conjunction	with	the	own-mirrors	class	and
SOURCE_MIRROR_URL	or	directly	with	PREMIRRORS	allows	you	to	utilize	network
protocol	schemes	while	preventing	the	build	system	from	accessing	any	download	sites

that	are	not	listed	in	BB_ALLOWED_HOSTS.	Adding	hosts	listed	in
BB_ALLOWED_HOSTS	to	SOURCE_MIRROR_URL	or	PREMIRRORS	results	in	sources
being	fetched	only	from	authorized	hosts.	If	a	source	package	is	missing	on	the	mirror
sites,	the	build	system	tries	to	retrieve	it	by	using	SRC_URI	from	the	recipe.	That	results
in	a	failure,	as	the	upstream	host	in	SRC_URI	is	not	listed	by	BB_ALLOWED_HOSTS.
That	is	exactly	the	behavior	you	would	want	because	it	notifies	you	of	any	attempt	to
access	sources	from	uncontrolled	sites.

13.3.2	Setting	Up	Source	Mirrors
How	to	set	up	a	source	mirror	is	up	to	you.	You	have	to	decide	if	you	want	to	mount	a
filesystem	export	from	the	source	mirror	on	your	build	host	and	use	the	file:	scheme	or
if	you	would	rather	set	up	an	HTTP/HTTPS	or	FTP	server.	In	any	case,	you	have	to
download	the	source	packages	once	using	the	build	system	and	then	copy	them	from	the
download	directory	specified	by	DL_DIR	to	your	mirror	host.

Sources	that	are	directly	checked	out	from	remote	source	repositories	such	as	Git,
Apache	Subversion	(SVN),	Perforce,	and	so	on,	are	placed	into	the	download	directory	as
trees.	That	makes	them	unsuitable	for	simple	copies	to	the	mirror	site	that	later	can	be
accessed	via	file:,	ftp:,	http:,	or	https:	schemes.	Using
Click	here	to	view	code	image

BB_GENERATE_MIRROR_TARBALLS	=	“1”

in	the	conf/local.conf	file	of	your	build	environment	causes	the	build	system	to
create	tarballs	from	repository	trees	that	you	then	can	easily	copy	to	your	mirror	site
together	with	the	other	source	packages.	For	performance	reasons,
BB_GENERATE_MIRROR_TARBALLS	is	disabled	by	default.

Following	a	few	simple	steps	lets	you	set	up	your	own	source	mirror:

1.	Set	up	your	build	environment	and	enable	BB_GENERATE_MIRROR_TARBALLS.

2.	Start	a	build	with	bitbake	-c	fetchall	<target>,	where	<target>	is
any	comprehensive	image	target	such	as	core-image-sato.

3.	Copy	all	the	source	tarballs	contained	in	the	download	directory	to	your	mirror	host.

4.	Set	up	a	build	environment	to	inherit	own-mirrors	and	point
SOURCE_MIRROR_URL	to	your	new	mirror.	You	can	disable
BB_GENERATE_MIRROR_TARBALLS.

5.	Start	a	build	to	test	fetching	from	your	new	mirror.

6.	Fine-tune	your	setup	by	setting	BB_NO_NETWORK	or	BB_ALLOWED_HOSTS	as
required.

13.4	Autobuilder
The	Yocto	Project	Autobuilder	is	an	automated	build	system	based	on	the	open	source
continuous	integration	framework	Buildbot.6	Buildbot	is	an	extensible	framework	for
automating	software	builds,	quality	assurance,	and	release	processes.

6.	http://buildbot.net

Buildbot	is	implemented	in	Python	using	the	Twisted	Python7	event-driven	networking
engine.	Buildbot	is	a	job	scheduling	system:	it	queues	jobs,	monitors	resources	necessary
to	execute	jobs,	executes	jobs	when	the	resources	become	available,	and	reports	the
results.

7.	https://twistedmatrix.com/trac

A	Buildbot	deployment	typically	comprises	at	least	one	controller	and	a	collection	of
workers.	The	controllers	monitor	source	code	repositories,	schedule	the	jobs,	coordinate
the	workers,	and	report	results	of	the	job	execution.	Controllers	provide	a	web	user
interface	for	users	to	interact	with	the	system.	Workers	can	be	deployed	either	on	the	same
system	as	a	controller	or	on	separate	systems,	which	makes	Buildbot	a	distributed	build
engine.	Controllers	dispatch	builders	to	the	workers,	which	execute	them	and	report	the
results	back	to	the	controllers.

Buildbot	configuration	is	done	through	Python	scripts,	which	can	be	as	simple	as	setting
configuration	variables.	However,	full	Python	functionality	is	available,	allowing	dynamic
generation	of	configuration	through	Python	code.

The	Yocto	Project	Autobuilder	extends	Buildbot	with	a	set	of	standard	builders	for
Yocto	Project	targets.	The	Yocto	Project	build	infrastructure	uses	Autobuilder	for	nightly
builds,	continuous	integration,	and	release	builds.	You	can	access	the	Yocto	Project
Autobuilder	via	its	front	page	at	https://autobuilder.yoctoproject.org.	Unless	you	have	a
login	to	the	Yocto	Project	Autobuilder,	you	cannot	schedule	and	execute	builds	yourself,
but	you	can	look	at	the	current	status	of	the	latest	builds	and	the	build	history.	You	can
also	download	builds	of	images	for	various	machines,	Eclipse	plugins,	and	many	more,
directly	from	the	publish	directory8	of	the	Yocto	Project	Autobuilder.

8.	http://autobuilder.yoctoproject.org/pub

The	Yocto	Project	build	team	has	packaged	Autobuilder	with	setup	and	execution
scripts,	which	make	it	a	matter	of	minutes	to	get	an	instance	of	Autobuilder	running	on
your	own	system.

13.4.1	Installing	Autobuilder
A	basic	installation	and	configuration	of	Autobuilder	with	one	controller	and	one	worker
running	on	the	same	host	can	be	done	in	three	simple	steps:
Click	here	to	view	code	image

$	git	clone	git://yoctoproject.org/yocto-autobuilder
$	cd	yocto-autobuilder
$	source	yocto-autobuilder-setup

That’s	it.	The	yocto-autobuilder-setup	script	produces	a	lot	of	output,	some	of

http://buildbot.net
https://twistedmatrix.com/trac
https://autobuilder.yoctoproject.org
http://autobuilder.yoctoproject.org/pub

which	you	should	note:

	Client–Server	Password:	This	is	the	password	that	workers	use	to	identify
themselves	with	the	controller.	This	password	is	used	in	the	controller	configuration
file	yocto-controller/controller.cfg	and	in	the	worker	configuration
file	yocto-worker/buildbot.tac.

	User	Name	and	Password:	The	script	creates	a	user	name	and	password	for	the
web	user	interface	and	stores	them	in	the	file	yocto-
autobuilder/.htpasswd.	The	password	is	stored	in	encrypted	form,	so	you
need	to	make	a	note	of	the	password.	If	you	forget	or	lose	your	password,	you	can
create	a	new	one	and	write	it	to	the	password	file	with

Click	here	to	view	code	image
$	cd	yocto-autobuilder
$./bin/htpasswd	-b	.htpasswd	<username>	<password>

Make	sure	that	you	use	the	./bin/htpasswd	command	provided	with
Autobuilder	and	not	the	one	that	is	installed	on	your	system.

	Environment	Variables:	The	script	adds	Autobuilder	paths	to	the	environment
variables	PYTHONPATH	and	PATH	and	sets	the	variable	YOCTO_AB_CONFIG	and
prints	their	values	to	the	console.	You	can	copy	and	paste	the	settings	into	your
.bashrc	file,	or	you	can	source	the	script	every	time	you	want	to	use	Autobuilder.
Sourcing	the	script	again	is	safe.	It	detects	previous	settings,	such	as	existing
configuration	and	password	files,	and	does	not	overwrite	them.

Now	you	can	start	Autobuilder	with
Click	here	to	view	code	image

$./auto-start-autobuilder	both

which	starts	a	controller	and	a	worker	on	the	same	node.	The	script	takes	the	following
arguments:

	both:	Start	controller	and	worker.

	controller:	Start	the	controller	only.

	worker:	Start	the	worker	only.

To	stop	Autobuilder,	use	the	yocto-stop-autobuilder,	which	takes	the	same
arguments	as	the	start	script.

After	starting	Autobuilder,	point	your	web	browser	to
localhost:8010

which	takes	you	to	the	Autobuilder	landing	page.	From	there,	you	can	log	into
Autobuilder	using	your	user	name	and	password.

Click	the	Builders	link,	which	takes	you	to	a	list	of	all	the	configured	builders.	Click
one,	such	as	nightly-x86-64.	To	force	start	a	builder	outside	its	regular	schedule,	click	the
Force	Build	button.	Once	the	builder	is	started,	you	can	watch	its	progress	in	the	Waterfall
view.

13.4.2	Configuring	Autobuilder
Autobuilder	configuration	is	done	through	a	series	of	configuration	files.	These	are	not
BitBake	configuration	files.	That	means	you	do	not	have	BitBake	variable	expansion	at
your	disposal.

Autobuilder	Global	Configuration	File

The	file	config/autobuilder.conf	is	the	global	Autobuilder	configuration	file.
The	file	is	divided	into	sections.	Each	section	is	introduced	by	the	section	name	in	square
brackets.	Each	section	contains	one	or	more	configuration	variables.	Section	names	and
variable	names	are	mostly	self-explanatory.	Here	we	discuss	the	parameters	you	most
commonly	would	want	to	adjust.

	[GitSettings]:	Handling	of	Git	repositories.

	OPTIMIZED_GIT_CLONE:	If	set	to	True,	Git	repositories	get	moved	to	a
temporary	storage	location	after	use	rather	than	being	deleted	from	within
Autobuilder.	That	speeds	up	the	build	process	but	requires	external	cleanup	of	the
obsolete	directories	with	a	cronjob.	The	default	setting	is	True.	However,	this
setting	can	be	rather	disk-space	intensive.	If	your	workers	are	low	on	disk	space,
you	may	want	to	consider	disabling	this	setting.

	OGIT_TRASH_DIR:	Directory	to	which	obsolete	Git	repositories	get	moved.

	OGIT_MIRROR_DIR:	Directory	to	which	to	clone	Git	repositories.

	OGIT_TRASH_CRON_TIME:	Cronjob	settings	for	cleaning	up	obsolete	Git
repositories.

	OGIT_TRASH_NICE_LEVEL:	Priority	level	for	the	cleanup	task.

	[BuildHistorySettings]:	Whether	Autobuilder	should	collect	build	history
and	where	to	store	it.

	BUILD_HISTORY_COLLECT:	If	set	to	True,	Autobuilder	collects	the	build
history.

	BUILD_HISTORY_DIR:	Directory	where	the	build	history	is	stored.

	BUILD_HISTORY_REPO:	Remote	repository	for	the	build	history.

	[ErrorReportSettings]:	Whether	Autobuilder	collects,	stores,	and	publishes
reports	on	errors	encountered	by	Autobuilder.

	ERROR_REPORT_COLLECT:	If	set	to	True,	Autobuilder	collects	error	reports.

	ERROR_REPORT_EMAIL:	E-mail	address	to	which	error	reports	are	sent.

	[PublishSettings]:	If	and	where	to	publish	build	artifacts.

	PUBLSIH_BUILDS:	If	set	to	True,	Autobuilder	publishes	images	and	package
feeds	to	MACHINE_PUBLISH_DIR,	QEMU_PUBLISH_DIR,
RPM_PUBLISH_DIR,	DEB_PUBLISH_DIR,	and	IPK_PUBLISH_DIR,	which

are	subdirectories	of	BUILD_PUBLISH_DIR.

	PUBLISH_SOURCE_MIRROR:	If	set	to	True,	Autobuilder	publishes	the	source
files	to	be	used	for	a	source	mirror	to	SOURCE_PUBLISH_DIR.

	PUBLISH_SSTATE:	If	set	to	True,	Autobuilder	publishes	the	shared	state	cache
to	SSTATE_PUBLISH_DIR.

	[BuildSettings]:	Settings	for	the	conf/local.conf	file	of	the	build
environments	used	by	the	worker.

	[QAEmail]:	E-mail	addresses	to	which	Autobuilder	should	send	e-mail	about
build	results.

Typically,	you	probably	want	to	adjust	directories	for	build	artifacts	and	other	data	you
need	to	keep.	The	default	settings	store	all	files	in	/tmp/yocto-autobuilder,	which
is	lost	when	the	system	reboots.

Controller	Configuration	File

The	file	yocto-controller/controller.cfg	contains	the	configuration	settings
for	the	controller.	This	file	uses	Python	syntax.	All	configuration	is	stored	in	a	dictionary
named	BuildmasterConfig.	These	are	Buildbot	configuration	settings	that	are
explained	in	detail	by	the	Buildbot	documentation	at	http://docs.buildbot.net.	We	cover	the
most	important	ones	here:

	c[‘debugPassword’]:	If	set,	you	can	use	the	Buildbot	debug	client	to	connect
to	the	controller.

	c[‘title’]:	Title	that	appears	on	top	of	the	Autobuilder	web	page.

	c[‘titleURL’]:	URL	that	is	embedded	in	the	title	(typically	matches
c['buildbotURL']).

	c[‘buildbotURL’]:	URL,	host,	and	port	that	Autobuilder’s	web	server	listens
to.

	c[‘workers’]:	List	of	workers	that	are	recognized	by	the	controller.	Each
worker	must	have	a	unique	name	and	a	password	it	uses	to	authenticate	itself	with
the	controller.	Worker	name	and	password	must	match	the	respective	values	of	the
worker	configuration.

	c[‘workerPortnum’]:	TCP	port	number	the	controller	listens	on	for	worker
connections.	The	port	number	must	match	the	port	number	of	the	worker
configuration.

	c[‘status’]:	List	of	status	targets	to	which	Autobuilder	publishes	build	status
reports.	Buildbot	offers	a	variety	of	status	targets,	such	as	web	pages,	e-mail	senders,
and	Internet	Relay	Chat	(IRC)	bots.	The	Buildbot	documentation	contains	the	details
on	how	to	configure	the	various	status	targets.

	c[‘db’]:	Database	that	Autobuilder	uses	to	store	its	status	information.	The
default	is	a	SQLite	database.	Other	databases,	including	MySQL	and	PostgreSQL,

http://docs.buildbot.net

can	be	configured.	The	Buildbot	documentation	explains	the	details.	For
performance	reasons,	you	would	want	to	use	an	RDBMS	rather	than	SQLite	for
productions	systems.

You	can	set	other	configuration	options	in	the	file,	such	as	c['multiMaster'],
which	allows	using	multiple	controllers	to	create	even	more	scalable	build	factories.

Worker	Configuration	File

The	file	yocto-worker/buildbot.tac	contains	the	worker	configuration.	This	file
also	uses	Python	syntax.	These	are	the	settings	you	need	to	adjust	to	create	a	distributed
system:

	buildmaster_host:	Host	name	or	IP	address	of	the	host	the	controller	is
running	on.

	port:	The	port	number	the	controller	listens	on	for	worker	connections.	The	value
must	match	c['workerPortnum']	of	the	controller	configuration.

	workername:	Unique	name	for	the	worker.	The	value	must	match	the	name	of	the
worker	in	c['workers']	of	the	controller	configuration.

	passwd:	The	password	for	authentication	with	the	controller.	The	value	must	match
the	password	used	for	the	worker	in	c['workers']	of	the	controller
configuration.

Buildset	Configuration

The	Autobuilder	root	directory	contains	multiple	directories	whose	names	all	begin	with
buildset-.	A	buildset	in	Buildbot	lingo	is	a	series	of	steps	that	are	executed	in	the
order	defined	by	the	buildset.	Listing	13-6	shows	the	Autobuilder	buildset	for	the	nightly
x86_64	build.

Listing	13-6	Buildset	nightly-x86-64	(buildset-config/nightly-x86-
64.conf)
Click	here	to	view	code	image

[nightly-x86-64]
builders:	‘example-worker’
repos:	[{‘poky’:
												{‘repourl’:‘git://git.yoctoproject.org/poky’,
													‘layerversion’:	{‘core’:‘meta’,	‘yoctobsp’:‘meta-yocto-bsp’},
													‘branch’:‘master’}}]
steps:	[{‘SetDest’:	{}},
								{‘CheckOutLayers’:	{}},
								{‘RunPreamble’:	{}},
								{‘GetDistroVersion’:	{‘distro’:	‘poky’}},
								{‘CreateAutoConf’:	{‘machine’:	‘qemux86-64’,	‘SDKMACHINE’:	‘i686’,
																												‘distro’:	‘poky’,	‘buildhistory’:	True}},
								{‘CreateBBLayersConf’:	{‘buildprovider’:	‘yocto’}},
								{‘SyncPersistDB’:	{‘distro’:	‘poky’}},
								{‘GetBitbakeVersion’:	{}},
								{‘BuildImages’:	{‘images’:	‘core-image-sato	core-image-sato-dev
																																				core-image-sato-sdk	core-image-minimal
																																				core-image-minimal-dev’}},

								{‘RunSanityTests’:	{‘images’:	‘core-image-minimal	core-image-sato
																																							core-image-sato-sdk’}},
								{‘CreateAutoConf’:	{‘machine’:	‘genericx86-64’,
																												‘SDKMACHINE’:	‘i686’,
																												‘buildhistory’:	False,	‘distro’:	‘poky’}},
								{‘BuildImages’:	{‘images’:	‘core-image-sato	core-image-sato-dev
																																				core-image-sato-sdk	core-image-minimal
																																				core-image-minimal-dev’}},
								{‘CreateAutoConf’:	{‘machine’:	‘qemux86-64’,
																												‘SDKMACHINE’:	‘i686’,
																												‘distro’:	‘poky’,	‘buildhistory’:	False}},
								{‘BuildToolchainImages’:	{}},
								{‘RunSDKSanityTests’:	{‘images’:	‘core-image-sato’}},
								{‘CreateAutoConf’:	{‘machine’:	‘qemux86-64’,
																												‘SDKMACHINE’:	‘x86_64’,
																												‘distro’:	‘poky’,	‘buildhistory’:	False}},
								{‘BuildToolchainImages’:	{}},
								{‘RunSDKSanityTests’:	{‘images’:	‘core-image-sato’}},
								{‘SyncPersistDB’:	{‘commit’:	True,	‘distro’:‘poky’}},
								{‘PublishLayerTarballs’:	{}},
								{‘SendErrorReport’:	{}},
								{‘UploadToasterEventlog’:	{}},
								{‘PublishArtifacts’:	{‘artifacts’:	[‘qemux86-64’,	‘genericx86-64’,
																														‘ipk’,	‘toolchain’,	‘md5sums’]}}]

A	buildset	typically	contains	at	least	these	elements:

	Buildset	Name:	Name	of	the	buildset	in	square	brackets.

	Repos:	A	list	of	dictionaries	containing	the	descriptions	of	the	repositories	to
monitor.	A	repository	description	is	itself	a	dictionary	with	the	keys	repourl,
layerversion,	and	branch.

	Steps:	A	list	of	dictionaries	with	buildsteps.	The	build	steps	are	Python	classes
located	in	lib/python2.7/site-
packages/autobuilder/buildsteps	of	the	Autobuilder	root	directory.
Steps	may	take	arguments,	which	are	provided	as	dictionaries.

The	Buildbot	documentation	contains	general	examples	and	explanations	on	how	to
create	buildsets	and	buildsteps.	The	file	README-NEW-AUTOBUILDER	explains	how
Autobuilder	buildsets	and	buildsteps	are	configured.

13.5	Summary
In	this	chapter,	we	described	tools	and	techniques	you	can	employ	to	scale	the	Yocto
Project	build	system	to	development	teams	and	production	environment.

	Toaster	extends	the	build	system	with	a	web	user	interface,	allowing	remote
deployment	and	shared	build	resources.

	The	build	history	provides	tracking	of	build	configuration	and	build	output.	It	is	an
important	tool	to	maintain	build	quality	and	repeatability.	Starting	from	a	baseline
created	by	an	initial	build,	changes	to	configuration	and	metadata	artifacts	are	stored
in	a	Git	repository	to	create	a	seamless	history	of	cause	and	effect.

	Through	the	use	of	source	mirrors,	development	teams	can	share	source	downloads,

and	production	environments	can	control	from	which	software	packages	images	for
product	deployment	are	created.

	Autobuilder	provides	an	automated	continuous	build	and	integration	system	for
Yocto	Project	builds.	It	is	a	complete	out-of-the-box	solution	ready	to	be	deployed
within	a	short	amount	of	time.	Its	default	buildsets	cover	all	standard	Yocto	Project
build	targets.	They	are	a	solid	foundation	that	can	easily	be	extended	and	adapted	to
your	own	requirements.

13.6	References
Buildbot	Documentation,	http://docs.buildbot.net

Yocto	Project	Autobuilder,	https://www.yoctoproject.org/tools-
resources/projects/autobuilder

Yocto	Project	Reference	Manual,	www.yoctoproject.org/docs/2.0/ref-manual/ref-
manual.html

Yocto	Project	Toaster	Manual,	www.yoctoproject.org/docs/2.0/toaster-manual/toaster-
manual.html

http://docs.buildbot.net
https://www.yoctoproject.org/tools-resources/projects/autobuilder
http://www.yoctoproject.org/docs/2.0/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/2.0/toaster-manual/toaster-manual.html

A.	Open	Source	Licenses

In	This	Appendix

A.1	MIT	License

A.2	GNU	General	Public	License	(GPL)	Version	2

A.3	GNU	General	Public	License	(GPL)	Version	3

A.4	Apache	License	Version	2.0

The	list	of	open	source	licenses	is	rather	long.	The	OpenEmbedded	Build	System	provides
the	texts	of	173	licenses	used	in	its	meta/files/common-licenses	directory.	The
Open	Source	Initiative	(OSI)1	analyzes	and	reviews	licenses	and	publishes	a	list	of
approved	open	source	licenses	with	the	goal	to	educate	users,	developers,	businesses,	and
government	agencies	about	open	source	licensing.	For	reference,	the	verbatim	texts	of
four	of	the	most	common	open	source	licenses	are	provided	in	this	appendix.

1.	https://opensource.org

A.1	MIT	License	(MIT)
The	MIT	License	(MIT)

Copyright	(c)	<year>	<copyright	holders>

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this
software	and	associated	documentation	files	(the	“Software”),	to	deal	in	the	Software
without	restriction,	including	without	limitation	the	rights	to	use,	copy,	modify,	merge,
publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or
substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	“AS	IS”,	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE
AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR
COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER
LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,
ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE
USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

A.2	GNU	General	Public	License	(GPL)	Version	2
GNU	GENERAL	PUBLIC	LICENSE

Version	2,	June	1991

Copyright	(C)	1989,	1991	Free	Software	Foundation,	Inc.

https://opensource.org

51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301	USA

Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this	license	document,	but
changing	it	is	not	allowed.

Preamble
The	licenses	for	most	software	are	designed	to	take	away	your	freedom	to	share	and
change	it.	By	contrast,	the	GNU	General	Public	License	is	intended	to	guarantee	your
freedom	to	share	and	change	free	software—to	make	sure	the	software	is	free	for	all	its
users.	This	General	Public	License	applies	to	most	of	the	Free	Software	Foundation’s
software	and	to	any	other	program	whose	authors	commit	to	using	it.	(Some	other	Free
Software	Foundation	software	is	covered	by	the	GNU	Library	General	Public	License
instead.)	You	can	apply	it	to	your	programs,	too.

When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.	Our	General
Public	Licenses	are	designed	to	make	sure	that	you	have	the	freedom	to	distribute	copies
of	free	software	(and	charge	for	this	service	if	you	wish),	that	you	receive	source	code	or
can	get	it	if	you	want	it,	that	you	can	change	the	software	or	use	pieces	of	it	in	new	free
programs;	and	that	you	know	you	can	do	these	things.

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	anyone	to	deny	you
these	rights	or	to	ask	you	to	surrender	the	rights.	These	restrictions	translate	to	certain
responsibilities	for	you	if	you	distribute	copies	of	the	software,	or	if	you	modify	it.

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or	for	a	fee,	you
must	give	the	recipients	all	the	rights	that	you	have.	You	must	make	sure	that	they,	too,
receive	or	can	get	the	source	code.	And	you	must	show	them	these	terms	so	they	know
their	rights.

We	protect	your	rights	with	two	steps:	(1)	copyright	the	software,	and	(2)	offer	you	this
license	which	gives	you	legal	permission	to	copy,	distribute	and/or	modify	the	software.

Also,	for	each	author’s	protection	and	ours,	we	want	to	make	certain	that	everyone
understands	that	there	is	no	warranty	for	this	free	software.	If	the	software	is	modified	by
someone	else	and	passed	on,	we	want	its	recipients	to	know	that	what	they	have	is	not	the
original,	so	that	any	problems	introduced	by	others	will	not	reflect	on	the	original	authors’
reputations.

Finally,	any	free	program	is	threatened	constantly	by	software	patents.	We	wish	to	avoid
the	danger	that	redistributors	of	a	free	program	will	individually	obtain	patent	licenses,	in
effect	making	the	program	proprietary.	To	prevent	this,	we	have	made	it	clear	that	any
patent	must	be	licensed	for	everyone’s	free	use	or	not	licensed	at	all.

The	precise	terms	and	conditions	for	copying,	distribution	and	modification	follow.

Terms	and	Conditions	for	Copying,	Distribution	and	Modification
0.	This	License	applies	to	any	program	or	other	work	which	contains	a	notice	placed
by	the	copyright	holder	saying	it	may	be	distributed	under	the	terms	of	this	General
Public	License.	The	“Program”,	below,	refers	to	any	such	program	or	work,	and	a
“work	based	on	the	Program”	means	either	the	Program	or	any	derivative	work
under	copyright	law:	that	is	to	say,	a	work	containing	the	Program	or	a	portion	of	it,
either	verbatim	or	with	modifications	and/or	translated	into	another	language.
(Hereinafter,	translation	is	included	without	limitation	in	the	term	“modification”.)
Each	licensee	is	addressed	as	“you”.

Activities	other	than	copying,	distribution	and	modification	are	not	covered	by	this
License;	they	are	outside	its	scope.	The	act	of	running	the	Program	is	not	restricted,
and	the	output	from	the	Program	is	covered	only	if	its	contents	constitute	a	work
based	on	the	Program	(independent	of	having	been	made	by	running	the	Program).
Whether	that	is	true	depends	on	what	the	Program	does.

1.	You	may	copy	and	distribute	verbatim	copies	of	the	Program’s	source	code	as	you
receive	it,	in	any	medium,	provided	that	you	conspicuously	and	appropriately
publish	on	each	copy	an	appropriate	copyright	notice	and	disclaimer	of	warranty;
keep	intact	all	the	notices	that	refer	to	this	License	and	to	the	absence	of	any
warranty;	and	give	any	other	recipients	of	the	Program	a	copy	of	this	License	along
with	the	Program.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and	you	may	at
your	option	offer	warranty	protection	in	exchange	for	a	fee.

2.	You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion	of	it,	thus
forming	a	work	based	on	the	Program,	and	copy	and	distribute	such	modifications	or
work	under	the	terms	of	Section	1	above,	provided	that	you	also	meet	all	of	these
conditions:

a.	You	must	cause	the	modified	files	to	carry	prominent	notices	stating	that	you
changed	the	files	and	the	date	of	any	change.

b.	You	must	cause	any	work	that	you	distribute	or	publish,	that	in	whole	or	in	part
contains	or	is	derived	from	the	Program	or	any	part	thereof,	to	be	licensed	as	a
whole	at	no	charge	to	all	third	parties	under	the	terms	of	this	License.

c.	If	the	modified	program	normally	reads	commands	interactively	when	run,	you
must	cause	it,	when	started	running	for	such	interactive	use	in	the	most	ordinary
way,	to	print	or	display	an	announcement	including	an	appropriate	copyright
notice	and	a	notice	that	there	is	no	warranty	(or	else,	saying	that	you	provide	a
warranty)	and	that	users	may	redistribute	the	program	under	these	conditions,	and
telling	the	user	how	to	view	a	copy	of	this	License.	(Exception:	if	the	Program
itself	is	interactive	but	does	not	normally	print	such	an	announcement,	your	work
based	on	the	Program	is	not	required	to	print	an	announcement.)

These	requirements	apply	to	the	modified	work	as	a	whole.	If	identifiable	sections	of
that	work	are	not	derived	from	the	Program,	and	can	be	reasonably	considered
independent	and	separate	works	in	themselves,	then	this	License,	and	its	terms,	do

not	apply	to	those	sections	when	you	distribute	them	as	separate	works.	But	when
you	distribute	the	same	sections	as	part	of	a	whole	which	is	a	work	based	on	the
Program,	the	distribution	of	the	whole	must	be	on	the	terms	of	this	License,	whose
permissions	for	other	licensees	extend	to	the	entire	whole,	and	thus	to	each	and
every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your	rights	to	work
written	entirely	by	you;	rather,	the	intent	is	to	exercise	the	right	to	control	the
distribution	of	derivative	or	collective	works	based	on	the	Program.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Program	with	the
Program	(or	with	a	work	based	on	the	Program)	on	a	volume	of	a	storage	or
distribution	medium	does	not	bring	the	other	work	under	the	scope	of	this	License.

3.	You	may	copy	and	distribute	the	Program	(or	a	work	based	on	it,	under	Section	2)	in
object	code	or	executable	form	under	the	terms	of	Sections	1	and	2	above	provided
that	you	also	do	one	of	the	following:

a.	Accompany	it	with	the	complete	corresponding	machine-readable	source	code,
which	must	be	distributed	under	the	terms	of	Sections	1	and	2	above	on	a	medium
customarily	used	for	software	interchange;	or,

b.	Accompany	it	with	a	written	offer,	valid	for	at	least	three	years,	to	give	any	third
party,	for	a	charge	no	more	than	your	cost	of	physically	performing	source
distribution,	a	complete	machine-readable	copy	of	the	corresponding	source	code,
to	be	distributed	under	the	terms	of	Sections	1	and	2	above	on	a	medium
customarily	used	for	software	interchange;	or,

c.	Accompany	it	with	the	information	you	received	as	to	the	offer	to	distribute
corresponding	source	code.	(This	alternative	is	allowed	only	for	noncommercial
distribution	and	only	if	you	received	the	program	in	object	code	or	executable
form	with	such	an	offer,	in	accord	with	Subsection	b	above.)

The	source	code	for	a	work	means	the	preferred	form	of	the	work	for	making
modifications	to	it.	For	an	executable	work,	complete	source	code	means	all	the
source	code	for	all	modules	it	contains,	plus	any	associated	interface	definition	files,
plus	the	scripts	used	to	control	compilation	and	installation	of	the	executable.
However,	as	a	special	exception,	the	source	code	distributed	need	not	include
anything	that	is	normally	distributed	(in	either	source	or	binary	form)	with	the	major
components	(compiler,	kernel,	and	so	on)	of	the	operating	system	on	which	the
executable	runs,	unless	that	component	itself	accompanies	the	executable.

If	distribution	of	executable	or	object	code	is	made	by	offering	access	to	copy	from	a
designated	place,	then	offering	equivalent	access	to	copy	the	source	code	from	the
same	place	counts	as	distribution	of	the	source	code,	even	though	third	parties	are
not	compelled	to	copy	the	source	along	with	the	object	code.

4.	You	may	not	copy,	modify,	sublicense,	or	distribute	the	Program	except	as	expressly
provided	under	this	License.	Any	attempt	otherwise	to	copy,	modify,	sublicense	or
distribute	the	Program	is	void,	and	will	automatically	terminate	your	rights	under
this	License.	However,	parties	who	have	received	copies,	or	rights,	from	you	under

this	License	will	not	have	their	licenses	terminated	so	long	as	such	parties	remain	in
full	compliance.

5.	You	are	not	required	to	accept	this	License,	since	you	have	not	signed	it.	However,
nothing	else	grants	you	permission	to	modify	or	distribute	the	Program	or	its
derivative	works.	These	actions	are	prohibited	by	law	if	you	do	not	accept	this
License.	Therefore,	by	modifying	or	distributing	the	Program	(or	any	work	based	on
the	Program),	you	indicate	your	acceptance	of	this	License	to	do	so,	and	all	its	terms
and	conditions	for	copying,	distributing	or	modifying	the	Program	or	works	based
on	it.

6.	Each	time	you	redistribute	the	Program	(or	any	work	based	on	the	Program),	the
recipient	automatically	receives	a	license	from	the	original	licensor	to	copy,
distribute	or	modify	the	Program	subject	to	these	terms	and	conditions.	You	may	not
impose	any	further	restrictions	on	the	recipients’	exercise	of	the	rights	granted
herein.	You	are	not	responsible	for	enforcing	compliance	by	third	parties	to	this
License.

7.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent	infringement	or	for
any	other	reason	(not	limited	to	patent	issues),	conditions	are	imposed	on	you
(whether	by	court	order,	agreement	or	otherwise)	that	contradict	the	conditions	of
this	License,	they	do	not	excuse	you	from	the	conditions	of	this	License.	If	you
cannot	distribute	so	as	to	satisfy	simultaneously	your	obligations	under	this	License
and	any	other	pertinent	obligations,	then	as	a	consequence	you	may	not	distribute
the	Program	at	all.	For	example,	if	a	patent	license	would	not	permit	royalty-free
redistribution	of	the	Program	by	all	those	who	receive	copies	directly	or	indirectly
through	you,	then	the	only	way	you	could	satisfy	both	it	and	this	License	would	be
to	refrain	entirely	from	distribution	of	the	Program.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under	any	particular
circumstance,	the	balance	of	the	section	is	intended	to	apply	and	the	section	as	a
whole	is	intended	to	apply	in	other	circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any	patents	or	other
property	right	claims	or	to	contest	validity	of	any	such	claims;	this	section	has	the
sole	purpose	of	protecting	the	integrity	of	the	free	software	distribution	system,
which	is	implemented	by	public	license	practices.	Many	people	have	made	generous
contributions	to	the	wide	range	of	software	distributed	through	that	system	in
reliance	on	consistent	application	of	that	system;	it	is	up	to	the	author/donor	to
decide	if	he	or	she	is	willing	to	distribute	software	through	any	other	system	and	a
licensee	cannot	impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to	be	a
consequence	of	the	rest	of	this	License.

8.	If	the	distribution	and/or	use	of	the	Program	is	restricted	in	certain	countries	either
by	patents	or	by	copyrighted	interfaces,	the	original	copyright	holder	who	places	the
Program	under	this	License	may	add	an	explicit	geographical	distribution	limitation
excluding	those	countries,	so	that	distribution	is	permitted	only	in	or	among
countries	not	thus	excluded.	In	such	case,	this	License	incorporates	the	limitation	as

if	written	in	the	body	of	this	License.

9.	The	Free	Software	Foundation	may	publish	revised	and/or	new	versions	of	the
General	Public	License	from	time	to	time.	Such	new	versions	will	be	similar	in	spirit
to	the	present	version,	but	may	differ	in	detail	to	address	new	problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Program	specifies	a
version	number	of	this	License	which	applies	to	it	and	“any	later	version,”	you	have
the	option	of	following	the	terms	and	conditions	either	of	that	version	or	of	any	later
version	published	by	the	Free	Software	Foundation.	If	the	Program	does	not	specify
a	version	number	of	this	License,	you	may	choose	any	version	ever	published	by	the
Free	Software	Foundation.

10.	If	you	wish	to	incorporate	parts	of	the	Program	into	other	free	programs	whose
distribution	conditions	are	different,	write	to	the	author	to	ask	for	permission.	For
software	which	is	copyrighted	by	the	Free	Software	Foundation,	write	to	the	Free
Software	Foundation;	we	sometimes	make	exceptions	for	this.	Our	decision	will	be
guided	by	the	two	goals	of	preserving	the	free	status	of	all	derivatives	of	our	free
software	and	of	promoting	the	sharing	and	reuse	of	software	generally.

No	Warranty
11.	BECAUSE	THE	PROGRAM	IS	LICENSED	FREE	OF	CHARGE,	THERE	IS	NO

WARRANTY	FOR	THE	PROGRAM,	TO	THE	EXTENT	PERMITTED	BY
APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE	STATED	IN	WRITING	THE
COPYRIGHT	HOLDERS	AND/OR	OTHER	PARTIES	PROVIDE	THE
PROGRAM	“AS	IS”	WITHOUT	WARRANTY	OF	ANY	KIND,	EITHER
EXPRESSED	OR	IMPLIED,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE.	THE	ENTIRE	RISK	AS	TO	THE	QUALITY	AND
PERFORMANCE	OF	THE	PROGRAM	IS	WITH	YOU.	SHOULD	THE
PROGRAM	PROVE	DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL
NECESSARY	SERVICING,	REPAIR	OR	CORRECTION.

12.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR	AGREED	TO
IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY	OTHER	PARTY
WHO	MAY	MODIFY	AND/OR	REDISTRIBUTE	THE	PROGRAM	AS
PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR	DAMAGES,	INCLUDING
ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES
ARISING	OUT	OF	THE	USE	OR	INABILITY	TO	USE	THE	PROGRAM
(INCLUDING	BUT	NOT	LIMITED	TO	LOSS	OF	DATA	OR	DATA	BEING
RENDERED	INACCURATE	OR	LOSSES	SUSTAINED	BY	YOU	OR	THIRD
PARTIES	OR	A	FAILURE	OF	THE	PROGRAM	TO	OPERATE	WITH	ANY
OTHER	PROGRAMS),	EVEN	IF	SUCH	HOLDER	OR	OTHER	PARTY	HAS
BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGES.

END	OF	TERMS	AND	CONDITIONS

How	to	Apply	These	Terms	to	Your	New	Programs
If	you	develop	a	new	program,	and	you	want	it	to	be	of	the	greatest	possible	use	to	the
public,	the	best	way	to	achieve	this	is	to	make	it	free	software	which	everyone	can
redistribute	and	change	under	these	terms.

To	do	so,	attach	the	following	notices	to	the	program.	It	is	safest	to	attach	them	to	the
start	of	each	source	file	to	most	effectively	convey	the	exclusion	of	warranty;	and	each	file
should	have	at	least	the	“copyright”	line	and	a	pointer	to	where	the	full	notice	is	found.

One	line	to	give	the	program’s	name	and	a	brief	idea	of	what	it	does.

Copyright	(C)	<year>	<name	of	author>

This	program	is	free	software;	you	can	redistribute	it	and/or	modify	it	under
the	terms	of	the	GNU	General	Public	License	as	published	by	the	Free
Software	Foundation;	either	version	2	of	the	License,	or	(at	your	option)	any
later	version.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT
ANY	WARRANTY;	without	even	the	implied	warranty	of
MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See
the	GNU	General	Public	License	for	more	details.

You	should	have	received	a	copy	of	the	GNU	General	Public	License	along
with	this	program;	if	not,	write	to	the	Free	Software	Foundation,	Inc.,	59
Temple	Place,	Suite	330,	Boston,	MA	02111-1307	USA

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

If	the	program	is	interactive,	make	it	output	a	short	notice	like	this	when	it	starts	in	an
interactive	mode:

Gnomovision	version	69,	Copyright	(C)	year	name	of	author	Gnomovision
comes	with	ABSOLUTELY	NO	WARRANTY;	for	details	type	`show	w'.
This	is	free	software,	and	you	are	welcome	to	redistribute	it	under	certain
conditions;	type	`show	c'	for	details.

The	hypothetical	commands	`show	w'	and	`show	c'	should	show	the	appropriate
parts	of	the	General	Public	License.	Of	course,	the	commands	you	use	may	be	called
something	other	than	`show	w'	and	`show	c';	they	could	even	be	mouse-clicks	or
menu	items—whatever	suits	your	program.

You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	your	school,	if
any,	to	sign	a	“copyright	disclaimer”	for	the	program,	if	necessary.	Here	is	a	sample;	alter
the	names:

Yoyodyne,	Inc.,	hereby	disclaims	all	copyright	interest	in	the	program
`Gnomovision'	(which	makes	passes	at	compilers)	written	by	James
Hacker.

signature	of	Ty	Coon,	1	April	1989

Ty	Coon,	President	of	Vice

This	General	Public	License	does	not	permit	incorporating	your	program	into
proprietary	programs.	If	your	program	is	a	subroutine	library,	you	may	consider	it	more
useful	to	permit	linking	proprietary	applications	with	the	library.	If	this	is	what	you	want
to	do,	use	the	GNU	Library	General	Public	License	instead	of	this	License.

A.3	GNU	General	Public	License	(GPL)	Version	3
GNU	GENERAL	PUBLIC	LICENSE

Version	3,	29	June	2007

Copyright	(C)	2007	Free	Software	Foundation,	Inc.	<http://fsf.org/>

Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this	license	document,	but
changing	it	is	not	allowed.

Preamble
The	GNU	General	Public	License	is	a	free,	copyleft	license	for	software	and	other	kinds
of	works.

The	licenses	for	most	software	and	other	practical	works	are	designed	to	take	away	your
freedom	to	share	and	change	the	works.	By	contrast,	the	GNU	General	Public	License	is
intended	to	guarantee	your	freedom	to	share	and	change	all	versions	of	a	program—to
make	sure	it	remains	free	software	for	all	its	users.	We,	the	Free	Software	Foundation,	use
the	GNU	General	Public	License	for	most	of	our	software;	it	applies	also	to	any	other
work	released	this	way	by	its	authors.	You	can	apply	it	to	your	programs,	too.

When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.	Our	General
Public	Licenses	are	designed	to	make	sure	that	you	have	the	freedom	to	distribute	copies
of	free	software	(and	charge	for	them	if	you	wish),	that	you	receive	source	code	or	can	get
it	if	you	want	it,	that	you	can	change	the	software	or	use	pieces	of	it	in	new	free	programs,
and	that	you	know	you	can	do	these	things.

To	protect	your	rights,	we	need	to	prevent	others	from	denying	you	these	rights	or
asking	you	to	surrender	the	rights.	Therefore,	you	have	certain	responsibilities	if	you
distribute	copies	of	the	software,	or	if	you	modify	it:	responsibilities	to	respect	the
freedom	of	others.

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or	for	a	fee,	you
must	pass	on	to	the	recipients	the	same	freedoms	that	you	received.	You	must	make	sure
that	they,	too,	receive	or	can	get	the	source	code.	And	you	must	show	them	these	terms	so
they	know	their	rights.

Developers	that	use	the	GNU	GPL	protect	your	rights	with	two	steps:	(1)	assert
copyright	on	the	software,	and	(2)	offer	you	this	License	giving	you	legal	permission	to
copy,	distribute	and/or	modify	it.

For	the	developers’	and	authors’	protection,	the	GPL	clearly	explains	that	there	is	no
warranty	for	this	free	software.	For	both	users’	and	authors’	sake,	the	GPL	requires	that
modified	versions	be	marked	as	changed,	so	that	their	problems	will	not	be	attributed
erroneously	to	authors	of	previous	versions.

Some	devices	are	designed	to	deny	users	access	to	install	or	run	modified	versions	of
the	software	inside	them,	although	the	manufacturer	can	do	so.	This	is	fundamentally
incompatible	with	the	aim	of	protecting	users’	freedom	to	change	the	software.	The
systematic	pattern	of	such	abuse	occurs	in	the	area	of	products	for	individuals	to	use,
which	is	precisely	where	it	is	most	unacceptable.	Therefore,	we	have	designed	this	version
of	the	GPL	to	prohibit	the	practice	for	those	products.	If	such	problems	arise	substantially
in	other	domains,	we	stand	ready	to	extend	this	provision	to	those	domains	in	future
versions	of	the	GPL,	as	needed	to	protect	the	freedom	of	users.

Finally,	every	program	is	threatened	constantly	by	software	patents.	States	should	not
allow	patents	to	restrict	development	and	use	of	software	on	general-purpose	computers,
but	in	those	that	do,	we	wish	to	avoid	the	special	danger	that	patents	applied	to	a	free
program	could	make	it	effectively	proprietary.	To	prevent	this,	the	GPL	assures	that
patents	cannot	be	used	to	render	the	program	non-free.

The	precise	terms	and	conditions	for	copying,	distribution	and	modification	follow.

Terms	and	Conditions
0.	Definitions.

“This	License”	refers	to	version	3	of	the	GNU	General	Public	License.

“Copyright”	also	means	copyright-like	laws	that	apply	to	other	kinds	of	works,	such
as	semiconductor	masks.

“The	Program”	refers	to	any	copyrightable	work	licensed	under	this	License.	Each
licensee	is	addressed	as	“you”.	“Licensees”	and	“recipients”	may	be	individuals	or
organizations.

To	“modify”	a	work	means	to	copy	from	or	adapt	all	or	part	of	the	work	in	a	fashion
requiring	copyright	permission,	other	than	the	making	of	an	exact	copy.	The
resulting	work	is	called	a	“modified	version”	of	the	earlier	work	or	a	work	“based
on”	the	earlier	work.

A	“covered	work”	means	either	the	unmodified	Program	or	a	work	based	on	the
Program.

To	“propagate”	a	work	means	to	do	anything	with	it	that,	without	permission,	would
make	you	directly	or	secondarily	liable	for	infringement	under	applicable	copyright
law,	except	executing	it	on	a	computer	or	modifying	a	private	copy.	Propagation
includes	copying,	distribution	(with	or	without	modification),	making	available	to
the	public,	and	in	some	countries	other	activities	as	well.

To	“convey”	a	work	means	any	kind	of	propagation	that	enables	other	parties	to
make	or	receive	copies.	Mere	interaction	with	a	user	through	a	computer	network,
with	no	transfer	of	a	copy,	is	not	conveying.

An	interactive	user	interface	displays	“Appropriate	Legal	Notices”	to	the	extent	that
it	includes	a	convenient	and	prominently	visible	feature	that	(1)	displays	an
appropriate	copyright	notice,	and	(2)	tells	the	user	that	there	is	no	warranty	for	the
work	(except	to	the	extent	that	warranties	are	provided),	that	licensees	may	convey

the	work	under	this	License,	and	how	to	view	a	copy	of	this	License.	If	the	interface
presents	a	list	of	user	commands	or	options,	such	as	a	menu,	a	prominent	item	in	the
list	meets	this	criterion.

1.	Source	Code.

The	“source	code”	for	a	work	means	the	preferred	form	of	the	work	for	making
modifications	to	it.	“Object	code”	means	any	non-source	form	of	a	work.

A	“Standard	Interface”	means	an	interface	that	either	is	an	official	standard	defined
by	a	recognized	standards	body,	or,	in	the	case	of	interfaces	specified	for	a	particular
programming	language,	one	that	is	widely	used	among	developers	working	in	that
language.

The	“System	Libraries”	of	an	executable	work	include	anything,	other	than	the	work
as	a	whole,	that	(a)	is	included	in	the	normal	form	of	packaging	a	Major	Component,
but	which	is	not	part	of	that	Major	Component,	and	(b)	serves	only	to	enable	use	of
the	work	with	that	Major	Component,	or	to	implement	a	Standard	Interface	for
which	an	implementation	is	available	to	the	public	in	source	code	form.	A	“Major
Component”,	in	this	context,	means	a	major	essential	component	(kernel,	window
system,	and	so	on)	of	the	specific	operating	system	(if	any)	on	which	the	executable
work	runs,	or	a	compiler	used	to	produce	the	work,	or	an	object	code	interpreter
used	to	run	it.

The	“Corresponding	Source”	for	a	work	in	object	code	form	means	all	the	source
code	needed	to	generate,	install,	and	(for	an	executable	work)	run	the	object	code
and	to	modify	the	work,	including	scripts	to	control	those	activities.	However,	it
does	not	include	the	work’s	System	Libraries,	or	general-purpose	tools	or	generally
available	free	programs	which	are	used	unmodified	in	performing	those	activities
but	which	are	not	part	of	the	work.	For	example,	Corresponding	Source	includes
interface	definition	files	associated	with	source	files	for	the	work,	and	the	source
code	for	shared	libraries	and	dynamically	linked	subprograms	that	the	work	is
specifically	designed	to	require,	such	as	by	intimate	data	communication	or	control
flow	between	those	subprograms	and	other	parts	of	the	work.

The	Corresponding	Source	need	not	include	anything	that	users	can	regenerate
automatically	from	other	parts	of	the	Corresponding	Source.

The	Corresponding	Source	for	a	work	in	source	code	form	is	that	same	work.

2.	Basic	Permissions.

All	rights	granted	under	this	License	are	granted	for	the	term	of	copyright	on	the
Program,	and	are	irrevocable	provided	the	stated	conditions	are	met.	This	License
explicitly	affirms	your	unlimited	permission	to	run	the	unmodified	Program.	The
output	from	running	a	covered	work	is	covered	by	this	License	only	if	the	output,
given	its	content,	constitutes	a	covered	work.	This	License	acknowledges	your	rights
of	fair	use	or	other	equivalent,	as	provided	by	copyright	law.

You	may	make,	run	and	propagate	covered	works	that	you	do	not	convey,	without
conditions	so	long	as	your	license	otherwise	remains	in	force.	You	may	convey
covered	works	to	others	for	the	sole	purpose	of	having	them	make	modifications

exclusively	for	you,	or	provide	you	with	facilities	for	running	those	works,	provided
that	you	comply	with	the	terms	of	this	License	in	conveying	all	material	for	which
you	do	not	control	copyright.	Those	thus	making	or	running	the	covered	works	for
you	must	do	so	exclusively	on	your	behalf,	under	your	direction	and	control,	on
terms	that	prohibit	them	from	making	any	copies	of	your	copyrighted	material
outside	their	relationship	with	you.

Conveying	under	any	other	circumstances	is	permitted	solely	under	the	conditions
stated	below.	Sublicensing	is	not	allowed;	section	10	makes	it	unnecessary.

3.	Protecting	Users’	Legal	Rights	From	Anti-Circumvention	Law.

No	covered	work	shall	be	deemed	part	of	an	effective	technological	measure	under
any	applicable	law	fulfilling	obligations	under	article	11	of	the	WIPO	copyright
treaty	adopted	on	20	December	1996,	or	similar	laws	prohibiting	or	restricting
circumvention	of	such	measures.

When	you	convey	a	covered	work,	you	waive	any	legal	power	to	forbid
circumvention	of	technological	measures	to	the	extent	such	circumvention	is
effected	by	exercising	rights	under	this	License	with	respect	to	the	covered	work,
and	you	disclaim	any	intention	to	limit	operation	or	modification	of	the	work	as	a
means	of	enforcing,	against	the	work’s	users,	your	or	third	parties’	legal	rights	to
forbid	circumvention	of	technological	measures.

4.	Conveying	Verbatim	Copies.

You	may	convey	verbatim	copies	of	the	Program’s	source	code	as	you	receive	it,	in
any	medium,	provided	that	you	conspicuously	and	appropriately	publish	on	each
copy	an	appropriate	copyright	notice;	keep	intact	all	notices	stating	that	this	License
and	any	non-permissive	terms	added	in	accord	with	section	7	apply	to	the	code;	keep
intact	all	notices	of	the	absence	of	any	warranty;	and	give	all	recipients	a	copy	of
this	License	along	with	the	Program.

You	may	charge	any	price	or	no	price	for	each	copy	that	you	convey,	and	you	may
offer	support	or	warranty	protection	for	a	fee.

5.	Conveying	Modified	Source	Versions.

You	may	convey	a	work	based	on	the	Program,	or	the	modifications	to	produce	it
from	the	Program,	in	the	form	of	source	code	under	the	terms	of	section	4,	provided
that	you	also	meet	all	of	these	conditions:

a.	The	work	must	carry	prominent	notices	stating	that	you	modified	it,	and	giving	a
relevant	date.

b.	The	work	must	carry	prominent	notices	stating	that	it	is	released	under	this
License	and	any	conditions	added	under	section	7.	This	requirement	modifies	the
requirement	in	section	4	to	“keep	intact	all	notices”.

c.	You	must	license	the	entire	work,	as	a	whole,	under	this	License	to	anyone	who
comes	into	possession	of	a	copy.	This	License	will	therefore	apply,	along	with	any
applicable	section	7	additional	terms,	to	the	whole	of	the	work,	and	all	its	parts,
regardless	of	how	they	are	packaged.	This	License	gives	no	permission	to	license

the	work	in	any	other	way,	but	it	does	not	invalidate	such	permission	if	you	have
separately	received	it.

d.	If	the	work	has	interactive	user	interfaces,	each	must	display	Appropriate	Legal
Notices;	however,	if	the	Program	has	interactive	interfaces	that	do	not	display
Appropriate	Legal	Notices,	your	work	need	not	make	them	do	so.

A	compilation	of	a	covered	work	with	other	separate	and	independent	works,	which
are	not	by	their	nature	extensions	of	the	covered	work,	and	which	are	not	combined
with	it	such	as	to	form	a	larger	program,	in	or	on	a	volume	of	a	storage	or
distribution	medium,	is	called	an	“aggregate”	if	the	compilation	and	its	resulting
copyright	are	not	used	to	limit	the	access	or	legal	rights	of	the	compilation’s	users
beyond	what	the	individual	works	permit.	Inclusion	of	a	covered	work	in	an
aggregate	does	not	cause	this	License	to	apply	to	the	other	parts	of	the	aggregate.

6.	Conveying	Non-Source	Forms.

You	may	convey	a	covered	work	in	object	code	form	under	the	terms	of	sections	4
and	5,	provided	that	you	also	convey	the	machine-readable	Corresponding	Source
under	the	terms	of	this	License,	in	one	of	these	ways:

a.	Convey	the	object	code	in,	or	embodied	in,	a	physical	product	(including	a
physical	distribution	medium),	accompanied	by	the	Corresponding	Source	fixed
on	a	durable	physical	medium	customarily	used	for	software	interchange.

b.	Convey	the	object	code	in,	or	embodied	in,	a	physical	product	(including	a
physical	distribution	medium),	accompanied	by	a	written	offer,	valid	for	at	least
three	years	and	valid	for	as	long	as	you	offer	spare	parts	or	customer	support	for
that	product	model,	to	give	anyone	who	possesses	the	object	code	either	(1)	a
copy	of	the	Corresponding	Source	for	all	the	software	in	the	product	that	is
covered	by	this	License,	on	a	durable	physical	medium	customarily	used	for
software	interchange,	for	a	price	no	more	than	your	reasonable	cost	of	physically
performing	this	conveying	of	source,	or	(2)	access	to	copy	the	Corresponding
Source	from	a	network	server	at	no	charge.

c.	Convey	individual	copies	of	the	object	code	with	a	copy	of	the	written	offer	to
provide	the	Corresponding	Source.	This	alternative	is	allowed	only	occasionally
and	noncommercially,	and	only	if	you	received	the	object	code	with	such	an	offer,
in	accord	with	subsection	6b.

d.	Convey	the	object	code	by	offering	access	from	a	designated	place	(gratis	or	for	a
charge),	and	offer	equivalent	access	to	the	Corresponding	Source	in	the	same	way
through	the	same	place	at	no	further	charge.	You	need	not	require	recipients	to
copy	the	Corresponding	Source	along	with	the	object	code.	If	the	place	to	copy
the	object	code	is	a	network	server,	the	Corresponding	Source	may	be	on	a
different	server	(operated	by	you	or	a	third	party)	that	supports	equivalent	copying
facilities,	provided	you	maintain	clear	directions	next	to	the	object	code	saying
where	to	find	the	Corresponding	Source.	Regardless	of	what	server	hosts	the
Corresponding	Source,	you	remain	obligated	to	ensure	that	it	is	available	for	as
long	as	needed	to	satisfy	these	requirements.

e.	Convey	the	object	code	using	peer-to-peer	transmission,	provided	you	inform
other	peers	where	the	object	code	and	Corresponding	Source	of	the	work	are
being	offered	to	the	general	public	at	no	charge	under	subsection	6d.

A	separable	portion	of	the	object	code,	whose	source	code	is	excluded	from	the
Corresponding	Source	as	a	System	Library,	need	not	be	included	in	conveying	the
object	code	work.

A	“User	Product”	is	either	(1)	a	“consumer	product”,	which	means	any	tangible
personal	property	which	is	normally	used	for	personal,	family,	or	household
purposes,	or	(2)	anything	designed	or	sold	for	incorporation	into	a	dwelling.	In
determining	whether	a	product	is	a	consumer	product,	doubtful	cases	shall	be
resolved	in	favor	of	coverage.	For	a	particular	product	received	by	a	particular	user,
“normally	used”	refers	to	a	typical	or	common	use	of	that	class	of	product,
regardless	of	the	status	of	the	particular	user	or	of	the	way	in	which	the	particular
user	actually	uses,	or	expects	or	is	expected	to	use,	the	product.	A	product	is	a
consumer	product	regardless	of	whether	the	product	has	substantial	commercial,
industrial	or	non-consumer	uses,	unless	such	uses	represent	the	only	significant
mode	of	use	of	the	product.

“Installation	Information”	for	a	User	Product	means	any	methods,	procedures,
authorization	keys,	or	other	information	required	to	install	and	execute	modified
versions	of	a	covered	work	in	that	User	Product	from	a	modified	version	of	its
Corresponding	Source.	The	information	must	suffice	to	ensure	that	the	continued
functioning	of	the	modified	object	code	is	in	no	case	prevented	or	interfered	with
solely	because	modification	has	been	made.

If	you	convey	an	object	code	work	under	this	section	in,	or	with,	or	specifically	for
use	in,	a	User	Product,	and	the	conveying	occurs	as	part	of	a	transaction	in	which	the
right	of	possession	and	use	of	the	User	Product	is	transferred	to	the	recipient	in
perpetuity	or	for	a	fixed	term	(regardless	of	how	the	transaction	is	characterized),	the
Corresponding	Source	conveyed	under	this	section	must	be	accompanied	by	the
Installation	Information.	But	this	requirement	does	not	apply	if	neither	you	nor	any
third	party	retains	the	ability	to	install	modified	object	code	on	the	User	Product	(for
example,	the	work	has	been	installed	in	ROM).

The	requirement	to	provide	Installation	Information	does	not	include	a	requirement
to	continue	to	provide	support	service,	warranty,	or	updates	for	a	work	that	has	been
modified	or	installed	by	the	recipient,	or	for	the	User	Product	in	which	it	has	been
modified	or	installed.	Access	to	a	network	may	be	denied	when	the	modification
itself	materially	and	adversely	affects	the	operation	of	the	network	or	violates	the
rules	and	protocols	for	communication	across	the	network.

Corresponding	Source	conveyed,	and	Installation	Information	provided,	in	accord
with	this	section	must	be	in	a	format	that	is	publicly	documented	(and	with	an
implementation	available	to	the	public	in	source	code	form),	and	must	require	no
special	password	or	key	for	unpacking,	reading	or	copying.

7.	Additional	Terms.

“Additional	permissions”	are	terms	that	supplement	the	terms	of	this	License	by

making	exceptions	from	one	or	more	of	its	conditions.	Additional	permissions	that
are	applicable	to	the	entire	Program	shall	be	treated	as	though	they	were	included	in
this	License,	to	the	extent	that	they	are	valid	under	applicable	law.	If	additional
permissions	apply	only	to	part	of	the	Program,	that	part	may	be	used	separately
under	those	permissions,	but	the	entire	Program	remains	governed	by	this	License
without	regard	to	the	additional	permissions.

When	you	convey	a	copy	of	a	covered	work,	you	may	at	your	option	remove	any
additional	permissions	from	that	copy,	or	from	any	part	of	it.	(Additional
permissions	may	be	written	to	require	their	own	removal	in	certain	cases	when	you
modify	the	work.)	You	may	place	additional	permissions	on	material,	added	by	you
to	a	covered	work,	for	which	you	have	or	can	give	appropriate	copyright	permission.

Notwithstanding	any	other	provision	of	this	License,	for	material	you	add	to	a
covered	work,	you	may	(if	authorized	by	the	copyright	holders	of	that	material)
supplement	the	terms	of	this	License	with	terms:

a.	Disclaiming	warranty	or	limiting	liability	differently	from	the	terms	of	sections
15	and	16	of	this	License;	or

b.	Requiring	preservation	of	specified	reasonable	legal	notices	or	author	attributions
in	that	material	or	in	the	Appropriate	Legal	Notices	displayed	by	works
containing	it;	or

c.	Prohibiting	misrepresentation	of	the	origin	of	that	material,	or	requiring	that
modified	versions	of	such	material	be	marked	in	reasonable	ways	as	different
from	the	original	version;	or

d.	Limiting	the	use	for	publicity	purposes	of	names	of	licensors	or	authors	of	the
material;	or

e.	Declining	to	grant	rights	under	trademark	law	for	use	of	some	trade	names,
trademarks,	or	service	marks;	or

f.	Requiring	indemnification	of	licensors	and	authors	of	that	material	by	anyone
who	conveys	the	material	(or	modified	versions	of	it)	with	contractual
assumptions	of	liability	to	the	recipient,	for	any	liability	that	these	contractual
assumptions	directly	impose	on	those	licensors	and	authors.

All	other	non-permissive	additional	terms	are	considered	“further	restrictions”
within	the	meaning	of	section	10.	If	the	Program	as	you	received	it,	or	any	part	of	it,
contains	a	notice	stating	that	it	is	governed	by	this	License	along	with	a	term	that	is	a
further	restriction,	you	may	remove	that	term.	If	a	license	document	contains	a
further	restriction	but	permits	relicensing	or	conveying	under	this	License,	you	may
add	to	a	covered	work	material	governed	by	the	terms	of	that	license	document,
provided	that	the	further	restriction	does	not	survive	such	relicensing	or	conveying.

If	you	add	terms	to	a	covered	work	in	accord	with	this	section,	you	must	place,	in
the	relevant	source	files,	a	statement	of	the	additional	terms	that	apply	to	those	files,
or	a	notice	indicating	where	to	find	the	applicable	terms.

Additional	terms,	permissive	or	non-permissive,	may	be	stated	in	the	form	of	a

separately	written	license,	or	stated	as	exceptions;	the	above	requirements	apply
either	way.

8.	Termination.

You	may	not	propagate	or	modify	a	covered	work	except	as	expressly	provided
under	this	License.	Any	attempt	otherwise	to	propagate	or	modify	it	is	void,	and	will
automatically	terminate	your	rights	under	this	License	(including	any	patent	licenses
granted	under	the	third	paragraph	of	section	11).

However,	if	you	cease	all	violation	of	this	License,	then	your	license	from	a
particular	copyright	holder	is	reinstated	(a)	provisionally,	unless	and	until	the
copyright	holder	explicitly	and	finally	terminates	your	license,	and	(b)	permanently,
if	the	copyright	holder	fails	to	notify	you	of	the	violation	by	some	reasonable	means
prior	to	60	days	after	the	cessation.

Moreover,	your	license	from	a	particular	copyright	holder	is	reinstated	permanently
if	the	copyright	holder	notifies	you	of	the	violation	by	some	reasonable	means,	this
is	the	first	time	you	have	received	notice	of	violation	of	this	License	(for	any	work)
from	that	copyright	holder,	and	you	cure	the	violation	prior	to	30	days	after	your
receipt	of	the	notice.

Termination	of	your	rights	under	this	section	does	not	terminate	the	licenses	of
parties	who	have	received	copies	or	rights	from	you	under	this	License.	If	your
rights	have	been	terminated	and	not	permanently	reinstated,	you	do	not	qualify	to
receive	new	licenses	for	the	same	material	under	section	10.

9.	Acceptance	Not	Required	for	Having	Copies.

You	are	not	required	to	accept	this	License	in	order	to	receive	or	run	a	copy	of	the
Program.	Ancillary	propagation	of	a	covered	work	occurring	solely	as	a
consequence	of	using	peer-to-peer	transmission	to	receive	a	copy	likewise	does	not
require	acceptance.	However,	nothing	other	than	this	License	grants	you	permission
to	propagate	or	modify	any	covered	work.	These	actions	infringe	copyright	if	you	do
not	accept	this	License.	Therefore,	by	modifying	or	propagating	a	covered	work,	you
indicate	your	acceptance	of	this	License	to	do	so.

10.	Automatic	Licensing	of	Downstream	Recipients.

Each	time	you	convey	a	covered	work,	the	recipient	automatically	receives	a	license
from	the	original	licensors,	to	run,	modify	and	propagate	that	work,	subject	to	this
License.	You	are	not	responsible	for	enforcing	compliance	by	third	parties	with	this
License.

An	“entity	transaction”	is	a	transaction	transferring	control	of	an	organization,	or
substantially	all	assets	of	one,	or	subdividing	an	organization,	or	merging
organizations.	If	propagation	of	a	covered	work	results	from	an	entity	transaction,
each	party	to	that	transaction	who	receives	a	copy	of	the	work	also	receives
whatever	licenses	to	the	work	the	party’s	predecessor	in	interest	had	or	could	give
under	the	previous	paragraph,	plus	a	right	to	possession	of	the	Corresponding	Source
of	the	work	from	the	predecessor	in	interest,	if	the	predecessor	has	it	or	can	get	it
with	reasonable	efforts.

You	may	not	impose	any	further	restrictions	on	the	exercise	of	the	rights	granted	or
affirmed	under	this	License.	For	example,	you	may	not	impose	a	license	fee,	royalty,
or	other	charge	for	exercise	of	rights	granted	under	this	License,	and	you	may	not
initiate	litigation	(including	a	cross-claim	or	counterclaim	in	a	lawsuit)	alleging	that
any	patent	claim	is	infringed	by	making,	using,	selling,	offering	for	sale,	or
importing	the	Program	or	any	portion	of	it.

11.	Patents.

A	“contributor”	is	a	copyright	holder	who	authorizes	use	under	this	License	of	the
Program	or	a	work	on	which	the	Program	is	based.	The	work	thus	licensed	is	called
the	contributor’s	“contributor	version”.

A	contributor’s	“essential	patent	claims”	are	all	patent	claims	owned	or	controlled	by
the	contributor,	whether	already	acquired	or	hereafter	acquired,	that	would	be
infringed	by	some	manner,	permitted	by	this	License,	of	making,	using,	or	selling	its
contributor	version,	but	do	not	include	claims	that	would	be	infringed	only	as	a
consequence	of	further	modification	of	the	contributor	version.	For	purposes	of	this
definition,	“control”	includes	the	right	to	grant	patent	sublicenses	in	a	manner
consistent	with	the	requirements	of	this	License.

Each	contributor	grants	you	a	non-exclusive,	worldwide,	royalty-free	patent	license
under	the	contributor’s	essential	patent	claims,	to	make,	use,	sell,	offer	for	sale,
import	and	otherwise	run,	modify	and	propagate	the	contents	of	its	contributor
version.

In	the	following	three	paragraphs,	a	“patent	license”	is	any	express	agreement	or
commitment,	however	denominated,	not	to	enforce	a	patent	(such	as	an	express
permission	to	practice	a	patent	or	covenant	not	to	sue	for	patent	infringement).	To
“grant”	such	a	patent	license	to	a	party	means	to	make	such	an	agreement	or
commitment	not	to	enforce	a	patent	against	the	party.

If	you	convey	a	covered	work,	knowingly	relying	on	a	patent	license,	and	the
Corresponding	Source	of	the	work	is	not	available	for	anyone	to	copy,	free	of	charge
and	under	the	terms	of	this	License,	through	a	publicly	available	network	server	or
other	readily	accessible	means,	then	you	must	either	(1)	cause	the	Corresponding
Source	to	be	so	available,	or	(2)	arrange	to	deprive	yourself	of	the	benefit	of	the
patent	license	for	this	particular	work,	or	(3)	arrange,	in	a	manner	consistent	with	the
requirements	of	this	License,	to	extend	the	patent	license	to	downstream	recipients.
“Knowingly	relying”	means	you	have	actual	knowledge	that,	but	for	the	patent
license,	your	conveying	the	covered	work	in	a	country,	or	your	recipient’s	use	of	the
covered	work	in	a	country,	would	infringe	one	or	more	identifiable	patents	in	that
country	that	you	have	reason	to	believe	are	valid.

If,	pursuant	to	or	in	connection	with	a	single	transaction	or	arrangement,	you
convey,	or	propagate	by	procuring	conveyance	of,	a	covered	work,	and	grant	a
patent	license	to	some	of	the	parties	receiving	the	covered	work	authorizing	them	to
use,	propagate,	modify	or	convey	a	specific	copy	of	the	covered	work,	then	the
patent	license	you	grant	is	automatically	extended	to	all	recipients	of	the	covered
work	and	works	based	on	it.

A	patent	license	is	“discriminatory”	if	it	does	not	include	within	the	scope	of	its
coverage,	prohibits	the	exercise	of,	or	is	conditioned	on	the	non-exercise	of	one	or
more	of	the	rights	that	are	specifically	granted	under	this	License.	You	may	not
convey	a	covered	work	if	you	are	a	party	to	an	arrangement	with	a	third	party	that	is
in	the	business	of	distributing	software,	under	which	you	make	payment	to	the	third
party	based	on	the	extent	of	your	activity	of	conveying	the	work,	and	under	which
the	third	party	grants,	to	any	of	the	parties	who	would	receive	the	covered	work
from	you,	a	discriminatory	patent	license	(a)	in	connection	with	copies	of	the
covered	work	conveyed	by	you	(or	copies	made	from	those	copies),	or	(b)	primarily
for	and	in	connection	with	specific	products	or	compilations	that	contain	the	covered
work,	unless	you	entered	into	that	arrangement,	or	that	patent	license	was	granted,
prior	to	28	March	2007.

Nothing	in	this	License	shall	be	construed	as	excluding	or	limiting	any	implied
license	or	other	defenses	to	infringement	that	may	otherwise	be	available	to	you
under	applicable	patent	law.

12.	No	Surrender	of	Others’	Freedom.

If	conditions	are	imposed	on	you	(whether	by	court	order,	agreement	or	otherwise)
that	contradict	the	conditions	of	this	License,	they	do	not	excuse	you	from	the
conditions	of	this	License.	If	you	cannot	convey	a	covered	work	so	as	to	satisfy
simultaneously	your	obligations	under	this	License	and	any	other	pertinent
obligations,	then	as	a	consequence	you	may	not	convey	it	at	all.	For	example,	if	you
agree	to	terms	that	obligate	you	to	collect	a	royalty	for	further	conveying	from	those
to	whom	you	convey	the	Program,	the	only	way	you	could	satisfy	both	those	terms
and	this	License	would	be	to	refrain	entirely	from	conveying	the	Program.

13.	Use	with	the	GNU	Affero	General	Public	License.

Notwithstanding	any	other	provision	of	this	License,	you	have	permission	to	link	or
combine	any	covered	work	with	a	work	licensed	under	version	3	of	the	GNU	Affero
General	Public	License	into	a	single	combined	work,	and	to	convey	the	resulting
work.	The	terms	of	this	License	will	continue	to	apply	to	the	part	which	is	the
covered	work,	but	the	special	requirements	of	the	GNU	Affero	General	Public
License,	section	13,	concerning	interaction	through	a	network	will	apply	to	the
combination	as	such.

14.	Revised	Versions	of	this	License.

The	Free	Software	Foundation	may	publish	revised	and/or	new	versions	of	the	GNU
General	Public	License	from	time	to	time.	Such	new	versions	will	be	similar	in	spirit
to	the	present	version,	but	may	differ	in	detail	to	address	new	problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Program	specifies	that
a	certain	numbered	version	of	the	GNU	General	Public	License	“or	any	later
version”	applies	to	it,	you	have	the	option	of	following	the	terms	and	conditions
either	of	that	numbered	version	or	of	any	later	version	published	by	the	Free
Software	Foundation.	If	the	Program	does	not	specify	a	version	number	of	the	GNU
General	Public	License,	you	may	choose	any	version	ever	published	by	the	Free
Software	Foundation.

If	the	Program	specifies	that	a	proxy	can	decide	which	future	versions	of	the	GNU
General	Public	License	can	be	used,	that	proxy’s	public	statement	of	acceptance	of	a
version	permanently	authorizes	you	to	choose	that	version	for	the	Program.

Later	license	versions	may	give	you	additional	or	different	permissions.	However,
no	additional	obligations	are	imposed	on	any	author	or	copyright	holder	as	a	result
of	your	choosing	to	follow	a	later	version.

15.	Disclaimer	of	Warranty.

THERE	IS	NO	WARRANTY	FOR	THE	PROGRAM,	TO	THE	EXTENT
PERMITTED	BY	APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE	STATED
IN	WRITING	THE	COPYRIGHT	HOLDERS	AND/OR	OTHER	PARTIES
PROVIDE	THE	PROGRAM	“AS	IS”	WITHOUT	WARRANTY	OF	ANY	KIND,
EITHER	EXPRESSED	OR	IMPLIED,	INCLUDING,	BUT	NOT	LIMITED	TO,
THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE.	THE	ENTIRE	RISK	AS	TO	THE	QUALITY	AND
PERFORMANCE	OF	THE	PROGRAM	IS	WITH	YOU.	SHOULD	THE
PROGRAM	PROVE	DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL
NECESSARY	SERVICING,	REPAIR	OR	CORRECTION.

16.	Limitation	of	Liability.

IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR	AGREED	TO
IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY	OTHER	PARTY
WHO	MODIFIES	AND/OR	CONVEYS	THE	PROGRAM	AS	PERMITTED
ABOVE,	BE	LIABLE	TO	YOU	FOR	DAMAGES,	INCLUDING	ANY	GENERAL,
SPECIAL,	INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF
THE	USE	OR	INABILITY	TO	USE	THE	PROGRAM	(INCLUDING	BUT	NOT
LIMITED	TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE
OR	LOSSES	SUSTAINED	BY	YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF
THE	PROGRAM	TO	OPERATE	WITH	ANY	OTHER	PROGRAMS),	EVEN	IF
SUCH	HOLDER	OR	OTHER	PARTY	HAS	BEEN	ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGES.

17.	Interpretation	of	Sections	15	and	16.

If	the	disclaimer	of	warranty	and	limitation	of	liability	provided	above	cannot	be
given	local	legal	effect	according	to	their	terms,	reviewing	courts	shall	apply	local
law	that	most	closely	approximates	an	absolute	waiver	of	all	civil	liability	in
connection	with	the	Program,	unless	a	warranty	or	assumption	of	liability
accompanies	a	copy	of	the	Program	in	return	for	a	fee.

END	OF	TERMS	AND	CONDITIONS

How	to	Apply	These	Terms	to	Your	New	Programs
If	you	develop	a	new	program,	and	you	want	it	to	be	of	the	greatest	possible	use	to	the
public,	the	best	way	to	achieve	this	is	to	make	it	free	software	which	everyone	can
redistribute	and	change	under	these	terms.

To	do	so,	attach	the	following	notices	to	the	program.	It	is	safest	to	attach	them	to	the

start	of	each	source	file	to	most	effectively	state	the	exclusion	of	warranty;	and	each	file
should	have	at	least	the	“copyright”	line	and	a	pointer	to	where	the	full	notice	is	found.

<one	line	to	give	the	program’s	name	and	a	brief	idea	of	what	it	does.>

Copyright	(C)	<year>	<name	of	author>

This	program	is	free	software:	you	can	redistribute	it	and/or	modify	it	under
the	terms	of	the	GNU	General	Public	License	as	published	by	the	Free
Software	Foundation,	either	version	3	of	the	License,	or	(at	your	option)	any
later	version.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT
ANY	WARRANTY;	without	even	the	implied	warranty	of
MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See
the	GNU	General	Public	License	for	more	details.

You	should	have	received	a	copy	of	the	GNU	General	Public	License	along
with	this	program.	If	not,	see	<http://www.gnu.org/licenses/>.

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

If	the	program	does	terminal	interaction,	make	it	output	a	short	notice	like	this	when	it
starts	in	an	interactive	mode:

<program>	Copyright	(C)	<year>	<name	of	author>

This	program	comes	with	ABSOLUTELY	NO	WARRANTY;	for	details	type
`show	w'.

This	is	free	software,	and	you	are	welcome	to	redistribute	it	under	certain
conditions;	type	`show	c'	for	details.

The	hypothetical	commands	`show	w'	and	`show	c'	should	show	the	appropriate
parts	of	the	General	Public	License.	Of	course,	your	program’s	commands	might	be
different;	for	a	GUI	interface,	you	would	use	an	“about	box”.

You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	school,	if	any,	to
sign	a	“copyright	disclaimer”	for	the	program,	if	necessary.	For	more	information	on	this,
and	how	to	apply	and	follow	the	GNU	GPL,	see	<http://www.gnu.org/licenses/>.

The	GNU	General	Public	License	does	not	permit	incorporating	your	program	into
proprietary	programs.	If	your	program	is	a	subroutine	library,	you	may	consider	it	more
useful	to	permit	linking	proprietary	applications	with	the	library.	If	this	is	what	you	want
to	do,	use	the	GNU	Lesser	General	Public	License	instead	of	this	License.	But	first,	please
read	<http://www.gnu.org/philosophy/why-not-lgpl.html>.

A.4	Apache	License	Version	2.0
Apache	License

Version	2.0,	January	2004

http://www.apache.org/licenses/

http://www.apache.org/licenses/

TERMS	AND	CONDITIONS	FOR	USE,	REPRODUCTION,	AND
DISTRIBUTION

1.	Definitions.

“License”	shall	mean	the	terms	and	conditions	for	use,	reproduction,	and	distribution
as	defined	by	Sections	1	through	9	of	this	document.

“Licensor”	shall	mean	the	copyright	owner	or	entity	authorized	by	the	copyright
owner	that	is	granting	the	License.

“Legal	Entity”	shall	mean	the	union	of	the	acting	entity	and	all	other	entities	that
control,	are	controlled	by,	or	are	under	common	control	with	that	entity.	For	the
purposes	of	this	definition,	“control”	means	(i)	the	power,	direct	or	indirect,	to	cause
the	direction	or	management	of	such	entity,	whether	by	contract	or	otherwise,	or	(ii)
ownership	of	fifty	percent	(50%)	or	more	of	the	outstanding	shares,	or	(iii)
beneficial	ownership	of	such	entity.

“You”	(or	“Your”)	shall	mean	an	individual	or	Legal	Entity	exercising	permissions
granted	by	this	License.

“Source”	form	shall	mean	the	preferred	form	for	making	modifications,	including
but	not	limited	to	software	source	code,	documentation	source,	and	configuration
files.

“Object”	form	shall	mean	any	form	resulting	from	mechanical	transformation	or
translation	of	a	Source	form,	including	but	not	limited	to	compiled	object	code,
generated	documentation,	and	conversions	to	other	media	types.

“Work”	shall	mean	the	work	of	authorship,	whether	in	Source	or	Object	form,	made
available	under	the	License,	as	indicated	by	a	copyright	notice	that	is	included	in	or
attached	to	the	work	(an	example	is	provided	in	the	Appendix	below).

“Derivative	Works”	shall	mean	any	work,	whether	in	Source	or	Object	form,	that	is
based	on	(or	derived	from)	the	Work	and	for	which	the	editorial	revisions,
annotations,	elaborations,	or	other	modifications	represent,	as	a	whole,	an	original
work	of	authorship.	For	the	purposes	of	this	License,	Derivative	Works	shall	not
include	works	that	remain	separable	from,	or	merely	link	(or	bind	by	name)	to	the
interfaces	of,	the	Work	and	Derivative	Works	thereof.

“Contribution”	shall	mean	any	work	of	authorship,	including	the	original	version	of
the	Work	and	any	modifications	or	additions	to	that	Work	or	Derivative	Works
thereof,	that	is	intentionally	submitted	to	Licensor	for	inclusion	in	the	Work	by	the
copyright	owner	or	by	an	individual	or	Legal	Entity	authorized	to	submit	on	behalf
of	the	copyright	owner.	For	the	purposes	of	this	definition,	“submitted”	means	any
form	of	electronic,	verbal,	or	written	communication	sent	to	the	Licensor	or	its
representatives,	including	but	not	limited	to	communication	on	electronic	mailing
lists,	source	code	control	systems,	and	issue	tracking	systems	that	are	managed	by,
or	on	behalf	of,	the	Licensor	for	the	purpose	of	discussing	and	improving	the	Work,
but	excluding	communication	that	is	conspicuously	marked	or	otherwise	designated
in	writing	by	the	copyright	owner	as	“Not	a	Contribution.”

“Contributor”	shall	mean	Licensor	and	any	individual	or	Legal	Entity	on	behalf	of
whom	a	Contribution	has	been	received	by	Licensor	and	subsequently	incorporated
within	the	Work.

2.	Grant	of	Copyright	License.

Subject	to	the	terms	and	conditions	of	this	License,	each	Contributor	hereby	grants
to	You	a	perpetual,	worldwide,	non-exclusive,	no-charge,	royalty-free,	irrevocable
copyright	license	to	reproduce,	prepare	Derivative	Works	of,	publicly	display,
publicly	perform,	sublicense,	and	distribute	the	Work	and	such	Derivative	Works	in
Source	or	Object	form.

3.	Grant	of	Patent	License.

Subject	to	the	terms	and	conditions	of	this	License,	each	Contributor	hereby	grants
to	You	a	perpetual,	worldwide,	non-exclusive,	no-charge,	royalty-free,	irrevocable
(except	as	stated	in	this	section)	patent	license	to	make,	have	made,	use,	offer	to	sell,
sell,	import,	and	otherwise	transfer	the	Work,	where	such	license	applies	only	to
those	patent	claims	licensable	by	such	Contributor	that	are	necessarily	infringed	by
their	Contribution(s)	alone	or	by	combination	of	their	Contribution(s)	with	the	Work
to	which	such	Contribution(s)	was	submitted.	If	You	institute	patent	litigation
against	any	entity	(including	a	cross-claim	or	counterclaim	in	a	lawsuit)	alleging	that
the	Work	or	a	Contribution	incorporated	within	the	Work	constitutes	direct	or
contributory	patent	infringement,	then	any	patent	licenses	granted	to	You	under	this
License	for	that	Work	shall	terminate	as	of	the	date	such	litigation	is	filed.

4.	Redistribution.

You	may	reproduce	and	distribute	copies	of	the	Work	or	Derivative	Works	thereof	in
any	medium,	with	or	without	modifications,	and	in	Source	or	Object	form,	provided
that	You	meet	the	following	conditions:

a.	You	must	give	any	other	recipients	of	the	Work	or	Derivative	Works	a	copy	of
this	License;	and

b.	You	must	cause	any	modified	files	to	carry	prominent	notices	stating	that	You
changed	the	files;	and

c.	You	must	retain,	in	the	Source	form	of	any	Derivative	Works	that	You	distribute,
all	copyright,	patent,	trademark,	and	attribution	notices	from	the	Source	form	of
the	Work,	excluding	those	notices	that	do	not	pertain	to	any	part	of	the	Derivative
Works;	and

d.	If	the	Work	includes	a	“NOTICE”	text	file	as	part	of	its	distribution,	then	any
Derivative	Works	that	You	distribute	must	include	a	readable	copy	of	the
attribution	notices	contained	within	such	NOTICE	file,	excluding	those	notices
that	do	not	pertain	to	any	part	of	the	Derivative	Works,	in	at	least	one	of	the
following	places:	within	a	NOTICE	text	file	distributed	as	part	of	the	Derivative
Works;	within	the	Source	form	or	documentation,	if	provided	along	with	the
Derivative	Works;	or,	within	a	display	generated	by	the	Derivative	Works,	if	and
wherever	such	third-party	notices	normally	appear.	The	contents	of	the	NOTICE
file	are	for	informational	purposes	only	and	do	not	modify	the	License.	You	may

add	Your	own	attribution	notices	within	Derivative	Works	that	You	distribute,
alongside	or	as	an	addendum	to	the	NOTICE	text	from	the	Work,	provided	that
such	additional	attribution	notices	cannot	be	construed	as	modifying	the	License.

You	may	add	Your	own	copyright	statement	to	Your	modifications	and	may	provide
additional	or	different	license	terms	and	conditions	for	use,	reproduction,	or
distribution	of	Your	modifications,	or	for	any	such	Derivative	Works	as	a	whole,
provided	Your	use,	reproduction,	and	distribution	of	the	Work	otherwise	complies
with	the	conditions	stated	in	this	License.

5.	Submission	of	Contributions.

Unless	You	explicitly	state	otherwise,	any	Contribution	intentionally	submitted	for
inclusion	in	the	Work	by	You	to	the	Licensor	shall	be	under	the	terms	and	conditions
of	this	License,	without	any	additional	terms	or	conditions.	Notwithstanding	the
above,	nothing	herein	shall	supersede	or	modify	the	terms	of	any	separate	license
agreement	you	may	have	executed	with	Licensor	regarding	such	Contributions.

6.	Trademarks.

This	License	does	not	grant	permission	to	use	the	trade	names,	trademarks,	service
marks,	or	product	names	of	the	Licensor,	except	as	required	for	reasonable	and
customary	use	in	describing	the	origin	of	the	Work	and	reproducing	the	content	of
the	NOTICE	file.

7.	Disclaimer	of	Warranty.

Unless	required	by	applicable	law	or	agreed	to	in	writing,	Licensor	provides	the
Work	(and	each	Contributor	provides	its	Contributions)	on	an	“AS	IS”	BASIS,
WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or
implied,	including,	without	limitation,	any	warranties	or	conditions	of	TITLE,	NON-
INFRINGEMENT,	MERCHANTABILITY,	or	FITNESS	FOR	A	PARTICULAR
PURPOSE.	You	are	solely	responsible	for	determining	the	appropriateness	of	using
or	redistributing	the	Work	and	assume	any	risks	associated	with	Your	exercise	of
permissions	under	this	License.

8.	Limitation	of	Liability.

In	no	event	and	under	no	legal	theory,	whether	in	tort	(including	negligence),
contract,	or	otherwise,	unless	required	by	applicable	law	(such	as	deliberate	and
grossly	negligent	acts)	or	agreed	to	in	writing,	shall	any	Contributor	be	liable	to	You
for	damages,	including	any	direct,	indirect,	special,	incidental,	or	consequential
damages	of	any	character	arising	as	a	result	of	this	License	or	out	of	the	use	or
inability	to	use	the	Work	(including	but	not	limited	to	damages	for	loss	of	goodwill,
work	stoppage,	computer	failure	or	malfunction,	or	any	and	all	other	commercial
damages	or	losses),	even	if	such	Contributor	has	been	advised	of	the	possibility	of
such	damages.

9.	Accepting	Warranty	or	Additional	Liability.

While	redistributing	the	Work	or	Derivative	Works	thereof,	You	may	choose	to	offer,
and	charge	a	fee	for,	acceptance	of	support,	warranty,	indemnity,	or	other	liability

obligations	and/or	rights	consistent	with	this	License.	However,	in	accepting	such
obligations,	You	may	act	only	on	Your	own	behalf	and	on	Your	sole	responsibility,
not	on	behalf	of	any	other	Contributor,	and	only	if	You	agree	to	indemnify,	defend,
and	hold	each	Contributor	harmless	for	any	liability	incurred	by,	or	claims	asserted
against,	such	Contributor	by	reason	of	your	accepting	any	such	warranty	or
additional	liability.

END	OF	TERMS	AND	CONDITIONS

APPENDIX:	How	to	Apply	the	Apache	License	to	Your	Work
To	apply	the	Apache	License	to	your	work,	attach	the	following	boilerplate	notice,	with
the	fields	enclosed	by	brackets	“[]”	replaced	with	your	own	identifying	information.
(Don’t	include	the	brackets!)	The	text	should	be	enclosed	in	the	appropriate	comment
syntax	for	the	file	format.	We	also	recommend	that	a	file	or	class	name	and	description	of
purpose	be	included	on	the	same	“printed	page”	as	the	copyright	notice	for	easier
identification	within	third-party	archives.

Copyright	[yyyy]	[name	of	copyright	owner]

Licensed	under	the	Apache	License,	Version	2.0	(the	“License”);	you	may	not
use	this	file	except	in	compliance	with	the	License.	You	may	obtain	a	copy	of
the	License	at

http://www.apache.org/licenses/LICENSE-2.0

Unless	required	by	applicable	law	or	agreed	to	in	writing,	software	distributed
under	the	License	is	distributed	on	an	“AS	IS”	BASIS,WITHOUT
WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or
implied.	See	the	License	for	the	specific	language	governing	permissions	and
limitations	under	the	License.

http://www.apache.org/licenses/LICENSE-2.0

B.	Metadata	Reference

Tables	B-1	and	B-2,	listing	layers	and	machines,	respectively,	appear	on	the	following
pages.	For	a	searchable	reference,	go	to
http://layers.openembedded.org/layerindex/branch/master/layers/.

http://layers.openembedded.org/layerindex/branch/master/layers/

Table	B-1	Layers

Table	B-2	Machines

Index

Symbols
"	(double	quote)

in	assignments,	195–196

variable	delimiter,	72

/	(forward	slash),	in	symbolic	names,	100

-	(hyphen),	in	variable	names,	72

()	(parentheses),	in	license	names,	201

:=	(colon	equal	sign),	variable	expansion,	74

?=	(question	mark	equal),	default	value	assignment,	73

??=	(question	marks	equal),	weak	default	assignment,	73

.=	(dot	equal),	appending	variables,	75

'	(single	quote),	variable	delimiter,	72

@	(at	sign),	variable	expansion,	74

\	(backslash),	line	continuation,	195–196

#	(hash	mark),	comment	indicator,	21,	71,	19

%	(percent	sign),	in	BitBake	version	strings,	102

+=	(plus	equal),	appending	variables,	74

=	(equal	sign),	direct	value	assignment,	73

=.	(equal	dot),	prepending	variables,	75

=+	(equal	plus),	prepending	variables,	74

${}	(dollar	sign	curly	braces),	variable	expansion,	74

_	(underscore)

conditional	variable	setting,	76

in	variable	names,	72

.	(dot)

in	hidden	file	names,	226

in	variable	names,	72

&	(ampersand),	concatenating	license	names,	201,	337

|	(pipe	symbol)

concatenating	license	names,	201,	337

separating	kernel	names,	237

~	(tilde),	in	variable	names,	72

A
ABI	(application	binary	interface),	289

abi_version	file,	52

--active	parameter,	296

Administrative	privileges	for	ordinary	users,	28

ADT	(Application	Development	Toolkit),	26.	See	also	SDK	(software	development	kit).

components,	302–304

cross-development	toolchain,	302

definition,	301

description,	26

Eclipse	IDE	plugin,	302

environment	setup,	302

integrating	into	Eclipse,	27

ADT	(Application	Development	Toolkit),	building	applications

Autotools	based,	316,	322–323

makefile	based,	315–316

ADT	(Application	Development	Toolkit),	Eclipse	integration

Arguments	tab,	326

Autotools-based	applications,	322–323

CMake-based	applications,	321–322

Common	tab,	326–327

configuration	screen,	320–321

Debugger	tab,	328–329

debugging	applications	on	the	target,	327–330

developing	applications,	321–323

GDB/CLI	command	line	interpreter,	328

GDB/MI	command	line	interpreter,	328

Gdbserver	Settings	subtab,	329

inspecting	the	target	system,	324–325

installing	Eclipse	IDE,	317–319

Main	subtab,	329

Main	tab,	326

overview,	317

preparing	the	target	for	remote	control,	323–324

running	applications	on	the	target,	325–327

Shared	Libraries	subtab,	329

Source	tab,	330

Target	Explorer,	324–325

TCF	network	protocol,	323

tracing	library	functions,	330–331

Yocto	Project	Eclipse,	319–321

ADT	(Application	Development	Toolkit),	setting	up

building	a	toolchain	installer,	304

cross-canadian	toolchain	binaries,	306

debugging	standard	libraries,	314–315

Eclipse	IDE,	311

environment	variables,	308–309

file	and	subdirectory	categories,	307

GDB	(GNU	Debugger),	311–315

gdbserver,	311–315

inferior	processes,	311

installing	the	toolchain,	305–307

non-stripped	binary	information,	311

on-target	execution,	310

overview,	304

post-mortem	debugging,	311

remote	on-target	debugging,	311–315

working	with	toolchains,	307–310

ADT	(Application	Development	Toolkit),	with	emulated	targets

application	development	with	QEMU,	331–333

extracting	the	root	filesystem,	332

integrating	with	Eclipse,	332–333

launching	applications	with	QEMU,	333

NFS	(Network	File	System),	332

overview,	331

--align	parameter,	296

Aligned	development,	30

alsa	feature,	177

Ampersand	(&),	concatenating	license	names,	201,	337

Analysis	mode,	Toaster,	346,	348

Android	devices,	licensing	and	compliance,	336

Android	distribution,	4

Ångström	Distribution,	4

_anonymous	keyword,	80

Apache	Licenses,	12,	397–401

Apache	Software	Foundation,	11–12

Append	files

definition,	31

description,	43,	71

file	extension,	43

_append	operator,	75,	84–85,	149–150

--append	parameter,	297

Appending

BitBake	variables,	74–75,	76

functions,	84–85

Appends,	recipe	layout,	194

Application	binary	interface	(ABI),	289

Application	development.	See	ADT	(Application	Development	Toolkit).

Application	software	management,	embedded	Linux,	8

Application	space.	See	User	space.

AR	variable,	308

arch	subdirectory,	249

ARCH	variable,	308

Architecture-dependent	code,	136

Architecture-independent	packaging,	210

ARCHIVER_MODE	flags,	341

arch-x86.inc	file,	289

Arguments	tab,	326

AS	variable,	308

Assigning	values,	to	BitBake	variables,	72–73

Assignments,	formatting	guidelines,	195

At	sign	(@),	variable	expansion,	74

Attributes,	BitBake	metadata,	85

Attribution,	open	source	licenses,	10

Auditing.	See	Build	history.

Authentication	category,	Toaster,	350

AUTHOR	variable,	189

Autobuilder

description,	26,	368

environment	variables,	370

installing,	369–370

passwords,	369–370

user	names,	369–370

Autobuilder,	configuring

buildset	configuration,	373–374

controller	configuration	file,	372

global	configuration	file,	370–371

worker	configuration	file,	372–373

Automated	build	systems,	Buildbot,	368–369.	See	also	Autobuilder.

Autotools,	37–38,	203,	205

Autotools-based	ADT	applications,	316,	322–323

Autotools-based	recipe,	example,	216–217

B
-b	parameter,	64–66,	293

B	variable,	104,	192

backports	subdirectory,	249

Backslash	(\),	line	continuation,	195–196

bareclone	parameter,	91

Base	branches,	kernel	recipes,	239–240

Baserock,	6

.bb	files,	70–71

.bbappend	file	extension,	43

.bbappend	files,	56,	71

.bbclass	file	extension,	78–79

BBCLASSEXTEND	variable,	103,	211

BBFILE_COLLECTIONS	variable,	62

BBFILE_PATTERN	variable,	62–63

BBFILE_PRIORITY	variable,	63

BBFILES	variable,	62,	104

BBLAYERS	variable,	51,	104

bblayers.conf	file,	40–41,	51

BB_NUMBER_THREADS	variable,	22

BBPATH	variable,	62,	104

BB_SIGNATURE_HANDLER	variable,	175

BB_VERSION	variable,	111–112

BeagleBoard-xM	development	board,	273

BeagleBone	Black	development	board,	273

BeagleBone	boards

boot	order,	changing,	272

boot	process,	266–267

boot	SD	card,	267–269

booting,	269,	271

connecting	to	your	development	computer,	269

display,	266

FTDI	cables,	270

images,	267

overview,	266–267

serial-to-USB	cable,	270

terminal	emulation,	270–272

BeagleBone	development	board,	273

Berkeley	Software	Distribution	(BSD),	10

Binaries,	BSP	(board	support	packages),	262

Bionic	libc,	C	library,	142

BitBake

classes,	27

definition,	31

description,	26

directives	for	building	software	packages.	See	Recipes.

documentation	and	man	pages,	48

execution	environment,	61–63

graphical	user	interface,	27,	28

HelloWorld	program,	95–99

history	of	Yocto	Project,	29

launching	a	build,	23

layer	configuration	file,	61–63

layers,	27

metadata	layers,	31

scripts,	27

variants,	103

version	selection,	102

working	directory,	specifying,	22

BitBake,	command	line

BitBake	server,	starting,	69–70

configuration	data,	providing	and	overriding,	68–69

dependency	graphs,	creating,	67–68

dependency	handling,	65

displaying	program	version,	65

executing	specific	tasks,	66

forcing	execution,	66

--help	option,	63–65

metadata,	displaying,	67

obtaining	and	restoring	task	output,	64

omitting	common	packages,	68

overview	of	options,	63–65

package	dependencies,	graphing,	67–68

set-scene,	64

BitBake,	dependency	handling

build	dependencies,	99

declaring	dependencies,	101

multiple	providers,	101–102

overview,	99

provisioning,	99–101

runtime	dependencies,	99

types	of	dependencies,	99

BitBake,	obtaining	and	installing

building	and	installing,	60–61

cloning	the	development	repository,	60

release	snapshot,	60

bitbake	directory,	48

BitBake	metadata

append	files,	71

class	files,	71

classes,	78–79

configuration	files,	70

executable,	70

file	categories,	70–71

flags,	85

include	files,	71

recipe	files,	70–71

sharing	settings,	76–77

types	of,	70

variables,	70

BitBake	metadata,	executable

anonymous	Python	functions,	80

appending	functions,	84–85

global	Python	functions,	80

local	data	dictionary,	creating,	83

prepending	functions,	84–85

Python	functions,	79–80

shell	functions,	79

tasks,	81–82,	107

variables	containing	value	lists,	84

BitBake	metadata,	source	download

Bazaar	fetcher,	93

checksums	for	download	verification,	89–90

CVS	(Current	Versions	System)	fetcher,	92–93

fetch	class,	87–88

fetchers,	88–93

Git	fetcher,	90–91

Git	submodules	fetcher,	91

HTTP/HTTPS/FTP	fetcher,	89–90

local	file	fetcher,	88–89

Mercurial	fetcher,	93

mirrors,	94–95

OBS	(Open	Build	Service)	fetcher,	93

overview,	86–87

password	requirements,	90

Perforce	fetcher,	93

Repo	fetcher,	93

from	secure	FTP	sites,	90

SFTP	fetcher,	90

SVK	fetcher,	93

SVN	(Subversion)	fetcher,	91–92

upstream	repositories,	86

BitBake	metadata	syntax

attributes,	85

comments,	71–72

including	other	metadata	files,	76–77

inheritance,	77–79

name	(key)	expansion,	86

optional	inclusion,	77

required	inclusion,	77

BitBake	metadata	syntax,	variables

accessing	from	functions,	82

accessing	from	Python	functions,	83

accessing	from	shell	functions,	82–83

appending	and	prepending,	74–75,	76

assignment,	72–73

conditional	setting,	76

containing	value	lists,	84

defaults,	103–107

expansion,	73–74

internally	derived,	104

naming	conventions,	72

project	specific,	104

referencing	other	variables,	73–74

removing	values	from,	75

scope,	72

standard	runtime,	104

string	literals,	72

BitBake	server,	starting,	69–70

bitbake.conf	file,	40

bitbake-whatchanged	script,	50

Blacklisting	licenses,	340

bluetooth	feature,	177

Board	support	packages	(BSPs).	See	BSPs	(board	support	packages).

Books	and	publications.	See	Documentation	and	man	pages.

Bootable	media	images,	creating

Cooked	mode,	292

kickstart	file	directives,	295–297

kickstart	files,	293–295

operational	modes,	291–293

overview,	290–291

plugins,	297–298

Raw	mode,	292–293

transferring	images,	298–299

--bootimg-dir	parameter,	293

bootloader	directive,	296–297

Bootloaders

bootrom,	130

choosing,	130–131

commonly	used,	131–134.	See	also	specific	bootloaders.

EEPROM	(electrically	erasable	programmable	read-only	memory),	130

embedded	Linux,	8

first	stage,	130

flash	memory,	130

loaders,	129

monitors,	129

overview,	129

role	of,	130

Bootrom,	130

Bootstrap	loader,	140

Bottom-up	approach	to	embedded	Linux,	9

branch	parameter,	90

Branches,	kernel	recipes,	239–244

BSD	(Berkeley	Software	Distribution),	10

BSPs	(board	support	packages).	See	also	Yocto	Project	BSPs.

binaries,	262

building	with	BeagleBone	boards,	265–272

components,	262

definition,	31

dependency	handling,	263–264

development	tools,	262

documentation,	262

filesystem	images,	262.	See	also	Bootable	media	images.

operating	system	source	code,	262

orthogonality,	264

overview,	261–263

source	code	patches,	262

tuning,	289–290

BSP	branches,	kernel	recipes,	240

BSP	collection	description,	kernel	recipes,	246–247

BSP	layers,	Yocto	Project	kernel	recipes,	configuring,	50

bsp	subdirectory,	249

btrfs	compression,	165

BUGTRACKER	variable,	189

Build	configuration,	Toaster,	356

Build	control	category,	Toaster,	350

Build	dependencies,	99

Build	environments

configuring,	20–23,	41

deleting,	22

layer	configuration,	41

Build	history

configuring,	359–360

core	images,	151–152

description,	358

directory	and	file	structure,	361–363

enabling,	358

overview,	358

package	information,	364–365

pushing	changes	to	a	Git	repository,	360–361

SDK	information,	365

Build	host,	setting	up,	18–20

Build	log,	Toaster,	357

Build	machine	type,	selecting,	22

Build	mode,	Toaster,	346–347,	348,	349

Build	results,	verifying,	24

Build	statistics

storing,	52

Toaster,	357

Build	system.	See	OpenEmbedded	system.

build	task,	107

BUILD_ARCH	variable,	105

Buildbot,	368–369

--buildfile	option,	64–66

buildhistory	class,	151–152

BUILD_HISTORY_COLLECT	parameter,	371

BUILDHISTORY_COMMIT	variable,	359

BUILDHISTORY_COMMIT_AUTHOR	variable,	359

BUILD_HISTORY_DIR	parameter,	371

BUILDHISTORY_DIR	variable,	151,	359

BUILDHISTORY_FEATURES	variable,	359

BUILDHISTORY_IMAGE_FILES	variable,	359

BUILDHISTORY_PUSH_REPO	variable,	359–360

BUILD_HISTORY_REPO	parameter,	371

build-id.txt	file,	363

Buildroot,	6

--build-rootfs	parameter,	292–293

Buildset	configuration,	373–374

buildstats	directory,	52

BUILD_SYS	variable,	112

BURG	bootloader,	131,	134

BusyBox,	6

C
C	file	software	recipes,	example,	212–213

-c	parameter,	64,	66,	284,	292–293

C	standard	libraries,	142–143

cache	directory,	52

CACHE	variable,	105

Caching,	metadata,	52

CC	variable,	308

CCACHE_PATH	variable,	308

CE	(Consumer	Electronics)	Workgroup,	13

CELF	(Consumer	Electronics	Linux	Forum),	13

cfg	subdirectory,	249

CFLAGS	variable,	308

CGL	(Carrier-Grade	Linux),	2

checksettings	command,	354,	356

Class	extensions,	recipe	layout,	194

Class	files,	71

Classes

BitBake,	27,	78–79

definition,	32

formatting	guidelines,	195–196

Yocto	Project	BSPs,	281

classes	subdirectory,	281

cleanup-workdir	script,	50

--clear-stamp	option,	64,	66

Cloning,	development	repository,	60

CMake	configuration	system,	203,	205

CMake-based	ADT	applications,	321–322

CMake-based	recipes,	example,	215–216

CMakeLists.txt	file,	203

--cmd	option,	64,	66

Code	names	for	Yocto	Project	releases,	277

--codedump	parameter,	284

collectstatic	checksettings	command,	354

Colon	equal	sign	(:=),	variable	expansion,	74

Command	line	utility	applications,	tools	and	utilities,	6

Commands.	See	BitBake,	command	line;	specific	commands.

Comments

#	(hash	mark),	comment	indicator,	21,	71,	196

BitBake	metadata,	71–72

Commercial	support	for	embedded	Linux,	3

Commercially	licensed	packages,	339

Common	licenses,	338–339

Common	tab,	326–327

COMMON_LICENSE_DIR	variable,	338

Comparing	core	images,	151–152

COMPATIBLE_MACHINE	variable,	236,	237,	243

Compile	step,	OpenEmbedded	workflow,	44

Compiling,	recipe	source	code,	203–204

Compression

algorithms,	164–165.	See	also	specific	algorithms.

common	formats,	36.	See	also	specific	formats.

--compress-with	parameter,	292–293

.conf	file	extension,	40

.conf	files,	41–42,	70,	72

conf/bblayers.conf	file,	61–62

config	subcommands,	285

config/autobuilder.conf	file,	370–371

CONFIG_SITE	variable,	308

Configuration	collection	description,	kernel	recipes,	245

Configuration	files

BitBake	metadata,	70

definition,	32

formatting	guidelines,	195–196

OpenEmbedded	workflow,	40

Configuration	step,	OpenEmbedded	workflow,	44

configure.ac	file,	203

CONFIGURE_FLAGS	variable,	308

Configuring

Autobuilder.	See	Autobuilder,	configuring.

BitBake,	68–69

distributions,	42

layers,	40

machines,	42

open	source	software	packages,	37–38

recipe	source	code,	202–203

Toaster,	349–354

Toaster	web	server,	354–355

tools,	7

user	interface,	6

Yocto	Project	kernel	recipes,	50

Configuring,	kernel	recipes

configuration	fragments,	228–231

menu	configuration,	227–228

merging	partial	configurations,	228–231

overview,	226–227

conf/layer.conf	file,	62

CONNECTIVITY_CHECK_URIS	variable,	176

Consumer	Electronics	Linux	Forum	(CELF),	13

Consumer	Electronics	(CE)	Workgroup,	13

Continuation,	formatting	guidelines,	195

Controller	configuration	file,	372

Conveyance,	open	source	licenses,	10

Cooked	mode,	292

Cooker	process

definition,	69–70

logging	information,	52

starting,	69–70

COPYLEFT_LICENSE_EXCLUDE	variable,	342–343

COPYLEFT_LICENSE_INCLUDE	variable,	342–343

COPYLEFT_TARGET_TYPES	variable,	343

COPY_LIC_DIRS	variable,	340–341

COPY_LIC_MANIFEST	variable,	340–341

Core	images

build	history,	151–152

building	from	scratch,	160–161

comparing,	151–152

examples,	146–149

external	layers,	181

graphical	user	interface,	181–184

image	features,	153–155

package	groups,	155–159

packages,	149–150

testing	with	QEMU,	150–151

verifying,	151–152

Core	images,	distribution	configuration

build	system	checks,	176

build	system	configuration,	175–176

default	setup,	179–181

dependencies,	174

distribution	features,	173–174,	176–179

general	information	settings,	172–173

information,	173

mirror	configuration,	175

Poky	distribution	policy,	170–176

preferred	versions,	174

standard	distribution	policies,	169–170

system	manager,	179

toolchain	configuration,	174–175

Core	images,	extending

with	a	recipe,	152–153

through	local	configuration,	149–150

Core	images,	options

compression	algorithms,	164–165

groups,	166–167

image	size,	163–164

languages	and	locales,	162

package	management,	162–163

passwords,	166–167

root	filesystem	tweaks,	167–169

root	filesystem	types,	164–166

SSH	server	configuration,	168

sudo	configuration,	168

users,	166–167

core-image	images,	146–149

core-image.bbclass	class,	154

CORE_IMAGE_EXTRA_INSTALL	variable,	160–161

cpio	compression,	165

cpio.gz	compression,	165

cpio.lzma	compression,	165

cpio.xz	compression,	165

CPP	variable,	308

CPPFLAGS	variable,	308

CPU,	135

cramfs	compression,	165

cramfs	feature,	177

createCopy	method,	83

create-recipe	script,	50

Cross-build	access,	detecting,	28

Cross-development	toolchains,	32,	302

Cross-prelink,	description,	27

Cross-prelinking	memory	addresses,	27

crosstool.ng,	6

CubieBoard	2	development	board,	274

CubieBoard	3	development	board,	274

CubieTruck	development	board,	274

CVSDIR	variable,	105

CXX	variable,	308

CXXFLAGS	variable,	308

D
-D	parameter,	292–293

D	variable,	105

Das	U-Boot.	See	U-Boot	bootloader.

Data	dictionary

local,	creating,	83

printing,	119

date	parameter,	92

dbg-pkgs	feature,	154

Debian	distribution,	5,	39

Debian	Package	Management	(dpkg),	162–163

--debug	parameter,	292–293

Debugger	tab,	328–329

Debugging.	See	also	Troubleshooting.

applications	on	the	target,	327–330

GDB	(GNU	Debugger),	311–315

message	severity,	114–115

post-mortem,	311

remote	on-target,	311–315

standard	libraries,	314–315

debug-tweaks	feature,	153

Declaring	dependencies,	101

def	keyword,	80

DEFAULT_PREFERENCE	variable,	102

defaultsetup.conf	file,	181

DEFAULT_TUNE	variable,	289–290

define	keyword,	244

Deleting.	See	also	Removing.

build	environments,	22

user	accounts,	166–167

user	groups,	167

Dependencies

build,	99

declaring,	101

runtime,	99

types	of,	99

Dependency	graphs

creating,	67–68

troubleshooting,	121–122

visual	representation,	122

Dependency	handling

BitBake	command	line,	65.	See	also	BitBake,	dependency	handling.

BSPs	(board	support	packages),	263–264

DEPENDS	variable,	101,	105,	191

depends.dot	file,	363,	365

depends-nokernel.dot	file,	363

depends-nokernel-nolibc.dot	file,	363

depends-nokernel-nolibc-noupdate.dot	file,	363

depends-nokernel-nolibc-noupdate-nomodules.dot	file,	363

deploy	directory,	52

DEPLOY_DIR	variable,	105

DEPLOY_DIR_IMAGE	variable,	105

Deploying.	See	also	Toaster,	production	deployment.

licenses,	340

packages,	222

Deployment	output,	directory	for,	52

Derivative	works,	open	source	licenses,	10

Description	files,	kernel	recipes,	244

DESCRIPTION	variable,	189

Determinism,	2

Developer	support	for	embedded	Linux,	3

Development	shell

disabling,	121

troubleshooting,	120–121

Development	tools.	See	Tools	and	utilities.

Device	drivers,	8,	136

Device	management,	kernel	function,	8

Device	tree	compiler	(DTC),	257

Device	trees,	133,	257–258

dev-pkgs	feature,	154

devshell	command,	120–121

Devtool

deploying	packages,	222

for	existing	recipes,	223–224

images,	building,	222

overview,	218–219

recipes,	building,	222

recipes,	updating,	223–224

removing	packages,	222

round-trip	development,	219–223

Devtool,	workspace	layers

adding	recipes,	220–221,	223

creating,	219–220

displaying	information	about,	223

dietlibc,	C	library,	143

diffconfig	command,	231

Digital	assistant,	first	Linux	based,	28

directfb	feature,	177

Directives	for	building	software	packages.	See	Recipes.

Directories,	removing	obsolete,	50.	See	also	specific	directories.

Disk	space,	16

Dispatching,	135

Display	support	recipes,	Yocto	Project	BSPs,	281

Displays,	BeagleBone	boards,	266

Distribution	configuration,	OpenEmbedded	workflow,	42

Distribution	policy.	See	Distribution	configuration.

DISTRO	variable

distribution	configuration,	169

in	log	files,	112

Poky	distribution,	173

SDK	information,	365

DISTRO_CODENAME	variable,	173

DISTRO_EXTRA_RDEPENDS	variable,	174

DISTRO_EXTRA_RRECOMMENDS	variable,	174

DISTRO_FEATURES	variable

adding	features	to,	176–179

default	settings,	179–180

description,	173

DISTRO_NAME	variable,	173

DISTRO_VERSION	variable,	112,	173,	365

Django	framework,	administering	in	Toaster,	350–351

DL_DIR	variable,	22,	105

dmesg	command,	268

doc	directory,	48

do_configure_partition()	method,	297–298

doc-pkgs	feature,	154

Documentation	and	man	pages

BitBake,	48

BSPs	(board	support	packages),	262

Buildbot,	372

DULG	(DENX	U-Boot	and	Linux	Guide),	133

Embedded	Linux	Primer,	xviii

U-Boot	bootloader,	133

Yocto	Project	Application	Developer’s	Guide,	304

Yocto	Project	Board	Support	Package,	264

Yocto	Project	Reference	Manual,	209

do_fetch	task,	199–200

do_install	task,	204,	205

do_install_disk()	method,	297–298

Dollar	sign	curly	braces	(${}),	variable	expansion,	74

do_prepare_partition()	method,	297–298

do_stage_partition()	method,	297–298

Dot	(.)

in	hidden	file	names,	226

in	variable	names,	72

Dot	equal	(.=),	appending	variables,	75

Download	location,	specifying,	22

downloadfilename	parameter,	89

Downloading,	BitBake	metadata.	See	BitBake	metadata,	source	download.

dpkg	(Debian	Package	Management),	39,	162–163

.dtb	file	extension,	258

DTC	(device	tree	compiler),	257

.dts	file	extension,	257

DULG	(DENX	U-Boot	and	Linux	Guide),	133

E
-e	option,	64,	67

ebuild,	history	of	Yocto	Project,	29

Eclipse	IDE	plugin.	See	also	ADT	(Application	Development	Toolkit),	Eclipse
integration;	Yocto	Project	Eclipse.

for	ADT	applications,	302,	311

description,	27,	317

installing,	317–319

integrating	ADT,	27

Eclipse	Project,	12

eclipse-debug	feature,	154

Edison	development	board,	274

EEPROM	(electrically	erasable	programmable	read-only	memory),	130

EFI	LILO	bootloader,	131,	132

EGLIBC,	C	library,	27,	142

elf	compression,	165

ELILO	bootloader,	131,	132

Embedded	Linux.	See	also	Linux.

commercial	support,	3

developer	support,	3

development	tools.	See	Tools	and	utilities.

hardware	support,	2

kernel	function,	8

modularity,	3

networking,	3

reasons	for	rapid	growth,	2–3

royalties,	2

scalability,	3

source	code,	3

tooling,	3

Embedded	Linux	distributions

Android,	4

Ångström	Distribution,	4

Debian,	5

embedded	full	distributions,	5

Fedora,	5

Gentoo,	5

for	mobile	phones	and	tablet	computers,	4

online	image	assembly,	4–5

OpenWrt,	5

routing	network	traffic,	5

SUSE,	5

Ubuntu,	5

Embedded	Linux	distributions,	components

application	software	management,	8

bootloader,	8

device	drivers,	8

kernel,	8

life	cycle	management,	8

Embedded	Linux	distributions,	creating

bottom-up	approach,	9

design	strategies,	8–9

top-down	approach,	8–9

Embedded	Linux	Primer,	xviii

emerge,	history	of	Yocto	Project,	29

--environment	option,	64,	67

environment-setup-*	scripts,	307

Equal	dot	(=.),	prepending	variables,	75

Equal	plus	(=+),	prepending	variables,	74

Equal	sign	(=),	direct	value	assignment,	73

Error	checking,	209–210

Error	message	severity,	114–115

ERROR_QA	variable,	176,	209

ERROR_REPORT_COLLECT	parameter,	371

ERROR_REPORT_EMAIL	parameter,	371

EULA	(End-User	License	Agreement),	335

Executable	metadata,	70

Expansion,	BitBake	variables,	73–74

ext2	compression,	164

ext2	feature,	177

ext2.bz2	compression,	164

ext2.gz	compression,	164

ext2.lzma	compression,	164

ext3	compression,	165

ext3.gz	compression,	165

External	layers,	core	images,	181

Externally	built	recipe	package,	example,	217–218

EXTLINUX	bootloader,	133

Extracting	open	source	code,	36

EXTRA_IMAGE_FEATURES	variable,	153,	161

EXTRA_OECMAKE	variable,	192

EXTRA_OECONF	variable,	192

EXTRA_OEMAKE	variable,	192

--extra-space	parameter,	296

extrausers	class,	166–167

F
-f	parameter,	292–293

Fatal	message	severity,	114–115

FDT	(flattened	device	tree),	257.	See	also	Device	trees.

Feature	collection	description,	kernel	recipes,	246

feature	command,	285–286

features	subdirectory,	249

Fedora	distribution,	5,	19

Fetching

open	source	code,	36

recipe	source	code,	199–200

source	code,	OpenEmbedded	workflow,	43–44

File	categories,	BitBake,	70–71

FILE_DIRNAME	variable,	105

Files,	unified	format,	37

FILES	variable,	193,	208

FILESDIR	variable,	88–89,	105

FILESEXTRAPATHS	variable,	192

files-in-image.txt	file,	152,	363

files-in-package.txt	file,	364

files-in-sdk.txt	file,	365

FILESPATH	variable,	88–89,	105

Filesystem,	Linux,	2

Filesystem	images,	262.	See	also	Bootable	media	images.

Filtering	licenses,	342–343

First-stage	bootloader,	130

Flags,	85

Flash	memory,	130

flatten	command,	124

Flattened	device	tree	(FDT),	257.	See	also	Device	trees.

Fragmentation,	30

Free	software,	definition,	10

--fsoptions	parameter,	296

--fstype	parameter,	296

FTDI	cables,	270

fullpath	parameter,	93

Functions.	See	also	Python	functions;	Shell	functions.

accessing	BitBake	variables,	82

appending,	84–85

prepending,	84–85

G
-g	option,	64,	67–68,	121–122

Galileo	development	board,	274

gconfig	command,	6

GDB	(GNU	Debugger)

DDD	(Data	Display	Debugger),	313–314

debugging	applications,	311–315

debugging	standard	libraries,	314–315

graphical	user	interface,	313–314

launching	on	the	development	host,	312–314

GDB	variable,	308

GDB/CLI	command	line	interpreter,	328

GDB/MI	command	line	interpreter,	328

gdbserver

debugging	applications,	311–315

installing,	312

launching,	312

Gdbserver	Settings	subtab,	329

General-purpose	operating	system	(GPOS),	1

Gentoo	distribution,	5

getVar	function,	83

git	clone	command,	60

GITDIR	variable,	105

GitHub	repository	server,	360–361

GLIBC	(GNU	C	Library),	27,	142

Global	configuration	file,	370–371

GNU	Autotools.	See	Autotools.

GNU	Debugger	(GDB).	See	GDB	(GNU	Debugger).

GNU	General	Public	License	(GPL),	10

GNU	General	Public	License	(GPL)	Version	2,	377–384

GNU	General	Public	License	(GPL)	Version	3,	384–397

GNU	GRUB	bootloader,	131,	132

GNU/Linux,	vs.	Linux,	127–128

GPOS	(general-purpose	operating	system),	1

Graphical	user	interface.	See	also	Toaster.

BitBake,	27,	28

core	images,	181–184

Hob,	27,	50,	181–184

--graphviz	option,	64,	67–68,	121–122

groupadd	command,	166

groupdel	command,	167

groupmod	command,	167

Groups,	user	accounts,	166–167

GRUB	bootloader,	131,	132

GRUB	2	bootloader,	132

GRUB	Legacy	bootloader,	132

H
-h	option,	64–65

Hallinan,	Chris,	xviii

Hard	real-time	systems,	2

Hardware	requirements,	16

Hardware	support	for	embedded	Linux,	2

Hash	mark	(#),	comment	indicator,	21,	71,	196

hddimg	compression,	165

head.o	module,	140–141

HelloWorld	program,	95–99

Help.	See	Documentation	and	man	pages.

help	command,	bitbake-layers	tool,	123

--help	option,	BitBake,	63–65

Hob

description,	27,	181–184

launching,	50

hob	script,	50

HOMEPAGE	variable,	189

host	directory,	365

Host	leakage,	204

Host	pollution,	28

hwcodecs	feature,	154

I
-i	parameter,	64,	68,	284

if…then	keywords,	244

--ignore-deps	option,	64,	68

I/O	devices,	135

image.bbclass	class,	153–155

IMAGE_FEATURES	variable,	153,	161

image-info.txt	file,	152,	363

IMAGE_LINGUAS	variable,	162

IMAGE_OVERHEAD_FACTOR	variable,	163

IMAGE_PKGTYPE	variable,	163

IMAGE_ROOTFS_ALIGNMENT	variable,	163

IMAGE_ROOTFS_EXTRA_SPACE	variable,	163

IMAGE_ROOTFS_SIZE	variable,	163

Images.	See	also	Bootable	media	images,	creating;	Core	images.

BeagleBone	boards,	267

building,	222

creating,	OpenEmbedded	workflow,	45

definition,	32

features,	core	images,	153–155

filesystem,	262

information	about,	Toaster,	357

size,	163–164

targets,	Toaster,	357

transferring,	298–299

.inc	files,	71

include	directive,	77

Include	files,	71

include	keyword,	244

Includes,	recipe	layout,	190

INCOMPATIBLE_LICENSE	variable,	340

Inferior	processes,	311

--infile	parameter,	284

inherit	directive,	77–78

INHERIT	variable,	151,	176

Inheritance,	BitBake	metadata,	77–79

Inheritance	directives,	recipe	layout,	190

INITSCRIPT_NAME	variable,	206

INITSCRIPT_PACKAGES	variable,	206

INITSCRIPT_PARAMS	variable,	207

In-recipe	space	metadata,	kernel	recipes,	247–248

insane	class,	208

INSANE_SKIP	variable,	209

Installation	step,	OpenEmbedded	workflow,	44

installed-package-names.txt	file,	152,	363,	365

installed-package-sizes.txt	file,	363,	365

installed-packages.txt	file,	152,	363,	365

Installing

Autobuilder,	369–370

BitBake,	60–61

Eclipse	IDE,	317–319

open	source	software	packages,	38

Poky	Linux,	19–20

recipe	build	output,	204–206

software	packages,	19,	29

Toaster,	352–354

Toaster	build	runner	service,	355–356

Toaster	requirements,	348

toolchains,	305–307

Integration	and	support	scripts,	50

Internally	derived	BitBake	variables,	104

Internet	connection,	Yocto	Projects	requirements,	16–17

Interprocess	communication,	139

In-tree	configuration	files,	238

In-tree	metadata,	kernel	recipes,	248–250

ipkg	(Itsy	Package	Management	System),	39

ipsec	feature,	177

ipv6	feature,	177

irda	feature,	178

iso	compression,	165

ISOLINUX	bootloader,	133

J
jffs2	compression,	165

jffs2.sum	compression,	165

Jitter,	2

K
-k	parameter,	64–65,	293

KBRANCH	variable,	242

KCFLAGS	variable,	308

kconf	keyword,	244

KCONF_BSP_AUDIT_LEVEL	variable,	243

kconfig	configuration	system,	226–227

Kernel.	See	also	Linux	architecture,	kernel.

device	management,	8

embedded	Linux,	8

main	functions,	8

memory	management,	8

responding	to	system	calls,	8

Kernel	recipes.	See	also	Recipes.

device	tree,	257–258

factors	to	consider,	225–226

overview,	225–226

patching,	231–233

Kernel	recipes,	building

configuration	settings,	237

from	a	Git	repository,	236–237

in-tree	configuration	files,	238

from	a	Linux	kernel	tarball,	235–236

from	a	Linux	kernel	tree,	234–238

overview,	233–234

patching,	237

Kernel	recipes,	building	from	Yocto	Project	repositories

base	branches,	239–240

branches,	239–244

BSP	branches,	240

BSP	collection	description,	246–247

configuration	collection	description,	245

description	files,	244

feature	collection	description,	246

in-recipe	space	metadata,	247–248

in-tree	metadata,	248–250

kernel	infrastructure,	238–244

kernel	type	collection	description,	246

LTSI	(Long-Term	Support	Initiative),	250–251

master	branch,	239

meta	branch,	240

metadata	application,	250

metadata	organization,	247–250

metadata	syntax,	244–247

orphan	branches,	240,	250

overview,	238

patch	collection	description,	245–246

Kernel	recipes,	configuration

configuration	fragments,	228–231

menu	configuration,	227–228

merging	partial	configurations,	228–231

overview,	226–227

Kernel	recipes,	out-of-tree	modules

build	targets,	254

developing	a	kernel	module,	251–254

including	with	the	root	filesystem,	256–257

install	targets,	255

kernel	source	directory,	254

license	file,	255

module	autoloading,	257

subdirectory	structure,	255

third-party	modules,	254–256

Kernel	space,	129

Kernel	type	collection	description,	kernel	recipes,	246

kernel.bbclass	class,	233

kernel_configme	command,	227

--kernel-dir	parameter,	293

KERNEL_FEATURES	variable,	243,	250

kernel-module-split	class,	254

KERNEL_PATH	variable,	254

KERNEL_SRC	variable,	254

keyboard	feature,	178

KFEATURE_COMPATIBILITY	variable,	245

KFEATURE_DESCRIPTION	variable,	245

Kickstart	file	directives,	295–297

Kickstart	files,	293–295

klibc,	C	library,	143

KMACHINE	variable,	243–244

KMETA	variable,	243

ktypes	subdirectory,	249

kver	file,	249

L
--label	parameter,	296

Languages	and	locales,	configuring,	162

LatencyTOP,	302

latest	file,	364

latest.pkg_*	files,	364

Launching	a	build,	23

Layer	configuration	file,	61–63,	280

Layer	layout

OpenEmbedded	system,	53–55

Yocto	Project	BSPs,	277–278

Layer	management,	Toaster,	357

layer.conf	file,	40,	54–55

LAYER_CONF_VERSION	variable,	175

Layers

base	layers	for	OpenEmbedded	system,	47

BitBake,	27

configuration,	OpenEmbedded	workflow,	40

creating,	OpenEmbedded	system,	56

debugging,	122–124

definition,	32

flattening	hierarchy,	124

listing,	123

metadata	reference,	404–414

LD	variable,	308

LDFLAGS	variable,	193,	308

LIBC	(C	Standard	Library),	142

LICENSE	file,	48–49,	337

License	files

kernel	recipes,	255

Yocto	Project	BSPs,	278

LICENSE	variable,	190,	201,	337–338

LICENSE_FLAGS	variable,	339

LICENSE_FLAGS_WHITELIST	variable,	339

Licensing	and	compliance.	See	also	Open	source	licenses.

Android	devices,	336

Apache	Licenses,	12

attribution,	10

blacklisting	licenses,	340

BSD	(Berkeley	Software	Distribution),	10

commercially	licensed	packages,	339

common	licenses,	338–339

conveyance,	10

derivative	works,	10

EULA	(End-User	License	Agreement),	335

filtering	licenses,	342–343

first	open	source,	10

GPL	(GNU	General	Public	License),	10

license	deployment,	340

license	manifests	and	texts,	341

license	naming	conventions,	201

license	tracking,	337–338

managing	source	code,	341–343

multiple	license	schemes,	336–337

OSI	(Open	Source	Initiative),	336

overview,	335–337

permissive	licenses,	10

Poky	Linux,	48–49

recipe	layout,	190

recipes,	201–202

self-perpetuating	licenses,	10

SPDX	(Software	Package	Data	Exchange),	337

LIC_FILES_CHKSUM	variable,	190,	201,	235,	237,	337–338

Life	cycle	management,	embedded	Linux,	8

LILO	(LInux	LOader),	131,	132

Linux

CGL	(Carrier-Grade	Linux),	2

for	embedded	devices,	2.	See	also	Embedded	Linux.

filesystem,	2

vs.	GNU/Linux,	127–128

MMU	(memory	management	unit),	2

portability,	1

real	time	operation,	2

Linux	architecture.	See	also	Bootloaders.

C	standard	libraries,	142–143

core	computer	resources,	135

CPU,	135

dispatching,	135

I/O	devices,	135

Linux	vs.	GNU/Linux,	127–128

memory,	135

overview,	128–129

privileged	mode,	129

restricted	mode,	129

scheduling,	135

unrestricted	mode,	129

user	mode,	129

user	space,	140

Linux	architecture,	kernel

architecture-dependent	code,	136

bootstrap	loader,	140

default	page	size,	137–138

device	drivers,	136

interprocess	communication,	139

kernel	space,	129

memory	management,	136–137

microkernels,	135

monolithic	kernels,	135

network	stack,	138–139

primary	functions,	134

process	management,	138

SCI	(system	call	interface),	139–140

slab	allocator,	137

socket	layer,	138–139

startup,	140–141

subsystems,	136–140

system	call	slot,	139

threads,	138

VFS	(virtual	filesystem),	137–138

virtual	addressing,	136–137

Linux	Foundation,	11

Linux	kernel	recipes,	Yocto	Project	BSPs,	282

LInux	LOader	(LILO),	131,	132

Linux	Standard	Base	(LSB),	12–13

Linux	Trace	Toolkit—Next	Generation	(LTTng),	303

LINUX_KERNEL_TYPE	variable,	243

LINUX_RC	variable,	236

LINUX_VERSION	variable,	235,	237,	242

Listing

changed	components,	50

recipes,	123

tasks,	116–117

listtasks	command,	107,	116–117

Loaders,	129

local.conf	file,	41–42

LOCALCONF_VERSION	variable,	175

localdir	parameter,	92

log	directory,	52

Log	files

cooker,	110–112

general,	110–112

tasks,	112–114

LOG_DIR	variable,	110

log.do	files,	112

Logging,	cooker	process	information,	52

Logging	statements

message	severity,	114–115

Python	example,	115

shell	example,	115–116

LSB	(Linux	Standard	Base),	12–13

LTSI	(Long-Term	Support	Initiative),	13,	250–251

LTTng	(Linux	Trace	Toolkit—Next	Generation),	303

M
Machine	configuration,	OpenEmbedded	workflow,	42

Machine	configuration	files,	Yocto	Project	BSPs,	280–281

MACHINE	variable,	22,	112

Machine-dependent	packaging,	210

MACHINE_ESSENTIAL_EXTRA_RDEPENDS	variable,	256

MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS	variable,	256

MACHINE_EXTRA_RDEPENDS	variable,	256

MACHINE_EXTRA_RRECOMMENDS	variable,	256–257

MACHINE_FEATURES	variable,	178–179

MACHINEOVERRIDES	variable,	264

Machines,	metadata	reference,	415–428

Main	subtab,	329

Main	tab,	326

main.c	file,	141

MAINTAINER	variable,	173

Maintainers	file,	Yocto	Project	BSPs,	279

Make	build	system,	205

make	gconfig	command,	227

make	menuconfig	command,	227

make	xconfig	command,	227

Makefile-based	ADT	applications,	315–316

Makefile-based	recipe	package,	example,	213–215

Man	pages.	See	Documentation	and	man	pages.

Manuals.	See	Documentation	and	man	pages.

Master	branch,	kernel	recipes,	239

Matchbox,	description,	27

md5sum	parameter,	89

Memory

description,	135

Linux	architecture,	135

virtual,	135

Yocto	Projects,	16

Memory	management

cross-prelinking	memory	addresses,	27

kernel	function,	8

Linux	kernel,	136–137

prelinking	memory	addresses,	27

Memory	management	unit	(MMU),	2

menuconfig	command,	6

Meta	branch,	kernel	recipes,	240

meta	directory,	49

meta	metadata	layer,	47

meta	[-xxxx]	variable,	112

Metadata.	See	also	BitBake	metadata.

analyzing,	119–120

build,	191–193

caching,	52

core	collection	for	OpenEmbedded	build	system,	27

definition,	32

descriptive,	189

displaying,	67

executable,	42

layer	structure,	53–56

layers,	creating,	50

licensing,	190

package	manager,	189–190

packaging,	193–194

runtime,	194

syntax,	kernel	recipes,	244–247

Metadata	application,	kernel	recipes,	250

Metadata	files.	See	OpenEmbedded	workflow,	metadata	files.

Metadata	layers

BitBake,	31

meta	layer,	47

meta-yocto	layer,	47

meta-yocto-bsp	layer,	47

OE	(OpenEmbedded)	Core,	31

OpenEmbedded	system	architecture,	49

Metadata	organization,	kernel	recipes,	247–250

Metadata	reference

layers,	404–414

machines,	415–428

meta-fsl-arm	BSP	layer,	276

meta-fsl-ppc	BSP	layer,	276

meta-hob	directory,	49

meta-intel	BSP	layer,	276

meta-intel-galileo	BSP	layer,	276

meta-intel-quark	BSP	layer,	276

meta-minnow	BSP	layer,	276

meta-raspberrypi	BSP	layer,	276

meta-renesas	BSP	layer,	276

meta-selftest	directory,	49

meta-skeleton	directory,	49

meta-ti	BSP	layer,	276

meta-xilinx	BSP	layer,	276

meta-yocto	directory,	49

meta-yocto	metadata	layer,	47

meta-yocto-bsp	directory,	49

meta-yocto-bsp	metadata	layer,	47

meta-zynq	BSP	layer,	276

method	parameter,	92

Microkernels,	135

migrate	command,	354

Minicom,	270–271

MinnowBoard	Max	development	board,	275

Mirror	sites,	366

Mirrors

configuring,	175

creating,	95

definition,	43

downloading	BitBake	source,	94–95

postmirrors,	367

source	mirrors,	366–368

MIRRORS	variable,	94–95,	174

MIT	License,	377

MKTEMPCMD	variable,	106

MKTEMPDIRCMD	variable,	106

MMU	(memory	management	unit),	2

Mobile	phones

embedded	distributions	for,	4

tools	and	utilities,	7

Modularity,	embedded	Linux,	3

module	parameter,	92

module_do_install	task,	254

Monitors,	129

Monolithic	kernels,	135

musl,	C	library,	143

N
-n	parameter,	293

Name	(key)	expansion,	86

name	parameter,	89–90

Naming	conventions,	BitBake	variables,	72

Narcissus,	4–5

NATIVELSBSTRING	variable,	112

--native-sysroot	parameter,	293

Network	stack,	Linux	kernel,	138–139

Networking,	embedded	Linux,	3

Newlib,	C	library,	143

NFS	(Network	File	System),	332

nfs	feature,	178

nfs-server	feature,	154

NM	variable,	309

nocheckout	parameter,	91

Non-stripped	binary	information,	311

norecurse	parameter,	92

--no-setscene	option,	65,	66

--no-table	parameter,	296

Note	message	severity,	114–115

O
-o	parameter,	284,	292–293

OBJCOPY	variable,	309

OBJDUMP	variable,	309

Object-oriented	mapping	(ORM),	345–346

Object-relational	model	category,	Toaster,	350–351

ODROID-XU4	development	board,	275

OE	(OpenEmbedded)	Core

definition,	32

description,	27

metadata	layer,	31,	53–56

OECORE_ACLOCAL_OPTS	variable,	309

OECORE_DISTRO_VERSION	variable,	309

OECORE_TARGET_SYSROOT	variable,	309

oe-init-build-env	script,	20,	46,	49

oe-init-build-env-memres	script,	49

OELAYOUT_ABI	variable,	175

OE_TERMINAL	variable,	121,	227

OGIT_MIRROR_DIR	parameter,	371

OGIT_TRASH_CRON_TIME	parameter,	371

OGIT_TRASH_DIR	parameter,	371

OGIT_TRASH_NICE_LEVEL	parameter,	371

--ondisk	parameter,	296

--ondrive	parameter,	296

Online	image	assembly,	4–5

On-target	execution,	310

Open	firmware.	See	Device	trees.

Open	Package	Management	(opkg),	162–163

Open	Services	Gateway	Initiative	(OSGi),	317

Open	Source	Initiative	(OSI),	336

Open	source	licenses.	See	also	Licensing	and	compliance.

Apache	License	Version	2.0,	397–401

BSD	(Berkeley	Software	Distribution),	10

vs.	commercial	licenses,	10

GNU	GPL	(General	Public	License),	10

GNU	GPL	(General	Public	License)	Version	2,	377–384

GNU	GPL	(General	Public	License)	Version	3,	384–397

MIT	License,	377

overview,	9–11

permissive	licenses,	10

self-perpetuating	licenses,	10

Open	source	software,	packaging,	38–39

Open	source	software	packages,	workflow

building,	38

configuration,	37–38

extracting	source	code,	36

fetching	source	code,	36

installation,	38

packaging,	38–39

patching,	37

OpenEmbedded	(OE)	Core

definition,	32

description,	27

metadata	layer,	31,	53–56

OpenEmbedded	system

aligned	development,	30

build	environment	structure,	50–53

caching	metadata,	52

cooker	process	logging	information,	52

core	collection	of	metadata,	27

deployment	output,	directory	for,	52

history	of	Yocto	Project,	29,	30–31

launching	Hob,	50

layer	creation,	56

layer	layout,	53–55

listing	changed	components,	50

metadata	layer	structure,	53–56

metadata	layers,	creating,	50

OE	Core	layer,	53–56

overview,	7

QEMU	emulator,	launching,	50

recipes,	creating,	50

relationship	to	Yocto	Project,	30–31

removing	obsolete	directories,	50

root	filesystems,	52

shared	software	packages,	directory	for,	52

shared	state	manifest	files,	52

storing	build	statistics,	52

task	completion	tags	and	signature	data,	52

tmp	directory	layout	version	number,	52

working	subdirectories,	52

Yocto	Project	BSP	layer,	creating	a,	50

Yocto	project	kernel	recipes,	configuring,	50

OpenEmbedded	system	architecture

base	layers,	47.	See	also	specific	layers.

basic	components,	45–46

build	system	structure,	47–50

integration	and	support	scripts,	50

meta	metadata	layer,	47

metadata	layers,	49

meta-yocto	metadata	layer,	47

meta-yocto-bsp	metadata	layer,	47

OpenEmbedded	workflow,	diagram,	40

OpenEmbedded	workflow,	metadata	files

build	environment	configuration,	41

build	environment	layer	configuration,	41

configuration	files,	40

distribution	configuration,	42

layer	configuration,	40

machine	configuration,	42

recipes,	42–43

OpenEmbedded	workflow,	process	steps

compile,	44

configuration,	44

fetching	source	code,	43–44

image	creating,	45

installation,	44

output	analysis,	44

packaging,	44

patching	source	code,	44

SDK	generation,	45

unpacking	source	code,	44

opengl	feature,	178

OpenMoko,	7

OpenSIMpad,	7

OpenSUSE,	setting	up	a	build	host,	19

OpenWrt	distribution,	5

OpenZaurus	project,	7,	28

opkg	(Open	Package	Management),	39,	162–163

OProfile,	302

OPTIMIZED_GIT_CLONE	parameter,	371

Optional	inclusion,	77

Organizations

Apache	Software	Foundation,	11–12

CE	(Consumer	Electronics)	Workgroup,	13

CELF	(Consumer	Electronics	Linux	Forum),	13

Eclipse	Project,	12

Linux	Foundation,	11

LSB	(Linux	Standard	Base),	12–13

ORM	(object-oriented	mapping),	345–346

Orphan	branches,	kernel	recipes,	240,	250

Orthogonality,	264

OSGi	(Open	Services	Gateway	Initiative),	317

OSI	(Open	Source	Initiative),	336

--outdir	parameter,	284,	292–293

Output	analysis,	OpenEmbedded	workflow,	44

--overhead-factor	parameter,	296

OVERRIDES	variable,	75,	106

P
P	variable,	106

Package	groups

core	images,	155–159

naming	conventions,	159

predefined,	155–158

recipes,	158–159

Package	management

choosing,	162–163

core	image	configuration,	162–163

core	image	options,	162–163

dpkg	(Debian	Package	Management),	162–163

opkg	(Open	Package	Management),	162–163

RPM	(Red	Hat	Package	Manager),	162–163

tar,	162

Package	management	systems.	See	also	specific	systems.

definition,	33

most	common,	39

shared	software	packages,	directory	for,	52

splitting	files	into	multiple	packages,	44

Package	recipes,	Toaster,	357

Package	splitting,	207–209

PACKAGE_ARCH	variable,	193

PACKAGE_BEFORE_PN	variable,	193

PACKAGE_CLASSES	variable,	162

PACKAGECONFIG	variable,	192

PACKAGE_DEBUG_SPLIT_STYLE	variable,	194

package-depends.dot	file,	67,	121

packagegroup	class,	158–159

packagegroup-	predefined	packages,	155–158

package-management	feature,	153

Packages

architecture	adjustment,	210

core	images,	149–150

definition,	32

dependencies,	graphing,	67–68

deploying,	222

directives	for	building.	See	Recipes.

managing	build	package	repositories,	29

omitting	common	packages,	68

QA,	209–210

removing,	222

PACKAGES	variable,	193,	208

PACKAGESPLITFUNCS	variable,	194

Packaging

architecture-independent,	210

machine-dependent,	210

open	source	software,	38–39

OpenEmbedded	workflow,	44

recipe	build	output,	207–210

Parallel	build	failure,	204

Parallelism	options,	22

PARALLEL_MAKE	variable,	22

Parentheses	(()),	in	license	names,	201

partition	directive,	295–296

--part-type	parameter,	296

Passwords

Autobuilder,	369–370

shell	and	SSH	logins,	161

user	accounts,	166–167

Patch	collection	description,	kernel	recipes,	245–246

patch	command,	244,	285–286

patches	subdirectory,	249

Patching

BSP	source	code,	262

kernel	recipes,	231–233,	237

open	source	software,	37

recipe	source	code,	201

source	code,	OpenEmbedded	workflow,	44

PATH	variable,	309

pci	feature,	178

pcmcia	feature,	178

Percent	sign	(%),	in	BitBake	version	strings,	102

Perf,	303

Performance	information,	Toaster,	357

Period.	See	Dot.

PERSISTENT_DIR	variable,	106

PF	variable,	106

Pipe	symbol	(|)

concatenating	license	names,	201,	337

separating	kernel	names,	237

PKG_CONFIG_PATH	variable,	309

PKG_CONFIG_SYSROOT	variable,	309

pkg_postinst_	script,	210

pkg_postrm_	script,	210

pkg_preinst_	script,	210

pkg_prerm_	script,	210

PKI	(public	key	infrastructure),	360

Plain	message	severity,	114–115

Plausibility	checking,	209–210

Plus	equal	(+=),	appending	variables,	74

PN	variable,	100,	106,	191

pn-buildlist	file,	121

pn-depends.dot	file,	67,	121

poky	distribution	configuration,	169

Poky	distribution	policy,	170–176

Poky	Linux

architecture,	46

build	system.	See	Yocto	Project	Build	Appliance.

definition,	33

description,	28

history	of	Yocto	Project,	29–30

installing,	19–20

licensing	information,	48–49

obtaining,	17–18

poky-bleeding	distribution	configuration,	169

poky.conf	file,	42,	170–176

poky-lsb	distribution	configuration,	169

poky-tiny	distribution	configuration,	169

populate_sdk_base_bbclass	class,	154

port	parameter,	92

Portage,	29

Postmirrors,	43,	367

Post-mortem	debugging,	311

--postread	option,	64,	68–69

PowerTOP,	302

ppp	feature,	178

PR	variable,	100,	106,	191

Prebuilt	binaries,	Yocto	Project	BSPs,	280

PREFERRED_VERSION	variable,	102

Prelinking	memory	addresses,	27

PREMIRRORS	variable,	94–95,	174

_prepend	operator,	75,	84–85

Prepending

BitBake	variables,	74–75,	76

functions,	84–85

Prepends,	recipe	layout,	194

PRIORITY	variable,	190

Privileged	mode,	129

Process	management,	Linux	kernel,	138

Processes

definition,	138

interprocess	communication,	139

vs.	threads,	138

Project	management,	Toaster,	356

Project-specific	BitBake	variables,	104

protocol	parameter

Git	fetcher,	90

SVN	(Subversion)	fetcher,	92

PROVIDES	variable,	99–100,	106,	191

Provisioning

BitBake	dependency	handling,	99–101

explicit,	100

implicit,	99–100

symbolic,	100–101

Pseudo,	description,	28

ptest-pkgs	feature,	154

Public	key	infrastructure	(PKI),	360

PUBLISH_BUILDS	parameter,	371

PUBLISH_SOURCE_MIRROR	parameter,	371

PUBLISH_SSTATE	parameter,	371

PV	variable

build	metadata,	191

building	kernel	recipes,	237

explicit	provisioning,	100

runtime	variable,	106

setting	package	version	number,	243

PXELINUX	bootloader,	133

Python

logging	statements,	example,	115

variable	expansion,	74

version	verification,	19

Python	functions.	See	also	Functions.

accessing	BitBake	variables,	83

anonymous,	80

executable	metadata,	79–80

formatting	guidelines,	196

global,	80

python	keyword,	79–80

Python	virtual	environment,	Toaster,	347–348

PYTHONHOME	variable,	309

Q
QEMU	emulator

application	development	with,	331–333

launching,	50

launching	applications,	333

purpose	of,	302

terminating,	24

qt4-pkgs	feature,	154

Question	mark	equal	(?=),	default	value	assignment,	73

Question	marks	equal	(??=),	weak	default	assignment,	73

R
-r	parameter,	64,	68–69,	293

RANLIB	variable,	309

Raspberry	Pi	2	B	development	board,	275

Raw	mode,	292–293

RCONFLICTS	variable,	195

RDEPENDS	variable,	101,	194

--read	option,	64,	68–69

README	file,	Yocto	Project	BSPs,	279

README.sources	file,	Yocto	Project	BSPs,	280

read-only-rootfs	feature,	153

Real	time	operation,	Linux,	2

Real-time	systems,	hard	vs.	soft,	2

rebaseable	parameter,	91

Recipe	files,	70–71,	281–282

Recipes.	See	also	Kernel	recipes.

appending	files,	listing,	123

building,	222

definition,	33

extending	core	images,	152–153

filenames,	186

formatting	source	code,	195

listing,	123

listing	tasks,	116–117

metadata	dependent,	listing,	124

OpenEmbedded	workflow,	42–43

package	groups,	158–159

tools	and	utilities,	7

updating,	223–224

Recipes,	creating

architecture-independent	packaging,	210

common	failures,	204

compiling	source	code,	203–204

configuring	source	code,	202–203

custom	installation	scripts,	210–211

establishing	the	recipe,	198–199

fetching	source	code,	199–200

host	leakage,	204

installing	the	build	output,	204–206

licensing	information,	201–202

machine-dependent	packaging,	210

missing	headers	or	libraries,	204

overview,	196–198

package	architecture	adjustment,	210

package	QA,	209–210

package	splitting,	207–209

packaging	the	build	output,	207–210

parallel	build	failure,	204

patching	source	code,	201

plausibility	and	error	checking,	209–210

from	a	script,	50

setup	system	services,	206–207

skeleton	recipe,	198

source	configuration	systems,	203

systemd,	setting	up,	207

SysVinit,	setting	up,	206–207

tools	for.	See	Devtool.

unpacking	source	code,	200

variants,	211

workflow,	197

Recipes,	examples

Autotools-based	package,	216–217

C	file	software,	212–213

CMake-based	package,	215–216

externally	built	package,	217–218

makefile-based	package,	213–215

Recipes,	layout

appends,	194

build	metadata,	191–193

class	extensions,	194

code	sample,	187–189

descriptive	metadata,	189

includes,	190

inheritance	directives,	190

licensing	metadata,	190

overview,	186

package	manager	metadata,	189–190

packaging	metadata,	193–194

prepends,	194

runtime	metadata,	194

task	overrides,	194

variants,	194

recipes-bsp	directory,	281

recipes-core	directory,	281

recipes-graphics	directory,	281

recipes-kernel	directory,	282

Red	Hat	bootloader.	See	RedBoot	bootloader.

Red	Hat	Package	Manager	(RPM),	29,	39,	162–163

RedBoot	bootloader,	131,	134

Release	schedule,	Yocto	Project,	17

Releases,	code	names,	277

Relevant	bodies.	See	Organizations.

Remote	on-target	debugging,	311–315

_remove	operator,	75

Removing.	See	also	Deleting.

obsolete	directories,	50

packages,	222

values	from	BitBake	metadata,	75

required	directive,	77

Required	inclusion,	77

Restricted	mode,	129

rev	parameter,	92

Root	filesystems

OpenEmbedded	system,	52

tweaking,	167–169

types	of,	164–166

Root	user	accounts,	167

--rootfs-dir	parameter,	293

ROOTFS_POSTPROCESS_COMMAND,	167–169

Routing	network	traffic,	distributions	for,	5

Royalties,	embedded	Linux,	2

RPM	(Red	Hat	Package	Manager),	29,	39,	162–163

RPROVIDES	variable,	195

RRECOMMENDS	variable,	194

RREPLACES	variable,	195

rsh	parameter,	92

RSUGGESTS	variable,	194

run.do	file,	118–119

runqemu	script,	50

Runtime	dependencies,	99

S
-s	parameter,	284,	292

S	variable,	106,	191,	236

SANITY_TESTED_DISTROS	variable,	176

saved_tmpdir	file,	52

Scalability,	embedded	Linux,	3

Scaling	to	teams.	See	Autobuilder;	Build	history;	Mirrors;	Toaster.

Scheduling,	135,	368

SCI	(system	call	interface),	139–140

Scope,	BitBake	variables,	72

Scripts.	See	also	specific	scripts.

BitBake,	27

integration	and	support,	50

SDK	(software	development	kit).	See	also	ADT	(Application	Development	Toolkit).

generating,	45

in	OpenEmbedded	workflow,	45

SDKIMAGE_FEATURES	variable,	SDK	information,	365

sdk-info.txt	file,	365

SDKMACHINE	variable,	SDK	information,	365

SDK_NAME	variable,	173,	365

SDKPATH	variable,	173

SDKSIZE	variable,	SDK	information,	365

SDKTARGETSYSROOT	variable,	309

SDK_VENDOR	variable,	173

SDK_VERSION	variable,	173,	365

SECTION	variable,	189

Semicolon	(;),	command	separator,	167

Serial-to-USB	cable,	270

set	substitute-path	command,	330

set	sysroot	command,	330

Set-scene,	64

setup.py	script,	60–61

setVar	function,	83

sha256sum	parameter,	89

Shared	Libraries	subtab,	329

Shared	software	packages,	directory	for,	52

Shared	state	cache,	specifying	path	to,	22

Sharing

metadata	settings,	76–77

source	packages.	See	Mirrors.

Sharp	Zaurus	SL-5000D,	28

Shell	functions

accessing	BitBake	variables,	82–83

executable	metadata,	79

formatting	guidelines,	196

Shell	variables,	setting,	20–22

show-appends	command,	123

show-cross-depends	command,	124

show-layers	command,	123

show-overlayed	command,	123

show-recipes	command,	123

Single	quote	('),	variable	delimiter,	72

sites-config-*	files,	307

--size	parameter,	296

--skip-build-check	parameter,	292

-skip-git-check	parameter,	284

Slab	allocator,	137

smbfs	feature,	178

Socket	layer,	138–139

Soft	real-time	systems,	2

Software	development	kit	(SDK).	See	also	ADT	(Application	Development	Toolkit).

generating,	45

in	OpenEmbedded	workflow,	45

Software	Package	Data	Exchange	(SPDX),	337

Software	requirements,	Yocto	Project,	17

Source	code.	See	also	Open	source	software.

configuring,	tools	and	utilities	for,	37–38

embedded	Linux,	3

extracting,	36

fetching,	36,	43–44

managing	licensing	and	compliance,	341–343

OpenEmbedded	workflow,	43–44

patches,	262

patching,	44

unpacking,	44

Source	mirrors,	366–368

--source	parameter,	295–296

Source	tab,	330

SPDX	(Software	Package	Data	Exchange),	337

splash	feature,	153

SquashFS	compression,	165

SquashFS-xz	compression,	165

SRCDATE	variable,	191

SRCREV	variable,	106,	237,	242

SRC_URI	variable

build	metadata,	191

building	kernel	recipes,	236,	237,	242

fetching	source	code,	199–200

runtime	variable,	106

SSH	server	configuration,	168

ssh-server-dropbear	feature,	154

ssh-server-openssh	feature,	154

sstate-control	directory,	52

SSTATE_DIR	variable,	22

staging	subdirectory,	249

STAGING_KERNEL_DIR	variable,	254

Stallman,	Richard,	10

stamps	directory,	52

Standard	runtime	BitBake	variables,	104

Standards,	LSB	(Linux	Standard	Base),	12–13

State	manifest	files,	shared,	52

staticdev-pkgs	feature,	154

String	literals,	BitBake	variables,	72

STRIP	variable,	309

Sudo	configuration,	168

Sudoer	privileges,	167

SUMMARY	variable,	189

SUSE	distribution,	5,	19

SVNDIR	variable,	106

Swabber,	description,	28

syncdb	command,	354

SYSLINUX	bootloader,	131,	133

sysroots	directory,	52

System	call	interface	(SCI),	139–140

System	call	slot,	139

System	calls

kernel	function,	8

tracing,	139–140

System	manager

core	image	configuration,	179

default,	179

System	root,	ADT	applications,	302

System	Tap,	303

systemd,	setting	up,	207

systemd	feature,	178

systemd	system	manager,	178

systemd-boot	bootloader,	131,	134

SYSTEMD_PACKAGES	variable,	207

SYSTEMD_SERVICE	variable,	207

SysVinit,	setting	up,	206–207

sysvinit	feature,	178

SysVinit	system	manager,	179

T
T	variable,	106

Tablet	computers,	embedded	distributions	for,	4

tag	parameter

CVS	(Current	Versions	System)	fetcher,	92

Git	fetcher,	90

Tanenbaum,	Andrew	S.,	135

tar,	package	management,	162

tar	compression,	164

tar.bz2	compression,	164

target	directory,	365

Target	Explorer,	324–325

TARGET_ARCH	variable,	106

TARGET_FPU	variable,	112

TARGET_PREFIX,	CROSS	COMPILE	variable,	309

TARGET_SYS	variable,	112

TARGET_VENDOR	variable,	173

tar.gz	compression,	164

tar.lz3	compression,	164

tar.xz	compression,	164

Task	execution

dependencies,	117–118

listing	tasks,	116–117

script	files,	118–119

specific	tasks,	118

troubleshooting,	116–119

Task	overrides,	recipe	layout,	194

task-depends.dot	file,	67,	121

Tasks

BitBake	metadata,	81–82,	107

clean,	112

completion	tags	and	signature	data,	52

defining,	81–82

definition,	33

executing	specific,	66

obtaining	and	restoring	output,	64

TCF	network	protocol,	323

TCLIBC	variable,	174

TCLIBCAPPEND	variable,	174

TCMODE	variable,	174

terminal	class,	227

Terminal	emulation,	270–272

Testing,	core	images	with	QEMU,	150–151

Threads

definition,	138

vs.	processes,	138

Tilde	(~),	in	variable	names,	72

--timeout	parameter,	297

Timing	error,	2

tmp	directory	layout	version	number,	52

TMPBASE	variable,	106

TMPDIR	variable,	106

TMP_DIR	variable,	22

Toaster

administering	the	Django	framework,	350–351

Analysis	mode,	346,	348

authentication	category,	350

build	configuration,	356

build	control	category,	350

build	log,	357

Build	mode,	346–347,	348,	349

build	statistics,	357

configuration,	349–351

description,	28,	345

image	information,	357

image	targets,	357

installing	requirements,	348

layer	management,	357

local	Toaster	development,	348–349

object-relational	model	category,	350–351

operational	modes,	346–347

ORM	(object-oriented	mapping),	345–346

overview,	345–346

package	recipes,	357

performance	information,	357

project	management,	356

Python	virtual	environment,	347–348

setting	the	port,	349

setup,	347–348

web	user	interface,	356–358

Toaster,	production	deployment

installation	and	configuration,	352–354

installing	the	build	runner	service,	355–356

maintaining	your	production	interface,	356

preparing	the	production	host,	351–352

web	server	configuration,	354–355

WSGI	(Web	Server	Gateway	Interface),	354–355

Toolchains

in	ADT	applications,	307–310

building	a	toolchain	installer,	304

configuring,	174–175

cross-canadian	toolchain	binaries,	306

cross-compilation,	building,	6

cross-development,	32,	302

installing,	305–307

Tooling,	embedded	Linux,	3

Tools	and	utilities

ADT	profiling	tools,	302–303

Autotools,	37–38

Baserock,	6

bitbake-layers,	122–124

BSP	development	tools,	262

build	history,	151–152

Buildroot,	6

BusyBox,	6

for	command	line	utility	applications,	6

configuring	source	code,	37–38

creating	bootable	media	images,	291

creating	Yocto	Project	BSPs,	282–289

cross-compilation	toolchain,	building,	6

crosstool.ng,	6

embedded	Linux	systems,	building,	6–7

Linux	distributions,	building,	6

Minicom,	270–271

for	mobile	phones,	7

OpenEmbedded,	7

recipes,	7

terminal	emulation,	270–271

tools	configuration	data,	7

uClibc,	6

user	interface	configuration,	6

verifying	and	comparing	core	images,	151–152

wic,	291

yocto-bsp,	283–284

yocto-kernel,	284–286

Tools	configuration	data,	7

tools-debug	feature,	154

tools-profile	feature,	154

tools-sdk	feature,	154

tools-testapps	feature,	154

Top-down	approach	to	embedded	Linux,	8–9

Torvalds,	Linus

creating	Git,	236

on	Linux	portability,	1

on	microkernel	architecture,	135

Tracing	library	functions,	330–331

Tracing	system	calls,	139–140

Tracking.	See	Build	history.

Troubleshooting.	See	also	Debugging;	Log	files;	Logging	statements.

analyzing	metadata,	119–120

debugging	layers,	122–124

dependency	graphs,	121–122

development	shell,	120–121

task	execution,	116–119

tracing	system	calls,	139–140

TUNE_ARCH,	289

TUNE_ASARGS,	290

TUNE_CCARGS,	290

tune-core2.inc	file,	289

tune-corei7.inc	file,	289

TUNE_FEATURES,	289–290

TUNE_FEATURES	variable,	112

tune-i586.inc	file,	289

TUNE_LDARGS,	290

TUNE_PKGARCH,	290

Twisted	Python	networking	engine,	368–369

U
ubi	compression,	165

ubifs	compression,	165

U-Boot	bootloader,	131,	133

Ubuntu	distribution,	5,	19

uClibc,	C	library,	6,	142

Underscore	(_)

conditional	variable	setting,	76

in	variable	names,	72

Unpacking

recipe	source	code,	200

source	code,	OpenEmbedded	workflow,	44

Unrestricted	mode,	129

Upstream,	definition,	33

usbgadget	feature,	178

usbhost	feature,	178

User	accounts

adding,	166–167

deleting,	166–167

managing,	166–167

modifying,	166–167

root,	167

sudoer	privileges,	167

User	groups

adding,	166–167

deleting,	167

modifying,	167

User	interface	configuration,	tools	and	utilities,	6

User	mode,	129

User	names,	Autobuilder,	369–370

User	space,	140

useradd	command,	166–167

userdel	command,	166–167

Userland.	See	User	space.

usermod	command,	166–167

--use-uuid	parameter,	296

--uuid	parameter,	296

V
Variables,	listing,	120–121.	See	also	BitBake	metadata	syntax,	variables;	specific
variables.

Variants,	194,	211

Verifying	core	images,	151–152

version-*	files,	307

--version	option,	64–65

Version	selection,	BitBake,	102

Versions,	displaying,	65

VFS	(virtual	filesystem),	137–138

Virtual	addressing,	136–137

Virtual	environments,	28

Virtual	memory,	135

virtualenv	command,	347–348

Vmdk	compression,	165

W
WandBoard	development	board,	275

Warn	message	severity,	114–115

WARN_QA	variable,	176,	209

wayland	feature,	178

Web	user	interface,	Toaster,	356–358

wget	command,	60

wic	tool,	291

wifi	feature,	178

Window	manager,	27

work	directory,	52

WORKDIR	variable,	107

Worker	configuration	file,	372–373

Working	subdirectories,	OpenEmbedded	system,	52

work-shared	directory,	52

workspace	layers

adding	recipes,	220–221,	223

creating,	219–220

displaying	information	about,	223

WSGI	(Web	Server	Gateway	Interface),	354–355

X
x11	feature,	154,	178

x11-base	feature,	154

xconfig	command,	6

Y
Yocto	Project.	See	also	BSPs	(board	support	packages);	Kernel	recipes,	building	from
Yocto	Project	repositories.

aligned	development,	30

BSP	layer,	creating,	50

building	and	installing	software	packages,	29

definition,	15

definition	of	common	terms,	31–33.	See	also	specific	terms.

kernel	recipes,	configuring,	50

layers,	276–278

overview,	7

reference	distribution.	See	Poky	Linux.

release	schedule,	17

tools	and	utilities,	17–18

Yocto	Project,	getting	started

BitBake	working	directory,	specifying,	22

configuring	a	build	environment,	20–23

disk	space,	16

hardware	requirements,	16

installing	software	packages,	19

Internet	connection,	16–17

launching	a	build,	23

location	for	downloads,	specifying,	22

memory,	16

obtaining	tools,	17–18

parallelism	options,	22

path	to	shared	state	cache,	specifying,	22

prerequisites,	16–17

setting	shell	variables,	20–22

setting	up	the	build	host,	18–20

software	requirements,	17

target	build	machine	type,	selecting,	22

verifying	build	results,	24

without	using	a	build	host,	24–26

Yocto	Project,	history	of

BitBake,	29

ebuild,	29

emerge,	29

first	Linux-based	digital	assistant,	28

OpenEmbedded	project,	29,	30–31

OpenZaurus	project,	28

Poky	Linux,	29–30

Portage,	29

Sharp	Zaurus	SL-5000D,	28

Yocto	Project	Application	Developer’s	Guide,	304

Yocto	Project	Autobuilder.	See	Autobuilder.

Yocto	Project	BSPs

classes,	281

display	support	recipes,	281

layer	configuration	file,	280

layer	layout,	277–278

license	files,	278

Linux	kernel	recipes,	282

machine	configuration	files,	280–281

maintainers	file,	279

prebuilt	binaries,	280

README	file,	279

README.sources	file,	280

recipe	files,	281–282

Yocto	Project	BSPs,	creating

approaches	to,	282

kernel	configuration	options,	285

kernel	features,	285–286

kernel	patches,	285–286

tools	for,	282–289

workflow,	286–289

Yocto	Project	BSPs,	external

BSP	layers,	276

building	with	layers,	276–277

development	boards,	272–276

overview,	272

Yocto	Project	Build	Appliance,	24–26

Yocto	Project	Eclipse,	319–321.	See	also	Eclipse	IDE	plugin.

Yocto	Project	family	subprojects,	26–28.	See	also	specific	subprojects.

Yocto	Project	Reference	Manual,	209

Yocto	Projects,	release	code	names,	277

yocto-bsp	create	command,	284

yocto-bsp	list	command,	283–284

yocto-bsp	script,	50

yocto-bsp	tool,	283–284

yocto-controller/controller.cfg	file,	372

yocto-kernel	config	add	command,	285

yocto-kernel	config	list	command,	285

yocto-kernel	config	rm	command,	285

yocto-kernel	feature	add	command,	286

yocto-kernel	feature	create	command,	286

yocto-kernel	feature	destroy	command,	286

yocto-kernel	feature	list	command,	286

yocto-kernel	feature	rm	command,	286

yocto-kernel	features	list	command,	286

yocto-kernel	patch	add	command,	286

yocto-kernel	patch	list	command,	285

yocto-kernel	patch	rm	command,	286

yocto-kernel	script,	50

yocto-kernel	tool,	284–286

yocto-layer	script,	50,	56

yocto-worker/buildbot.tac	file,	372–373

Code	Snippets

	About This E-Book
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Foreword
	Preface
	What This Book Is and What It Is Not
	Who Should Read This Book
	How This Book Is Organized
	Hands-on Experience

	Acknowledgments
	About the Author
	1. Linux for Embedded Systems
	1.1 Why Linux for Embedded Systems?
	1.2 Embedded Linux Landscape
	1.2.1 Embedded Linux Distributions
	1.2.2 Embedded Linux Development Tools

	1.3 A Custom Linux Distribution—Why Is It Hard?
	1.4 A Word about Open Source Licensing
	1.5 Organizations, Relevant Bodies, and Standards
	1.5.1 The Linux Foundation
	1.5.2 The Apache Software Foundation
	1.5.3 Eclipse Foundation
	1.5.4 Linux Standard Base
	1.5.5 Consumer Electronics Workgroup

	1.6 Summary
	1.7 References

	2. The Yocto Project
	2.1 Jumpstarting Your First Yocto Project Build
	2.1.1 Prerequisites
	2.1.2 Obtaining the Yocto Project Tools
	2.1.3 Setting Up the Build Host
	2.1.4 Configuring a Build Environment
	2.1.5 Launching the Build
	2.1.6 Verifying the Build Results
	2.1.7 Yocto Project Build Appliance

	2.2 The Yocto Project Family
	2.3 A Little Bit of History
	2.3.1 OpenEmbedded
	2.3.2 BitBake
	2.3.3 Poky Linux
	2.3.4 The Yocto Project
	2.3.5 The OpenEmbedded and Yocto Project Relationship

	2.4 Yocto Project Terms
	2.5 Summary
	2.6 References

	3. OpenEmbedded Build System
	3.1 Building Open Source Software Packages
	3.1.1 Fetch
	3.1.2 Extract
	3.1.3 Patch
	3.1.4 Configure
	3.1.5 Build
	3.1.6 Install
	3.1.7 Package

	3.2 OpenEmbedded Workflow
	3.2.1 Metadata Files
	3.2.2 Workflow Process Steps

	3.3 OpenEmbedded Build System Architecture
	3.3.1 Build System Structure
	3.3.2 Build Environment Structure
	3.3.3 Metadata Layer Structure

	3.4 Summary
	3.5 References

	4. BitBake Build Engine
	4.1 Obtaining and Installing BitBake
	4.1.1 Using a Release Snapshot
	4.1.2 Cloning the BitBake Development Repository
	4.1.3 Building and Installing BitBake

	4.2 Running BitBake
	4.2.1 BitBake Execution Environment
	4.2.2 BitBake Command Line

	4.3 BitBake Metadata
	4.4 Metadata Syntax
	4.4.1 Comments
	4.4.2 Variables
	4.4.3 Inclusion
	4.4.4 Inheritance
	4.4.5 Executable Metadata
	4.4.6 Metadata Attributes
	4.4.7 Metadata Name (Key) Expansion

	4.5 Source Download
	4.5.1 Using the Fetch Class
	4.5.2 Fetcher Implementations
	4.5.3 Mirrors

	4.6 HelloWorld—BitBake Style
	4.7 Dependency Handling
	4.7.1 Provisioning
	4.7.2 Declaring Dependencies
	4.7.3 Multiple Providers

	4.8 Version Selection
	4.9 Variants
	4.10 Default Metadata
	4.10.1 Variables
	4.10.2 Tasks

	4.11 Summary
	4.12 References

	5. Troubleshooting
	5.1 Logging
	5.1.1 Log Files
	5.1.2 Using Logging Statements

	5.2 Task Execution
	5.2.1 Executing Specific Tasks
	5.2.2 Task Script Files

	5.3 Analyzing Metadata
	5.4 Development Shell
	5.5 Dependency Graphs
	5.6 Debugging Layers
	5.7 Summary

	6. Linux System Architecture
	6.1 Linux or GNU/Linux?
	6.2 Anatomy of a Linux System
	6.3 Bootloader
	6.3.1 Role of the Bootloader
	6.3.2 Linux Bootloaders

	6.4 Kernel
	6.4.1 Major Linux Kernel Subsystems
	6.4.2 Linux Kernel Startup

	6.5 User Space
	6.6 Summary
	6.7 References

	7. Building a Custom Linux Distribution
	7.1 Core Images—Linux Distribution Blueprints
	7.1.1 Extending a Core Image through Local Configuration
	7.1.2 Testing Your Image with QEMU
	7.1.3 Verifying and Comparing Images Using the Build History
	7.1.4 Extending a Core Image with a Recipe
	7.1.5 Image Features
	7.1.6 Package Groups

	7.2 Building Images from Scratch
	7.3 Image Options
	7.3.1 Languages and Locales
	7.3.2 Package Management
	7.3.3 Image Size
	7.3.4 Root Filesystem Types
	7.3.5 Users, Groups, and Passwords
	7.3.6 Tweaking the Root Filesystem

	7.4 Distribution Configuration
	7.4.1 Standard Distribution Policies
	7.4.2 Poky Distribution Policy
	7.4.3 Distribution Features
	7.4.4 System Manager
	7.4.5 Default Distribution Setup

	7.5 External Layers
	7.6 Hob
	7.7 Summary

	8. Software Package Recipes
	8.1 Recipe Layout and Conventions
	8.1.1 Recipe Filename
	8.1.2 Recipe Layout
	8.1.3 Formatting Guidelines

	8.2 Writing a New Recipe
	8.2.1 Establish the Recipe
	8.2.2 Fetch the Source Code
	8.2.3 Unpack the Source Code
	8.2.4 Patch the Source Code
	8.2.5 Add Licensing Information
	8.2.6 Configure the Source Code
	8.2.7 Compile
	8.2.8 Install the Build Output
	8.2.9 Setup System Services
	8.2.10 Package the Build Output
	8.2.11 Custom Installation Scripts
	8.2.12 Variants

	8.3 Recipe Examples
	8.3.1 C File Software Package
	8.3.2 Makefile-Based Software Package
	8.3.3 CMake-Based Software Package
	8.3.4 GNU Autotools-Based Software Package
	8.3.5 Externally Built Software Package

	8.4 Devtool
	8.4.1 Round-Trip Development Using Devtool
	8.4.2 Workflow for Existing Recipes

	8.5 Summary
	8.6 References

	9. Kernel Recipes
	9.1 Kernel Configuration
	9.1.1 Menu Configuration
	9.1.2 Configuration Fragments

	9.2 Kernel Patches
	9.3 Kernel Recipes
	9.3.1 Building from a Linux Kernel Tree
	9.3.2 Building from Yocto Project Kernel Repositories

	9.4 Out-of-Tree Modules
	9.4.1 Developing a Kernel Module
	9.4.2 Creating a Recipe for a Third-Party Module
	9.4.3 Including the Module with the Root Filesystem
	9.4.4 Module Autoloading

	9.5 Device Tree
	9.6 Summary
	9.7 References

	10. Board Support Packages
	10.1 Yocto Project BSP Philosophy
	10.1.1 BSP Dependency Handling

	10.2 Building with a BSP
	10.2.1 Building for the BeagleBone
	10.2.2 External Yocto Project BSP

	10.3 Inside a Yocto Project BSP
	10.3.1 License Files
	10.3.2 Maintainers File
	10.3.3 README File
	10.3.4 README.sources File
	10.3.5 Prebuilt Binaries
	10.3.6 Layer Configuration File
	10.3.7 Machine Configuration Files
	10.3.8 Classes
	10.3.9 Recipe Files

	10.4 Creating a Yocto Project BSP
	10.4.1 Yocto Project BSP Tools
	10.4.2 Creating a BSP with the Yocto Project BSP Tools

	10.5 Tuning
	10.6 Creating Bootable Media Images
	10.6.1 Creating an Image with Cooked Mode
	10.6.2 Creating an Image with Raw Mode
	10.6.3 Kickstart Files
	10.6.4 Kickstart File Directives
	10.6.5 Plugins
	10.6.6 Transferring Images

	10.7 Summary
	10.8 References

	11. Application Development
	11.1 Inside a Yocto Project ADT
	11.2 Setting Up a Yocto Project ADT
	11.2.1 Building a Toolchain Installer
	11.2.2 Installing the Toolchain
	11.2.3 Working with the Toolchain
	11.2.4 On-Target Execution
	11.2.5 Remote On-Target Debugging

	11.3 Building Applications
	11.3.1 Makefile-Based Applications
	11.3.2 Autotools-Based Applications

	11.4 Eclipse Integration
	11.4.1 Installing the Eclipse IDE
	11.4.2 Integrating a Yocto Project ADT
	11.4.3 Developing Applications
	11.4.4 Deploying, Running, and Testing on the Target

	11.5 Application Development Using an Emulated Target
	11.5.1 Preparing for Application Development with QEMU
	11.5.2 Building an Application and Launching It in QEMU

	11.6 Summary
	11.7 References

	12. Licensing and Compliance
	12.1 Managing Licenses
	12.1.1 License Tracking
	12.1.2 Common Licenses
	12.1.3 Commercially Licensed Packages
	12.1.4 License Deployment
	12.1.5 Blacklisting Licenses
	12.1.6 Providing License Manifest and Texts

	12.2 Managing Source Code
	12.3 Summary
	12.4 References

	13. Advanced Topics
	13.1 Toaster
	13.1.1 Toaster Operational Modes
	13.1.2 Toaster Setup
	13.1.3 Local Toaster Development
	13.1.4 Toaster Configuration
	13.1.5 Toaster Production Deployment
	13.1.6 Toaster Web User Interface

	13.2 Build History
	13.2.1 Enabling Build History
	13.2.2 Configuring Build History
	13.2.3 Pushing Build History to a Git Repository Server
	13.2.4 Understanding the Build History

	13.3 Source Mirrors
	13.3.1 Using Source Mirrors
	13.3.2 Setting Up Source Mirrors

	13.4 Autobuilder
	13.4.1 Installing Autobuilder
	13.4.2 Configuring Autobuilder

	13.5 Summary
	13.6 References

	A. Open Source Licenses
	A.1 MIT License (MIT)
	A.2 GNU General Public License (GPL) Version 2
	Preamble
	Terms and Conditions for Copying, Distribution and Modification
	No Warranty
	How to Apply These Terms to Your New Programs

	A.3 GNU General Public License (GPL) Version 3
	Preamble
	Terms and Conditions
	How to Apply These Terms to Your New Programs

	A.4 Apache License Version 2.0
	TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
	APPENDIX: How to Apply the Apache License to Your Work

	B. Metadata Reference
	Index
	Code Snippets

